Fizyka. II rok 2015/2016. Piotr Jaracz. Wyższa Szkoła Informatyki Stosowanej i Zarządzania PAN Warszawa
|
|
- Aneta Kurowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Fizyka II rok 2015/2016 Piotr Jaracz Wyższa Szkoła Informatyki Stosowanej i Zarządzania PAN Warszawa
2 1. Co to jest fizyka Fizyka nauka, która bada ogólne własności materii, przestrzeni i czasu i formułuje prawa odnoszące się do zjawisk naturalnych /Encykl. Powsz. Larousse/.... dla potrzeb tego wykładu trochę inaczej: Fizyka (z gr. physiké, od phýsis natura, przyroda) to jedna z prób zrozumienia świata, oparta na faktach, badaniach eksperymentalnych i matematyce. Cele wykładu: m.in. zdobycie podstawowych umiejętności rozumowania (rozwijanie dociekliwości, krytycyzmu, formułowania hipotez i wniosków itp., poprzez poznawanie i używanie pojęć, narzędzi i metod nauk ścisłych). 2. Pomiar, wielkość fizyczna Problem Kupiliśmy pianino i musimy wnieść je do naszego mieszkania. Jak? Po schodach czy windą? Rozwiązanie intuicyjne: zakładamy, że instrument zmieści się w windzie i niesiemy go prosto do windy. Rozwiązanie fizyczne: mierzymy długość oraz szerokość kabiny windy i pianina; na podstawie wyników pomiarów podejmujemy odpowiednią decyzję. A gdy nie mamy przy sobie linijki lub taśmy mierniczej? 2
3 Jako miarki możemy użyć naszej stopy... Stawiając stopę za stopą przy pianinie oraz wzdłuż wewnętrznych krawędzi kabiny otrzymamy przybliżone rozmiary tych obiektów wyrażone w stopach. Podsumowanie Pomiar jest to porównywanie jakiejś właściwości obiektu lub zjawiska fizycznego ze wzorcem, prowadzące do przypisania tej właściwości liczby.... inaczej Właściwości (cechy) obiektów lub zjawisk fizycznych można określać ilościowo czyli mierzyć. Czy wszystkie? Nie tylko te, które sami wprowadzamy, uznając je za niezbędne do opisu fizycznego obiektu lub zjawiska. Właściwości obiektów lub zjawisk fizycznych, które możemy mierzyć nazywamy wielkościami fizycznymi Wzorce pomiaru długości Dawniej do mierzenia długości przedmiotów wykorzystywano to co było łatwo dostępne często swoje ciało. Wzorcem (jednostką) długości była np.: długość ziarna jęczmienia (!): potrojona stanowiła pierwowzór jednostki długości zwanej calem, odległość od łokcia do końca dłoni (tzw. łokieć), długość stopy (tzw. stopa). 3
4 Zalety: taki wzorzec mamy zawsze przy sobie, łatwo wyobrazić sobie wielkość przedmiotu. Wada: ludzie różnią się między sobą, a więc długości ich łokci czy stóp też się różnią. Rozwiązanie problemu: ujednolicić wzorce. Przykłady Na początku XVI wieku na terenach ówczesnej Rzeczypospolitej stosowano powszechnie, m.in: łokieć lwowski (71,69 cm) i łokieć krakowski (57,35 cm). Pomiędzy państwami istniały jeszcze większe różnice w przyjmowanych długościach łokcia, np. na początku XIX wieku funkcjonował: łokieć warszawski (59,6 cm), łokieć berliński w Prusach (66,7 cm), łokieć wiedeński w Austrii (77,9 cm),... ale, pomimo znaczących różnic, najczęściej przyjmowano podział łokcia na 2 stopy i 24 cale. Ostatecznie Łokieć został zarzucony (niejako zamiast niego wyłonił się jard 3 łokcie), a stopa i cal zostały poddane standaryzacji (patrz dalej). 4
5 3. Metryczny układ jednostek miar W okresie Rewolucji Francuskiej podjęto we Francji reformę miar i zdecydowano m.in. że nowe miary będą opierać się na stałych zjawiskach fizycznych a nie na (zmiennych) cechach ciała ludzkiego. Wprowadzono wtedy (1795) nową jednostką długości metr, zdefiniowaną jako: 1 metr jest to jedna dziesięciomilionowa część odległości między biegunem a równikiem Ziemi, wzdłuż południka ziemskiego przechodzącego przez Paryż. 1 Ustalono również, że wielokrotności oraz podwielokrotności metra (a za nim innych jednostek) będą oparte na dziesiętnym układzie liczbowym, zaś ich nazwy będą zawierać słowo metr (lub inna jednostka), poprzedzone przedrostkiem symbolizującym odpowiedni mnożnik. Ogólnie Metryczny układ jednostek (miar) jest to taki układ jednostek, w którym stosuje się wielokrotności i podwielokrotności wartości jednostek wyrażane w dziesiętnym układzie liczbowym. Niemetryczne układy jednostek (patrz dalej). 1 Poczynając od końca XIX w. wzorzec metra był jeszcze trzykrotnie zmieniany. 5
