Programowanie genetyczne, gra SNAKE

Wielkość: px
Rozpocząć pokaz od strony:

Download "Programowanie genetyczne, gra SNAKE"

Transkrypt

1 STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009

2 Spis treści 1. Wstęp Ogólny opis Informacje dla użytkowników Charakterystyka systemu Schematy ewolucji Zastosowane operatory genetyczne MaxReproduction AdaptationCrossover MultipleMutation ClassicCrossover ClassicMutation ClassicReproduction Wyniki 5 2

3 1. Wstęp 1.1. Ogólny opis Projekt jest próbą wygenerowania w miarę dobrze grającego programu w popularną grę Wąż przy pomocy algorytmów ewolucyjnych. Reguły gry Wąż są bardzo proste. Sterujemy osobnikiem złożonym z wielu segmentów o tej samej wielkości połączonych razem ze sobą. W grze poruszamy się w trzech możliwych kierunkach: lewo, prawo, prosto (w zależności od orientacji głowy węża). W każdym momencie na planszy znajduje się dokładnie jeden kawałek jedzenia. Gdy wąż go zjada jego ogon wydłuża się o jeden segment, a nowy kawałek jedzenia pojawia się w innym losowym miejscu. Celem gry jest zjedzenie jak najwięcej kawałków jedzenia. Do stworzenia osobnika wykorzystujemy programowanie genetyczne Informacje dla użytkowników Program zrealizowany jest jako applet Java. Można w nim ustalić wielkość populacji oraz liczbę generacji, czyli dane wejściowe dla algorytmu ewolucyjnego. Interfejs graficzny zawiera cztery podstawowe przyciski: Rozpocznji ewolucje, Zakończ ewolucje, Rozpocznji symulacje, Zakoncz Symulacje. 3

4 2. Charakterystyka systemu 2.1. Schematy ewolucji Przez schemat ewolucji rozumiem sposób tworzenia populacji potomków z populacji rodzicielskiej. Niech P t oznacza populację rodziców w t-tej generacji. SCHEMAT PIERWSZY - pierwszy zaimplementowany schemat nie opiera się na klasycznym schemacie ewolucji w programowaniu genetycznym. Występują w nim trzy operatory, które będą opisane później. Działa on następująco: Wybierz najlepszego osobnika w populacji P t i zastąp nim pewien ustalony ułamek populacji P t (MaxReproduction). Wybierz m-krotnie po dwóch różnych osobników (metodą ruletki) z P t, skrzyżuj ich i zastąp ich wynikłymi z krzyżowania osobnikami (AdaptationCrossover). Wybierz jednego osobnika (metodą ruletki) z P t, usuń jego dowolne poddrzewo i zastąp je losowym poddrzewem. Umieść osobnika spowrotem w P t (MultipleMutation). SCHEMAT DRUGI - opiera się na klasycznym schemacie programowania genetycznego. Występują również trzy operatory, które zostaną opisane później. Z każdym operatorem związane jest prawdopodobieństwo p 1, p 2 oraz p 3. W każdej generacji każdy z operatorów jest stosowany zgodnie z jednym z powyższych prawdopodobieństw. Schemat działa następująco: Stwórz pustą populację potomków C t. Dopóki liczba osobników w C t nie jest równa liczbie osobników w P t wykonuj poniższy krok. Jeżeli udał się (z ppb. p1) ClassicCrossover, to wybierz dwa osobniki z P t metodą ruletki. Skrzyżuj je i wstaw dwóch potomków do C t. Jeżeli udał się (z ppb. p2) ClassicMutation, to wybierz osobnika z P t metodą ruletki. Zamień jest dowolne losowe poddrzewo na losowe drzewo. Wstaw tak zmutowanego osobnika do C t. Jeżeli udał się (z ppb. p3) ClassicReproduction, to wybierz osobnika z P t metodą ruletki. Wstaw tego osobnika do C t. Zastąp P t przez C t Zastosowane operatory genetyczne MaxReproduction Operator ten pobiera trzy parametry: populację P, adaptację A oraz p [0, 1). Parametr p oznacza jaki procent populacji P należy zastąpić najlepszym osobnikiem w populacji P. Operator ten z początku znacznie polepszył wyniki, ale później okazało się, że dość szybko prowadzi on do dominacji najlepszego osobnika w populacji, a co za tym idzie do skupienia się algorytmu w obrębie tego osobnika i słabego rozproszenia poszukiwań AdaptationCrossover Operator ten pobiera trzy parametry: populację P, adaptację A oraz nieujemną liczbą całkowitą times, która oznacza ile razy mamy powtórzyć działanie operatora. Działaniem tym jest 4