6 Tab Przedrostki stosowane do oznaczania wielokrotności i podwielokrotności jednostek fizycznych w układzie metrycznym (np. układzie SI, patrz dalej). Nazwa przedrostka piko Skrót przedrostka p Znaczenie przedrostka (mnożnik) 1 1 0, nano mikro mili centy decy n m c d 1 1 0, , , , , deka da hekto h kilo k mega M giga G tera T
7 W ten sposób tworzy się, np.: 9 10 m = 1 nanometr = 1 nm 6 10 m = 1 mikrometr = 1 μm m = 10 m = 1 milimetr = 1 mm m = 1 centymetr = 1 cm, 1000 m = 1 kilometr = 1 km, 1 kg (kilogram) = 1000 g (gram), 1 hpa (hektopaskal) = 100 Pa (paskal), 1 GHz (gigaherc) = Hz, 1 ml (mililitr) = 0,001 l.,, W praktyce naukowej i technicznej są w użyciu również niemetryczne układy jednostek długości, wśród nich np. mila morska (w nawigacji morskiej) równa 1852 m, zdefiniowana jako długość łuku południka ziemskiego odpowiadającego jednej minucie kątowej (1/60 stopnia kątowego) koła ziemskiego wielkiego. Inne przykłady W niektórych krajach, m.in. w krajach anglosaskich, nadal (choć coraz rzadziej) używa się jednostek sprzed Rewolucji Francuskiej. Obecnie jednak zostały one poddane standaryzacji. I tak:, 7
8 1 cal = 25,4 mm, 1 1 stopa = 30,48 cm = jarda = 12 cali, 3 1 jard = 91,44 cm = 3 stopy = 36 cali. Współcześnie, w większości krajów przyjęto w metrologii tzw. układ SI (Système International d'unités Międzynarodowy Układ Jednostek Miar), zakładający 7 jednostek podstawowych dla wielkości fizycznych. Tab Jednostki podstawowe układu SI. Nazwa jednostki podstawowej Symbol Wielkość fizyczna podstawowa metr m długość kilogram kg masa sekunda s czas amper A natężenie prądu elektrycznego kelwin K temperatura termodynamiczna kandela cd światłość mol mol liczność materii Z tych jednostek można zbudować jednostki wszystkich innych, używanych w fizyce wielkości fizycznych. Powstają w ten sposób tzw. jednostki pochodne. Umożliwiają to równania definicyjne (definicje) wielkości fizycznych lub prawa fizyczne, które bada i wprowadza fizyka, łączące 8
9 między sobą wielkości fizyczne (patrz Pytania i Problemy, pkt. 8). W układzie SI dopuszczone są również jednostki pozaukładowe, np.: 1 h (godzina) = 3600 s, oraz 1 0 C, przy czym T [ 0 C] = T [K] 273,15. Układ SI jest metrycznym układem jednostek miar. Niemetryczny układ jednostek czasu tworzą, np.: 1 h = 60 min., 1 min. = 60 s, a jednostek długości: 1 jard 1 stopa 1 cal. 4. Wykresy Wykres jest formą prezentacji danych pomiarowych: przekazuje odbiorcy, w formie syntetycznej znaczną ilość informacji, pozwala na szybkie uchwycenie głównych cech badanego zjawiska fizycznego Tabela danych Podstawową (pierwotną) formą prezentacji danych z pomiarów fizycznych jest tabela. Przykład Tab Średnia miesięczna temperatura powietrza na Polskiej Stacji Polarnej Hornsund, Spitsbergen, Norwegia; w kolejnych miesiącach roku (na podstawie opracowania Rafała Kusia, Wydział Fizyki, Uniwersytet Warszawski). 9
10 Miesiąc TemperaturaT [ 0 C] I - 6,5 II - 7,1 III - 13,7 IV - 11,3 V - 2,7 VI 2,0 VII 4,6 VIII 4,7 IX 3,1 X - 0,9 XI - 5,6 XII - 4, Tworzenie wykresu Dane z tabeli przedstawiamy w formie graficznej przy pomocy wykresu, w którym przyjęto: oś pozioma - czas (kolejne miesiące); w fizyce czas, prawie zawsze, pokazywany jest na osi poziomej, oś pionowa - temperatura powietrza. 10
11 Rys Średnia miesięczna temperatura powietrza; Polska Stacja Polarna Hornsund, Spitsbergen,Norwegia. Język fizyki (terminologia) Wykres na Rys przedstawia, jak mówimy: zależność średniej miesięcznej temperatury powietrza od czasu, lub lepiej średnią miesięczną temperaturę powietrza w funkcji czasu. Dobre zasady tworzenia wykresu: 1. Skale wykresu tak dobrane, aby przedstawiane punkty pomiarowe znalazły się na całej powierzchni ograniczonej osiami; zakres osi nie musi zaczynać się w zerze. 2. Opis osi wykresu podanie nazw lub symboli wielkości fizycznych oraz jednostek układu miar w jakim zostały one wyrażone. 11
12 3. Podziałka niezbyt gęsta, z opisem w układzie (najczęściej). 4. Punkty pomiarowe zasadniczo nie powinno się ich łączyć linią łamaną; można narysować linię obrazującą tendencję zmian. 5. Opis wykres, a także tabela, powinny mieć tytuł (na wykresie) i/lub być opisane (pod wykresem). 6. Unikanie informacji zbędnych, np. obcych elementów graficznych czy tekstowych (czasem dodawanych przez programy komputerowe używane do tworzenia wykresów). 5. Opracowanie danych Dysponując przedstawionymi wyżej dwiema formami prezentacji danych dokonajmy elementarnego jak mówimy - opracowania danych....na podstawie tabeli Spostrzeżenie jakościowe (dotyczy trendów (tendencji) w zależności temperatury od czasu) Zauważamy, że temperatura na początku roku jest ujemna i maleje, po czym od kwietnia systematycznie rośnie, by następnie ponownie spadać. Spostrzeżenia ilościowe (dotyczy samych wartości temperatury) 12
13 Obliczamy (wskazujemy) minimalną ( 13,7 0 C) i maksymalną (4,7 0 C) miesięczną temperaturę powietrza. Wyznaczamy średnią roczną temperaturę. Zakładając, że chodzi o średnią arytmetyczną (są też inne średnie), z danych w tabeli: T i 12 Ti C na podstawie wykresu Dysponując wykresem możemy zauważyć istnienie istotnych zależności, trudnych do zaobserwowania na podstawie samej tylko tabeli danych: zauważamy, że spadek na początku roku (w marcu) jest gwałtowny, podobnie jak wzrost w maju, widzimy, wspomniany już wzrost temperatury w okresie od kwietnia do sierpnia. Najciekawsze dopiero przed nami!... Widzimy tendencję (trudną do zauważenia w tabeli) do utrzymywania się przez większą część roku temperatury w pobliżu 0 C 0. Na podstawie tego punktu opracowania danych możemy sformułować odważny a istotny wniosek hipotezę fizyczną, będącą w swej istocie celem każdych badań fizycznych 13
14 Dane pomiarowe zdają się wskazywać, że stacja polarna, na której dokonano pomiarów jest położona w pobliżu jakiegoś Dużego Zbiornika Wodnego, pełniącego rolę regulatora - stabilizatora temperatury! Prawdopodobnie stacja usytuowana jest niedaleko oceanu, a nie w głębi lądu (w tym wypadku wyspy Spitzbergen). Potwierdza się! A teraz ukoronowanie całego procesu badawczego!... Skoro nasza hipoteza (teraz już swego rodzaju teoria fizyczna) jest prawdziwa to możemy jej użyć do prognozowania jaką tendencję będzie miała temperatura w innych, położonych dalej od brzegów częściach wyspy Spitzbergen. Pytania i problemy 1. Co to jest wielkość fizyczna? Podaj i omów lub skomentuj dwa przykłady znanych ci wielkości fizycznych. 2. Czym jest pomiar fizyczny? Omów na czym polega pomiar wielkości fizycznej długość. 3. Średnica typowego włosa ludzkiego to ok. 100 m. Skomentuj możliwość pomiaru tej średnicy przy pomocy zwykłej linijki uczniowskiej. 14
15 4. Omów na czym polegała standaryzacja używanych pierwotnie jednostek długości cal? 5. W czym zawiera się istota metryczności układu jednostek miar? Podaj przykład. 6. Omów na przykładach wybrane metryczne i niemetryczne układy jednostek miar. 7. Podaj i omów znane ci jednostki podstawowe układu SI. 8. W układzie SI jednostka prędkości (m/s) jest jednostką pochodną, zbudowaną z jednostek podstawowych: długości (m) i czasu (s) na podstawie równania definicyjnego (definicji) prędkości. Co to za równanie? WSKAZÓWKA: jest to jednocześnie najprostsze prawo kinematyki, jedno z pierwszych praw mechaniki poznanych w szkole podstawowej. 9. Wyjaśnij znaczenie i podaj przykłady użycia przedrostków mega i giga wybranych jednostek miary. 10. Jak sądzisz, skąd pochodzi termin nanotechnologia? 11. Zapisz następujące liczby w postaci dziesiętnej (liczba dziesiętna lub ułamek dziesiętny): ,16 10 ; 2 10 ; 5 10 ; 5, Wskaż i uzasadnij rachunkiem, która wartość w każdej z poniższych par liczb jest większa: 15