5 wylosowanie dwóch osobników metodą ruletki i skrzyżowanie ich. Pierwotne osobniki w P są zastępowane przez swoje dzieci. Bardzo trudno jest określić czy operator ten ma pozytywny czy negatywny wpływ na działanie algorytmu. Może się zdarzyć tak, że dwa dobre programy po tej operacji będą miały mierne wyniki, ale również może zajść sytuacja zupełnie odwrotna. Napewno operator ten jest dobry pod względem rozszerzenia obszaru poszukiwań w obrębie tych najlepszych osobników. Operator ten przypomina trochę przeszukiwanie lokalne, gdyż po skrzyżowaniu najprawdopodobniej dostaniemy osobników bliskich swoim rodzicom MultipleMutation Operator ten pobiera trzy parametry: populację P, adaptację A oraz p [0, 1]. Parametr p jest szansą na zastosowanie tego operatora. Operator ten losuje osobnika metodą ruletki, następnie losuje jego losowe poddrzewo i zastępuje je losowym drzewem o losowej wielkości. Pierwotny osobnik jest zastępowany przez zmutowanego osobnika. Głównym zadaniem tego operatora jest rozproszenie przeszukiwań ClassicCrossover Działa tak samo jak AdaptationCrossover z tą różnicą, że pobiera dodatkowy parametr, którym jest nowa populacja. Skrzyżowane osobniki nie zastępują swoich rodziców w starej populacji, lecz trafiają do nowej ClassicMutation Działa tak samo jak MultipleMutation z tą różnicą, że pobiera dodatkowy parametr, którym jest nowa populacja. Zmutowany osobnik nie zastępuje swojego rodzica, lecz trafia do nowej populacji ClassicReproduction Metodą ruletki wybiera osobnika z populacji rodzicielskiej. Pobiera dodatkowy parametr, którym jest nowa populacja. Wybrany osobnik trafia do nowej populacji, populacja rodzicielska pozostaje bez zmian. 3. Wyniki Poniżej przedstawiam dwa wykresy. Obrazują one ilość zjedzonych kawałków jedzenia w zależności od prawdopodobieństwa wyboru operatorów reprodukcji oraz krzyżowania. 5

6 Rysunek 1: Ewolucja ze zwiększoną mutacją. Rysunek 2: Ewolucja ze zmniejszoną mutacją. 6

Programowanie genetyczne - gra SNAKE

Programowanie genetyczne - gra SNAKE PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

6. Klasyczny algorytm genetyczny. 1

6. Klasyczny algorytm genetyczny. 1 6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata

Bardziej szczegółowo

Algorytmy ewolucyjne (3)

Algorytmy ewolucyjne (3) Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera

Bardziej szczegółowo

Algorytmy ewolucyjne. wprowadzenie

Algorytmy ewolucyjne. wprowadzenie Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Modyfikacje i ulepszenia standardowego algorytmu genetycznego

Modyfikacje i ulepszenia standardowego algorytmu genetycznego Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Programowanie genetyczne (ang. genetic programming)

Programowanie genetyczne (ang. genetic programming) Programowanie genetyczne (ang. genetic programming) 1 2 Wstęp Spopularyzowane przez Johna Kozę na początku lat 90-tych. Polega na zastosowaniu paradygmatu obliczeń ewolucyjnych do generowania programów

Bardziej szczegółowo

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Algorytmy genetyczne w interpolacji wielomianowej

Algorytmy genetyczne w interpolacji wielomianowej Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego

Bardziej szczegółowo

Biologicznie motywowane metody sztucznej inteligencji

Biologicznie motywowane metody sztucznej inteligencji Biologicznie motywowane metody sztucznej inteligencji Problem marszrutyzacji Paweł Rychlik Jacek Gąsiorowski Informatyka, SSI, sem. 7 Grupa GKiO1 Prowadzący: dr inż. Grzegorz Baron 1. Wstęp Problem marszrutyzacji

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Patrycja Prokopiuk. Zastosowanie rachunku prawdopodobieństwa w Pokerze Pięciokartowym

Patrycja Prokopiuk. Zastosowanie rachunku prawdopodobieństwa w Pokerze Pięciokartowym Patrycja Prokopiuk Zastosowanie rachunku prawdopodobieństwa w Pokerze Pięciokartowym Wrocław 7 maja 04 Spis treści Wstęp........................................ Objaśnienie obliczeń................................

Bardziej szczegółowo

Standardowy algorytm genetyczny

Standardowy algorytm genetyczny Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria

Bardziej szczegółowo

Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji

Algorytmy genetyczne służą głównie do tego, żeby rozwiązywać zadania optymalizacji Kolejna metoda informatyczna inspirowana przez Naturę - algorytmy genetyczne Struktura molekuły DNA nośnika informacji genetycznej w biologii Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania

Bardziej szczegółowo

ALGORYTMY I PROGRAMY

ALGORYTMY I PROGRAMY ALGORYTMY I PROGRAMY Program to ciąg instrukcji, zapisanych w języku zrozumiałym dla komputera. Ten ciąg instrukcji realizuje jakiś algorytm. Algorytm jest opisem krok po kroku jak rozwiązać problem, czy

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH

ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO WYZNACZANIA OPTYMALNYCH DECYZJI STERUJĄCYCH KLAUDIUSZ MIGAWA 1 Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy Streszczenie Zagadnienia przedstawione w artykule

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB...

MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB... MIO - LABORATORIUM Temat ćwiczenia: TSP - Problem komiwojażera Imię i nazwisko Rok ak. Gr. Sem. Komputer Data Podpis prowadzącego... 20 / EC3 VIII LAB...... Zadanie Zapoznać się z problemem komiwojażera

Bardziej szczegółowo

Obliczenia Naturalne - Strategie ewolucyjne

Obliczenia Naturalne - Strategie ewolucyjne Literatura Historia Obliczenia Naturalne - Paweł Paduch Politechnika Świętokrzyska 3 kwietnia 2014 Paweł Paduch Obliczenia Naturalne - 1 z 44 Plan wykładu Literatura Historia 1 Literatura Historia 2 Strategia

Bardziej szczegółowo

Programowanie w VB Proste algorytmy sortowania

Programowanie w VB Proste algorytmy sortowania Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 20.01.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia

Bardziej szczegółowo

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/ STL, czyli o co tyle hałasu W świecie programowania C++, hasło STL pojawia się nieustannie i zawsze jest o nim głośno... często początkujące osoby, które nie znają STL-a pytają się co to jest i czemu go

Bardziej szczegółowo

REFERAT PRACY DYPLOMOWEJ Temat pracy: SUDOKU - Algorytmy tworzenia i rozwiązywania

REFERAT PRACY DYPLOMOWEJ Temat pracy: SUDOKU - Algorytmy tworzenia i rozwiązywania REFERAT PRACY DYPLOMOWEJ Temat pracy: SUDOKU - Algorytmy tworzenia i rozwiązywania Autor: Anna Nowak Promotor: dr inż. Jan Kowalski Kategorie: gra logiczna Słowa kluczowe: Sudoku, generowanie plansz, algorytmy,