16 a) 1 ma czy 0,01 A, b) 3 mm czy 300 m, c) 1,2 kg czy mg, d) 20 MW czy 2500 kw. 13. Wskaż i omów co najmniej jedną z cech wykresu danych, wyróżniających go w porównaniu z tabelą danych. 14. Podaj co najmniej trzy z tzw. dobrych zasad tworzenia wykresu. 15. Podaj najistotniejszą cechę charakterystyczną teorii fizycznej. 16
KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM
Anna Kierzkowska nauczyciel fizyki i chemii w Gimnazjum Nr 2 w Starachowicach KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM Temat lekcji: Pomiary wielkości fizycznych. Międzynarodowy Układ Jednostek Miar
Bardziej szczegółowoMiernictwo elektroniczne
Miernictwo elektroniczne Policz to, co można policzyć, zmierz to co można zmierzyć, a to co jest niemierzalne, uczyń mierzalnym Galileo Galilei Dr inż. Zbigniew Świerczyński p. 112A bud. E-1 Wstęp Pomiar
Bardziej szczegółowoFizyka. w. 02. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015
Fizyka w. 02 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Wektory ujęcie analityczne Definicja Wektor = uporządkowana trójka liczb (współrzędnych kartezjańskich) a = a x a y a z długość wektora: a = a 2 x +
Bardziej szczegółowoFizyka. w. 03. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015
Fizyka w. 03 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Jednostki miar SI Jednostki pochodne wielkość nazwa oznaczenie definicja czestotliwość herc Hz 1 Hz = 1 s 1 siła niuton N 1 N = 1 kgm 2 s 2 ciśnienie
Bardziej szczegółowoPodstawowe umiejętności matematyczne - przypomnienie
Podstawowe umiejętności matematyczne - przypomnienie. Podstawy działań na potęgach założenie:. założenie: założenie: a>0, n jest liczbą naturalną założenie: Uwaga:. Zapis dużych i małych wartości w postaci
Bardziej szczegółowoWykład 3 Miary i jednostki
Wykład 3 Miary i jednostki Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Od klasycznej definicji metra do systemu SI W 1791 roku Francuskie
Bardziej szczegółowoCzym jest Fizyka? Podstawowa nauka przyrodnicza badanie fundamentalnych i uniwersalnych właściwości materii oraz zjawisk w przyrodzie gr. physis - prz
FIZYKA 1 Czym jest fizyka jako nauka? Fizyka i technika Wielkości fizyczne skalarne, wektorowe, tensorowe operacje na wektorach Pomiar i jednostki fizyczne Prawa i zasady fizyki Czym jest Fizyka? Podstawowa
Bardziej szczegółowoFizyka. II rok 2015/2016. Piotr Jaracz. Wyższa Szkoła Informatyki Stosowanej i Zarządzania PAN Warszawa
Fizyka II rok 2015/2016 Piotr Jaracz Wyższa Szkoła Informatyki Stosowanej i Zarządzania PAN Warszawa 1. Co to jest fizyka Fizyka nauka, która bada ogólne własności materii, przestrzeni i czasu i formułuje
Bardziej szczegółowo3. Podstawowe wiadomości z fizyki. Dr inż. Janusz Dębiński. Mechanika ogólna. Wykład 3. Podstawowe wiadomości z fizyki. Kalisz
Dr inż. Janusz Dębiński Mechanika ogólna Wykład 3 Podstawowe wiadomości z fizyki Kalisz Dr inż. Janusz Dębiński 1 Jednostki i układy jednostek Jednostką miary wielkości fizycznej nazywamy wybraną w sposób
Bardziej szczegółowoKonspekt lekcji z fizyki w klasie I LO
mgr Sylwia Rybarczyk esryba@poczta.onet.pl nauczyciel fizyki i matematyki XLIV LO w Łodzi Konspekt lekcji z fizyki w klasie I LO TEMAT: Zjawisko fizyczne, wielkość fizyczna, jednostki - utrwalenie zdobytych
Bardziej szczegółowoLegalne jednostki miar wykorzystywane w ochronie atmosfery i pokrewnych specjalnościach naukowych
Legalne miar wykorzystywane w ochronie atmosfery i pokrewnych specjalnościach naukowych Legalne miar: 1). naleŝące do układu SI : podstawowe, uzupełniające pochodne 2). legalne, ale spoza układu SI Ad.
Bardziej szczegółowoDr inż. Michał Marzantowicz,Wydział Fizyki P.W. p. 329, Mechatronika.
Sprawy organizacyjne Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. marzan@mech.pw.edu.pl p. 329, Mechatronika http://adam.mech.pw.edu.pl/~marzan/ http://www.if.pw.edu.pl/~wrobel Suma punktów: 38 2 sprawdziany
Bardziej szczegółowoFizyka i wielkości fizyczne
Fizyka i wielkości fizyczne Fizyka: - Stosuje opis matematyczny zjawisk - Formułuje prawa fizyczne na podstawie doświadczeń - Opiera się na prawach podstawowych (aksjomatach) Wielkością fizyczną jest każda
Bardziej szczegółowoFizyka (Biotechnologia)
Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,
Bardziej szczegółowoAnaliza wymiarowa i równania różnicowe
Część 1: i równania różnicowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Plan Część 1: 1 Część 1: 2 Część 1: Układ SI (Système International d Unités) Siedem jednostek
Bardziej szczegółowoI. Przedmiot i metodologia fizyki
I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej
Bardziej szczegółowoPrawa fizyki wyrażają związki między różnymi wielkościami fizycznymi.
Prawa fizyki i wielkości fizyczne Fizyka (z stgr. φύσις physis "natura") nauka o przyrodzie w najszerszym znaczeniu tego słowa. Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa
Bardziej szczegółowoWłasność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp.
Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Nauka - technika 2 Metodologia Problem Hipoteza EKSPERYMENT JAKO NARZĘDZIE WERYFIKACJI 3 Fizyka wielkości fizyczne opisują właściwości obiektów i pozwalają również ilościowo porównać
Bardziej szczegółowoRedefinicja jednostek układu SI
CENTRUM NAUK BIOLOGICZNO-CHEMICZNYCH / WYDZIAŁ CHEMII UNIWERSYTETU WARSZAWSKIEGO Redefinicja jednostek układu SI Ewa Bulska MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA
Bardziej szczegółowoZbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki.
Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.
Bardziej szczegółowoFizyka dla inżynierów I, II. Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria
Fizyka dla inżynierów I, II Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria Wymagania wstępne w zakresie przedmiotu: - Ma wiedzę z zakresu fizyki oraz chemii na poziomie programu
Bardziej szczegółowoLABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
Bardziej szczegółowoPomiary fizyczne. Wykład II. Wstęp do Fizyki I (B+C) Rodzaje pomiarów. Układ jednostek SI Błedy pomiarowe Modele w fizyce
Pomiary fizyczne Wykład II: Rodzaje pomiarów Wstęp do Fizyki I (B+C) Wykład II Układ jednostek SI Błedy pomiarowe Modele w fizyce Rodzaje pomiarów Zliczanie Przykłady: liczba grzybów w barszczu liczba
Bardziej szczegółowoCzytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić.
Analiza i czytanie wykresów Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Aby dobrze odczytać wykres zaczynamy od opisu
Bardziej szczegółowoZajęcia wstępne. mgr Kamila Rudź pokój C 116A / C KONSULTACJE. Poniedziałki
Zajęcia wstępne mgr Kamila Rudź pokój C 116A / C 145 KONSULTACJE Poniedziałki 15.00 16.00 Wtorki 11.00 12.00 http://kepler.am.gdynia.pl/~karudz kamilar@am.gdynia.pl Kurtki zostawiamy w szatni. Zakaz wnoszenia
Bardziej szczegółowodr inż. Marcin Małys / dr inż. Wojciech Wróbel Podstawy fizyki
dr inż. Marcin Małys / dr inż. Wojciech Wróbel Podstawy fizyki Ramowy program wykładu (1) Wiadomości wstępne; wielkości fizyczne, układ jednostek SI; układ współrzędnych, operacje na wektorach. Rachunek
Bardziej szczegółowoPODSTAWOWA TERMINOLOGIA METROLOGICZNA W PRAKTYCE LABORATORYJNEJ
Klub Polskich Laboratoriów Badawczych POLLAB PODSTAWOWA TERMINOLOGIA METROLOGICZNA W PRAKTYCE LABORATORYJNEJ Andrzej Hantz Centrum Metrologii im. Zdzisława Rauszera RADWAG Wagi Elektroniczne Metrologia
Bardziej szczegółowoSCENARIUSZ LEKCJI FIZYKI W GIMNAZJUM
Barbara Jasicka nauczyciel fizyki Gimnazjum nr 7 w Gorzowie Wlkp. SCENARIUSZ LEKCJI FIZYKI W GIMNAZJUM I. MODUŁ TEMATYCZNY : Jak opisujemy ruch? II. TEMAT : Wyznaczenie prędkości przemieszczania się za
Bardziej szczegółowoModelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.
Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania
Bardziej szczegółowoWprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta
Wprowadzenie do rachunku niepewności pomiarowej Jacek Pawlyta Fizyka Teorie Obserwacje Doświadczenia Fizyka Teorie Przykłady Obserwacje Przykłady Doświadczenia Przykłady Fizyka Potwierdzanie bądź obalanie
Bardziej szczegółowoZajęcia wstępne. mgr Kamila Rudź pokój C 145.
Zajęcia wstępne mgr Kamila Rudź pokój C 145 http://kepler.am.gdynia.pl/~karudz Kurtki zostawiamy w szatni. Zakaz wnoszenia jedzenia i picia. Praca z urządzeniami elektrycznymi: włączamy tylko za zgodą
Bardziej szczegółowoFunkcja liniowa - podsumowanie
Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych
Bardziej szczegółowoSZCZEGÓŁOWE CELE EDUKACYJNE
Program nauczania: Fizyka z plusem, numer dopuszczenia: DKW 4014-58/01 Plan realizacji materiału nauczania fizyki w klasie I wraz z określeniem wymagań edukacyjnych DZIAŁ PRO- GRA- MOWY Pomiary i Siły
Bardziej szczegółowoEnergetyka w Środowisku Naturalnym
Energetyka w Środowisku Naturalnym Energia w Środowisku -technika ograniczenia i koszty Wykład 1-6.X.2015 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/
Bardziej szczegółowoPodstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka Stankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i
Bardziej szczegółowoGraficzne opracowanie wyników pomiarów 1
GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości
Bardziej szczegółowoLaboratorium Podstaw Pomiarów
Laboratorium Podstaw Pomiarów Dokumentowanie wyników pomiarów protokół pomiarowy Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik
Bardziej szczegółowoPodstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów
Bardziej szczegółowoPodstawy niepewności pomiarowych Ćwiczenia
Podstawy niepewności pomiarowych Ćwiczenia 1. Zaokrąglij podane wartości pomiarów i ich niepewności. = (334,567 18,067) m/s = (153 450 000 1 034 000) km = (0,0004278 0,0000556) A = (2,0555 0,2014) s =
Bardziej szczegółowoLEGALNE JEDNOSTKI MIAR. podstawowe jednostki SI
LEGALNE JEDNOSTKI MIAR Obowiązujące w Polsce legalne jednostki miar ustalone zostały rozporządzeniem Rady Ministrów z dnia 17.10.1975 r. i doprecyzowane zarządzeniem Prezesa Polskiego Komitetu Normalizacji
Bardziej szczegółowoMierzymy opór elektryczny rezystora i żaróweczki. czy prawo Ohma jest zawsze spełnione?
1 Mierzymy opór elektryczny rezystora i żaróweczki czy prawo Ohma jest zawsze spełnione? Czas trwania zajęć: 1h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć:
Bardziej szczegółowoP. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9.
Literatura: P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9. A. Zięba, 2001, Natura rachunku niepewności a
Bardziej szczegółowoZmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka
Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka Jakub S. Prauzner-Bechcicki Grupa: Chemia A Kraków, dn. 7 marca 2018 r. Plan wykładu Rozważania wstępne Prezentacja wyników
Bardziej szczegółowoKuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP OKRĘGOWY
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 KOD UCZNIA ETAP OKRĘGOWY Instrukcja dla ucznia 1. Arkusz zawiera 6 zadań. 2. Przed rozpoczęciem
Bardziej szczegółowoDr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach
Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem
Bardziej szczegółowoPodstawy Nawigacji. Kierunki. Jednostki
Podstawy Nawigacji Kierunki Jednostki Program wykładów: Istota, cele, zadania i rodzaje nawigacji. Podstawowe pojęcia i definicje z zakresu nawigacji. Morskie jednostki miar. Kierunki na morzu, rodzaje,
Bardziej szczegółowowww.if.pw.edu.pl/~antonowi Fizyka. Repetytorium. Wzory i Prawa z Objaśnieniami Kazimierz Sierański, Piotr Sitarek, Krzysztof Jezierski Fizyka. Repetytorium. Zadania z Rozwiązaniami Krzysztof Jezierski,
Bardziej szczegółowoPodstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej
Bardziej szczegółowoK. Rochowicz, M. Sadowska, G. Karwasz i inni, Toruński poręcznik do fizyki Gimnazjum I klasa Całość: http://dydaktyka.fizyka.umk.