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

Automatyczny dobór parametrów algorytmu genetycznego

Automatyczny dobór parametrów algorytmu genetycznego Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja

Bardziej szczegółowo

KRYPTOGRAFIA I OCHRONA DANYCH PROJEKT

KRYPTOGRAFIA I OCHRONA DANYCH PROJEKT KRYPTOGRAFIA I OCHRONA DANYCH PROJEKT Temat: Zaimplementować system kryptografii wizualnej http://www.cacr.math.uwaterloo.ca/~dstinson/visual.html Autor: Tomasz Mitręga NSMW Grupa 1 Sekcja 2 1. Temat projektu

Bardziej szczegółowo

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule.

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. Jeśli obie wylosowane kule są tego samego koloru to zwycięża G

Bardziej szczegółowo

Obliczenia Naturalne - Algorytmy genetyczne

Obliczenia Naturalne - Algorytmy genetyczne Literatura Kodowanie Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 27 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura

Bardziej szczegółowo

Algorytmy i schematy blokowe

Algorytmy i schematy blokowe Algorytmy i schematy blokowe Algorytm dokładny przepis podający sposób rozwiązania określonego zadania w skończonej liczbie kroków; zbiór poleceń odnoszących się do pewnych obiektów, ze wskazaniem porządku,

Bardziej szczegółowo

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie Laboratorium Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie programowalnym FPGA. 1. Zasada działania algorytmów Algorytm Vernam a wykorzystuje funkcję

Bardziej szczegółowo

Gra planszowa dla 2 5 graczy w wieku powyżej 4 lat

Gra planszowa dla 2 5 graczy w wieku powyżej 4 lat ZAWARTOŚĆ PUDEŁKA: 1 plansza 1 dwunastościenna kostka 36 kartoników ze zdjęciami potwora Nessie 1 woreczek 12 figurek fotografów (3 żółte, 3 czerwone, 2 niebieskie, 2 czarne i 2 zielone) 1 figurka potwora

Bardziej szczegółowo

IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM

IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM Artykuł zawiera opis eksperymentu, który polegał na uyciu algorytmu genetycznego przy wykorzystaniu kodowania

Bardziej szczegółowo

PROGRAMOWALNE STEROWNIKI LOGICZNE

PROGRAMOWALNE STEROWNIKI LOGICZNE PROGRAMOWALNE STEROWNIKI LOGICZNE I. Wprowadzenie Klasyczna synteza kombinacyjnych i sekwencyjnych układów sterowania stosowana do automatyzacji dyskretnych procesów produkcyjnych polega na zaprojektowaniu

Bardziej szczegółowo

Genomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski

Genomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski Genomika Porównawcza Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski 1 Plan prezentacji 1. Rodzaje i budowa drzew filogenetycznych 2. Metody ukorzeniania drzewa

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź

Bardziej szczegółowo

Temat 1. Podstawy Środowiska Xcode i wprowadzenie do języka Objective-C

Temat 1. Podstawy Środowiska Xcode i wprowadzenie do języka Objective-C Temat 1. Podstawy Środowiska Xcode i wprowadzenie do języka Objective-C Wymagana wiedza wstępna: 1) Student musi 1) Znać język C 2) Znać zasady zarządzania pamięcią w komputerze 3) Znać pojecie wskaźnika

Bardziej szczegółowo

Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R.

Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R. Problemy optymalizacyjne Dana jest przestrzeń X. Znaleźć x X taki, że x spełnia określone warunki. Dana jest przestrzeń X i funkcja celu f: X R. Znaleźć x X taki, że f(x) jest maksimum (minimum) funkcji

Bardziej szczegółowo

Metody SI w grach komputerowych Gra Policjanci i złodziej (Algorytmy przeszukiwania grafów)

Metody SI w grach komputerowych Gra Policjanci i złodziej (Algorytmy przeszukiwania grafów) Metody SI w grach komputerowych Gra Policjanci i złodziej (Algorytmy przeszukiwania grafów) Przemysław Klęsk pklesk@wi.zut.edu.pl Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej Reguły gry

Bardziej szczegółowo

Dodatkowo planowane jest przeprowadzenie oceny algorytmów w praktycznym wykorzystaniu przez kilku niezależnych użytkowników ukończonej aplikacji.

Dodatkowo planowane jest przeprowadzenie oceny algorytmów w praktycznym wykorzystaniu przez kilku niezależnych użytkowników ukończonej aplikacji. Spis Treści 1. Wprowadzenie... 2 1.1 Wstęp... 2 1.2 Cel pracy... 2 1.3 Zakres pracy... 2 1.4 Użyte technologie... 2 1.4.1 Unity 3D... 3 2. Sztuczna inteligencja w grach komputerowych... 4 2.1 Zadanie sztucznej

Bardziej szczegółowo

Modelowanie biologicznych układów typu drapieżca - ofiara z wykorzystaniem błądzenia losowego.

Modelowanie biologicznych układów typu drapieżca - ofiara z wykorzystaniem błądzenia losowego. Modelowanie biologicznych układów typu drapieżca - ofiara z wykorzystaniem błądzenia losowego. Anna Rutkowska 135601 27 kwietnia 2007 1 Spis treści 1 Wstęp. 3 1.1 Cel pracy......................... 3 1.2

Bardziej szczegółowo

1 Moduł E-mail. 1.1 Konfigurowanie Modułu E-mail

1 Moduł E-mail. 1.1 Konfigurowanie Modułu E-mail 1 Moduł E-mail Moduł E-mail daje użytkownikowi Systemu możliwość wysyłania wiadomości e-mail poprzez istniejące konto SMTP. System Vision może używać go do wysyłania informacji o zdefiniowanych w jednostce

Bardziej szczegółowo

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Systemy baz danych w zarządzaniu przedsiębiorstwem W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Proces zarządzania danymi Zarządzanie danymi obejmuje czynności: gromadzenie

Bardziej szczegółowo

Gospodarcze zastosowania algorytmów genetycznych

Gospodarcze zastosowania algorytmów genetycznych Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym

Bardziej szczegółowo

Mechanizm zarządzania bazą towarową Quattro i kas firmy ELZAB Wersja RMC 1.9

Mechanizm zarządzania bazą towarową Quattro i kas firmy ELZAB Wersja RMC 1.9 RMC Serwer komunikacyjny Mechanizm zarządzania bazą towarową Quattro i kas firmy ELZAB Wersja RMC 1.9 1 Wstęp Wersja serwera komunikacyjnego RMC 1.9 wnosi kilka istotnych zmian w sposobie programowania

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A

Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Zadanie do wykonania 1) Utwórz na pulpicie katalog w formacie Imię nazwisko, w którym umieść wszystkie pliki związane z

Bardziej szczegółowo

Opracował: Jan Front

Opracował: Jan Front Opracował: Jan Front Sterownik PLC PLC (Programowalny Sterownik Logiczny) (ang. Programmable Logic Controller) mikroprocesorowe urządzenie sterujące układami automatyki. PLC wykonuje w sposób cykliczny

Bardziej szczegółowo

Klasyfikacja rysunku technicznego elektrycznego

Klasyfikacja rysunku technicznego elektrycznego Klasyfikacja rysunku technicznego elektrycznego Schematem elektrycznym nazywamy rysunek techniczny przedstawiający, w jaki sposób obiekt lub jego elementy funkcjonalne są współzaleŝne i/lub połączone.