3.2 Ruch prostoliniowy jednostajny Kiedy obserwujemy ruch samochodu po drodze między dwoma tunelami, albo ruch bąbelka powietrza ku górze w szklance wody mineralnej, jest to ruch po linii prostej. W przypadku
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Bardziej szczegółowoTadeusz M.Molenda Instytut Fizyki US Metrologia. T.M.Molenda, Metrologia. W1
Tadeusz M.Molenda Instytut Fizyki US Metrologia Za Wikipedią: https://pl.wikipedia.org/wiki/metrologia Metrologia nauka dotycząca sposobów dokonywania pomiarów oraz zasad interpretacji uzyskanych wyników.
Bardziej szczegółowoWymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Bardziej szczegółowoMiernictwo przemysłowe
Miernictwo przemysłowe Józef Warechowski Olsztyn, 2014 Charakterystyka pomiarów w produkcji żywności Podstawa formalna do prowadzenia ciągłego nadzoru nad AKP: PN-EN ISO 9001 punkt 7.6 1 1 a) Bezpośrednie,
Bardziej szczegółowoWymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Bardziej szczegółowoWYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych
WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/2018 I. Wymagania przekrojowe. Uczeń: 1) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych lub blokowych informacje kluczowe dla
Bardziej szczegółowoScenariusz lekcji fizyki w klasie drugiej gimnazjum
Scenariusz lekcji fizyki w klasie drugiej gimnazjum Temat: Opór elektryczny, prawo Ohma. Czas trwania: 1 godzina lekcyjna Realizowane treści podstawy programowej Przedmiot fizyka matematyka Realizowana
Bardziej szczegółowoPLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe
Bardziej szczegółowoWektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
Bardziej szczegółowoRuch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja
Bardziej szczegółowoPomiary i jednostki. Wynik pomiaru. Jeżeli powiesz koledze, że zmierzona przez ciebie długość wynosi
Pomiary i jednostki Odrysuj na kartce brystolu kształt swojej lewej stopy. Wytnij go i zmierz linijką długość. Napisz swoje imię, nazwisko i zmierzoną długość (w centymetrach). Określ, korzystając z poniższych
Bardziej szczegółowoMatematyka z plusem Klasa IV
Matematyka z plusem Klasa IV KLASA IV SZCZEGÓŁOWE CELE EDUKACYJNE KSZTAŁCENIE Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych. Stosowanie
Bardziej szczegółowoĆw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Bardziej szczegółowoFIZYKA. Wstęp cz. 1. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wstęp cz. 1 FIZYKA Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski Zasady zaliczenia przedmiotu Obecność i aktywność na zajęciach
Bardziej szczegółowoSkrypt 22. Przygotowanie do egzaminu Potęgi. Opracowanie: GIM3. 1. Mnożenie i dzielenie potęg o tych samych podstawach - powtórzenie
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszuu Społecznego Skrypt 22 Przygotowanie do egzaminu Potęgi 1. Mnożenie
Bardziej szczegółowoMgr Sławomir Adamczyk Konspekt lekcji fizyki w klasie I gimnazjum
Mgr Sławomir Adamczyk Konspekt lekcji fizyki w klasie I gimnazjum Temat: Masa a ciężar. Cele poznawcze i kształtujące: Uczeń wie: co to jest ciężar ciała w jaki sposób wyznaczyć ciężar za pomocą siłomierza
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który nie spełnia poniższych wymagań edukacyjnych
Bardziej szczegółowoJarosław Wróblewski Matematyka dla Myślących, 2008/09
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (dokończenie).
Bardziej szczegółowoĆwiczenie: "Kinematyka"
Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu
Bardziej szczegółowoStatystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2018/19 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
Bardziej szczegółowoprzybliżeniema Definicja
Podstawowe definicje Definicje i podstawowe pojęcia Opracowanie danych doświadczalnych Często zaokraglamy pewne wartości np. kupujac telewizor za999,99 zł. dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl
Bardziej szczegółowoRuch jednostajnie przyspieszony wyznaczenie przyspieszenia
Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej
Bardziej szczegółowo3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Bardziej szczegółowoMATEMATYKA. JEDNOSTKI DŁUGOŚCI kilometr hektometr metr decymetr centymetr milimetr mikrometr km hm m dm cm mm µm
MATEMATYKA Spis treści 1 jednostki miar 2 wzory skróconego mnożenia 3 podzielność liczb 3 przedrostki 4 skala 4 liczby naturalne 5 ułamki zwykłe 9 ułamki dziesiętne 9 procenty 10 geometria i stereometria
Bardziej szczegółowoDoświadczenie B O Y L E
Wprowadzenie teoretyczne Doświadczenie Równanie Clapeyrona opisuje gaz doskonały. Z dobrym przybliżeniem opisuje także gazy rzeczywiste rozrzedzone. p V = n R T Z równania Clapeyrona wynika prawo Boyle'a-Mario
Bardziej szczegółowoAnna Nagórna Wrocław, r. nauczycielka chemii i fizyki
Anna Nagórna Wrocław, 1.09.2015 r. nauczycielka chemii i fizyki Plan pracy dydaktycznej na fizyce wraz z wymaganiami edukacyjnymi na poszczególne oceny w klasach pierwszych w roku szkolnym 2015/2016 na
Bardziej szczegółowoKonsultacje: Poniedziałek, godz , ul. Sosnkowskiego 31, p.302 Czwartek, godz , ul. Ozimska 75, p.