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

LABORATORIUM 1: Program Evolutionary Algorithms

LABORATORIUM 1: Program Evolutionary Algorithms Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 1: Program Evolutionary Algorithms opracował:

Bardziej szczegółowo

Dla tego magazynu dodajemy dokument "BO remanent", który definiuje faktyczny, fizyczny stan magazynu:

Dla tego magazynu dodajemy dokument BO remanent, który definiuje faktyczny, fizyczny stan magazynu: Remanent w Aptece Spis treści 1 Omówienie mechanizmu 2 Dokument BO jako remanent 2.1 Dodawanie dokumentu 2.2 Generowanie pozycji remanentu 2.3 Generowanie stanów zerowych 2.4 Raporty remanentowe 3 Raport

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Spis treści. 1 Moduł Mapy 2

Spis treści. 1 Moduł Mapy 2 Spis treści 1 Moduł Mapy 2 1.1 Elementy planu............................. 2 1.1.1 Interfejs widoku......................... 3 1.1.1.1 Panel sterujacy.................... 3 1.1.1.2 Suwak regulujacy przybliżenie...........

Bardziej szczegółowo

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum. Obliczanie prawdopodobieństwa za pomocą metody drzew Jeżeli doświadczenie losowe składa się z więcej niż jednego etapu, takich jak serie rzutów kostką lub monetą, zastosowanie klasycznej definicji prawdopodobieństwa

Bardziej szczegółowo

5.3. Program komputerowy sterowania zapasami z zastosowaniem algorytmów genetycznych

5.3. Program komputerowy sterowania zapasami z zastosowaniem algorytmów genetycznych Fragment rozprawy doktorskiej: Wybór strategii dostaw i magazynowania materiałów budowlanych z zastosowaniem algorytmów genetycznych autorstwa Michała Krzemińskiego 5.3. Program komputerowy sterowania

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA

KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA Wykład 6 Systemy komputerowe w planowaniu produkcji Dr inż. Mariusz Makuchowski Systemy komputerowe w planowaniu produkcji Obecnie utrzymanie znaczącej pozycji na rynku

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasach 3 gimnazjum

Wymagania na poszczególne oceny w klasach 3 gimnazjum Wymagania na poszczególne oceny w klasach 3 gimnazjum Znaczenie komputera we współczesnym świecie Przypomnienie wiadomości na temat języka HTML Wstawianie tabeli na stronę WWW Wstawianie listy punktowanej

Bardziej szczegółowo

Portal Personelu dostępny jest pod adresem https://personel.nfz-krakow.pl/

Portal Personelu dostępny jest pod adresem https://personel.nfz-krakow.pl/ Przed przystąpieniem do pracy na Portalu Personelu. W związku z faktem udostępniania funkcjonalności Portalu Personelu za pośrednictwem bezpiecznego protokołu https, dla interfejsu aplikacji nie działają

Bardziej szczegółowo

W dowolnym kwadracie 3x3 ustawiamy komórki na palące się (stan 3). Program powinien pokazywać ewolucję pożaru lasu.

W dowolnym kwadracie 3x3 ustawiamy komórki na palące się (stan 3). Program powinien pokazywać ewolucję pożaru lasu. 1. Symulacja pożaru lasu ver. 1 Las reprezentowany jest przez macierz 100x100. W lesie występują dwa rodzaje drzew: liściaste i iglaste. Przyjmijmy, że prostokąt A(1:50,1:100) wypełniony jest drzewami

Bardziej szczegółowo

MATEMATYKA CYKL 3 GODZINNY

MATEMATYKA CYKL 3 GODZINNY MATURA EUROPEJSKA 010 MATEMATYKA CYKL 3 GODZINNY DATA 4 czerwca 010 CZAS TRWANIA EGZAMINU : 3 godziny (180 minut) DOZWOLONE POMOCE Europejski zestaw wzorów Kalkulator (bez grafiki, bez programowania) UWAGI:

Bardziej szczegółowo

koniec punkt zatrzymania przepływów sterowania na diagramie czynności

koniec punkt zatrzymania przepływów sterowania na diagramie czynności Diagramy czynności opisują dynamikę systemu, graficzne przedstawienie uszeregowania działań obrazuje strumień wykonywanych czynności z ich pomocą modeluje się: - scenariusze przypadków użycia, - procesy