a.zurawska@po.opole.pl Konsultacje: Poniedziałek, godz. 13.45-14.45, ul. Sosnkowskiego 31, p.302 Czwartek, godz. 10.00-11.00, ul. Ozimska 75, p.205 Wymagania wstępne w zakresie przedmiotu: - Ma wiedzę
Bardziej szczegółowoZajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów
wielkość mierzona wartość wielkości jednostka miary pomiar wzorce miary wynik pomiaru niedokładność pomiaru Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów 1. Pojęcia podstawowe
Bardziej szczegółowoWyznaczanie współczynnika sprężystości sprężyn i ich układów
Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie
Bardziej szczegółowoWymagania edukacyjne z matematyki : Matematyka z plusem GWO
klasy Ewy Pakulskiej Wymagania edukacyjne z matematyki : Matematyka z plusem GWO KLASA IV Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych.
Bardziej szczegółowoStrategia realizacji spójności pomiarów chemicznych w laboratorium analitycznym
Slide 1 Uniwersytet Warszawski Wydział Chemii Centrum Nauk Biologiczno- Chemicznych Strategia realizacji spójności pomiarów chemicznych w laboratorium analitycznym Ewa Bulska ebulska@chem.uw.edu.pl Slide
Bardziej szczegółowoWymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
Bardziej szczegółowoĆwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Bardziej szczegółowoNastępnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.
Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,
Bardziej szczegółowoDydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 11: Funkcje w matematyce szkolnej Semestr zimowy 2018/2019
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 11: Funkcje w matematyce szkolnej Semestr zimowy 2018/2019 Funkcje uwagi historyczne Wprowadzenie liczb rzeczywistych i liczb zespolonych
Bardziej szczegółowoPodziałka liniowa czy logarytmiczna?
Podziałka liniowa czy logarytmiczna? Bardzo często do graficznego przedstawienia pewnych zależności odpowiednie jest użycie podziałki liniowej na osi x i osi y wykonywanego wykresu. Są jednak przypadki,
Bardziej szczegółowoPESEL. Czas pracy: do 135 minut 4. Rozwiązania zadań od 21. do 23. formułujesz samodzielnie.
Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z
Bardziej szczegółowoMATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ
MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne
Bardziej szczegółowoMatematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Bardziej szczegółowoHARMONOGRAM FORM WSPARCIA W RAMACH REALIZOWANEGO PROJEKTU
HARMONOGRAM FORM WSPARCIA W RAMACH REALIZOWANEGO PROJEKTU Numer Projektu: RPOP.09.01.02-16-007/15 Tytuł Projektu: Młodzi Odkrywcy Sekretów Nauki AO obszar II Wzrost kompetencji uczniów i nauczycieli szkół
Bardziej szczegółowoStatystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2017/18 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
Bardziej szczegółowoKrótka informacja o Międzynarodowym Układzie Jednostek Miar, SI
SI Krótka informacja o Międzynarodowym Układzie Jednostek Miar, SI Metrologia jest nauką o pomiarach i ich zastosowaniach. Metrologia obejmuje wszystkie teoretyczne i praktyczne aspekty pomiarów niezależnie
Bardziej szczegółowoKOŚć i przyspieszenie. O PRĘDKOŚCI. Aby ZROZumIEć to POjĘCIE,
2 Siła i ruch Prędkość i przyspieszenie Ruch JEDNOSTAJNY ZaNIm będziemy mogli zrozumieć ZASADY ruchu, musimy WIEDZIEć, czym są pręd- KOŚć i przyspieszenie. NajPIERw pomówmy O PRĘDKOŚCI. Aby ZROZumIEć to
Bardziej szczegółowoMatematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Bardziej szczegółowoMATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoPraca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
Bardziej szczegółowoPodstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii (2018) Autor prezentacji :dr hab. Paweł Korecki dr Szymon Godlewski e-mail: szymon.godlewski@uj.edu.pl
Bardziej szczegółowoPowtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia
Powtórzenie wiadomości z klasy I Temat: Ruchy prostoliniowe. Obliczenia Ruch jest względny 1.Ruch i spoczynek są pojęciami względnymi. Można jednocześnie być w ruchu względem jednego ciała i w spoczynku
Bardziej szczegółowo