Bardziej szczegółowo

Scenariusz lekcji Ozobot w klasie: Tabliczka mnożenia

Scenariusz lekcji Ozobot w klasie: Tabliczka mnożenia Scenariusz lekcji Ozobot w klasie: Tabliczka mnożenia Opracowanie scenariusza: Richard Born Adaptacja scenariusza na język polski: mgr Piotr Szlagor Tematyka: Informatyka, matematyka, obliczenia, algorytm

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy

Bardziej szczegółowo

Data Mining podstawy analizy danych Część druga

Data Mining podstawy analizy danych Część druga Data Mining podstawy analizy danych Część druga W części pierwszej dokonaliśmy procesu analizy danych treningowych w oparciu o algorytm drzewa decyzyjnego. Proces analizy danych treningowych może być realizowany

Bardziej szczegółowo

1 Wątki 1. 2 Tworzenie wątków 1. 3 Synchronizacja 3. 4 Dodatki 3. 5 Algorytmy sortowania 4

1 Wątki 1. 2 Tworzenie wątków 1. 3 Synchronizacja 3. 4 Dodatki 3. 5 Algorytmy sortowania 4 Spis treści 1 Wątki 1 2 Tworzenie wątków 1 3 Synchronizacja 3 4 Dodatki 3 5 Algorytmy sortowania 4 6 Klasa Runnable 4 Temat: Wątki Czym są wątki. Grafika. Proste animacje. Małe podsumowanie materiału.

Bardziej szczegółowo

Spis treści. Rozdział 1. Aplikacje konsoli w stylu ANSI C i podstawowe operacje w Visual C++... 7

Spis treści. Rozdział 1. Aplikacje konsoli w stylu ANSI C i podstawowe operacje w Visual C++... 7 Spis treści Wprowadzenie...n...n... 5 Jak korzystać z tej książki?...t... 6 Rozdział 1. Aplikacje konsoli w stylu ANSI C i podstawowe operacje w Visual C++... 7 Podsumowanie...t...t...15 Rozdział 2. Rozdział

Bardziej szczegółowo

1 Genetykapopulacyjna

1 Genetykapopulacyjna 1 Genetykapopulacyjna Genetyka populacyjna zajmuje się badaniem częstości występowania poszczególnych alleli oraz genotypów w populacji. Bada także zmiany tych częstości spowodowane doborem naturalnym

Bardziej szczegółowo

W grze bierze udział dwóch graczy. Każdy uczestnik rozpoczyna rozgrywkę z sumą

W grze bierze udział dwóch graczy. Każdy uczestnik rozpoczyna rozgrywkę z sumą 2.4 QuestionGame QuestionGame jest grą z celem zaprojektowaną do gromadzenia pytań zadawanych przez ludzi podczas prób rozpoznawania ras psów. Program ma charakter aplikacji internetowej. W rozgrywcę mogą

Bardziej szczegółowo

Bliskie Spotkanie z Biologią. Genetyka populacji

Bliskie Spotkanie z Biologią. Genetyka populacji Bliskie Spotkanie z Biologią Genetyka populacji Plan wykładu 1) Częstości alleli i genotypów w populacji 2) Prawo Hardy ego-weinberga 3) Dryf genetyczny 4) Efekt założyciela i efekt wąskiego gardła 5)

Bardziej szczegółowo

Brain Game. Wstęp. Scratch

Brain Game. Wstęp. Scratch Scratch 2 Brain Game Każdy Klub Kodowania musi być zarejestrowany. Zarejestrowane kluby można zobaczyć na mapie na stronie codeclubworld.org - jeżeli nie ma tam twojego klubu sprawdź na stronie jumpto.cc/18cplpy

Bardziej szczegółowo

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

emszmal 3: Automatyczne księgowanie przelewów w menadżerze sprzedaży BaseLinker (plugin dostępny w wersji ecommerce)

emszmal 3: Automatyczne księgowanie przelewów w menadżerze sprzedaży BaseLinker (plugin dostępny w wersji ecommerce) emszmal 3: Automatyczne księgowanie przelewów w menadżerze sprzedaży BaseLinker (plugin dostępny w wersji ecommerce) Zastosowanie Rozszerzenie to dedykowane jest internetowemu menadżerowi sprzedaży BaseLinker.

Bardziej szczegółowo

Dokumentacja projektu Makao karciana gra sieciowa

Dokumentacja projektu Makao karciana gra sieciowa Dokumentacja projektu Makao karciana gra sieciowa 1 Spis treści Specyfikacja wymagań...3 Diagram przypadków użycia...4 Scenariusze...5 Diagramy sekwencji...6 Diagram modelu domeny...8 Projekt graficznego

Bardziej szczegółowo

Metody optymalizacji dyskretnej

Metody optymalizacji dyskretnej Metody optymalizacji dyskretnej Spis treści Spis treści Metody optymalizacji dyskretnej...1 1 Wstęp...5 2 Metody optymalizacji dyskretnej...6 2.1 Metody dokładne...6 2.2 Metody przybliżone...6 2.2.1 Poszukiwanie

Bardziej szczegółowo

Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna)

Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) 1 Zagadnienia Sztucznej Inteligencji laboratorium Wprowadzenie Algorytmy genetyczne Michał Bereta Paweł Jarosz (część teoretyczna) Dana jest funkcja f, jednej lub wielu zmiennych. Należy określić wartości

Bardziej szczegółowo

Kurs z NetLogo - część 4.

Kurs z NetLogo - część 4. Kurs z NetLogo - część 4. Mateusz Zawisza Zakład Wspomagania i Analizy Decyzji Instytut Ekonometrii Szkoła Główna Handlowa Seminarium Wieloagentowe Warszawa, 10.01.2011 Agenda spotkań z NetLogo 15. listopada

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE I ICH ZASTOSOWANIA

ALGORYTMY EWOLUCYJNE I ICH ZASTOSOWANIA ZESZYTY NAUKOWE 81-92 Ewa FIGIELSKA 1 ALGORYTMY EWOLUCYJNE I ICH ZASTOSOWANIA Streszczenie: Pojęcie algorytmy ewolucyjne obejmuje metodologie inspirowane darwinowską zasadą doboru naturalnego stosowane

Bardziej szczegółowo

PROJEKTOWANIE UKŁADÓW PNEUMATYCZNYCH za pomocą programu komputerowego SMC-PneuDraw 2.8

PROJEKTOWANIE UKŁADÓW PNEUMATYCZNYCH za pomocą programu komputerowego SMC-PneuDraw 2.8 INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI ŁÓDZKIEJ ĆWICZENIE NR P-16 PROJEKTOWANIE UKŁADÓW PNEUMATYCZNYCH za pomocą programu komputerowego SMC-PneuDraw 2.8 Koncepcja i opracowanie: dr

Bardziej szczegółowo

pojawianie się na drodze - z prawdopodobieństwem alf a nowe auto pojawia się na początku ulicy z pewną prędkością początkową

pojawianie się na drodze - z prawdopodobieństwem alf a nowe auto pojawia się na początku ulicy z pewną prędkością początkową Opis modelu Projekt zawiera model automatu komórkowego opisującego ruch uliczny na jednopasmowej ulicy bez możliwości wyprzedzania. Przyjmujemy, że kierowcy nie powodują celowo kolizji oraz że chcą dojechać

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Zasady programowania Dokumentacja

Zasady programowania Dokumentacja Marcin Kędzierski gr. 14 Zasady programowania Dokumentacja Wstęp 1) Temat: Przeszukiwanie pliku za pomocą drzewa. 2) Założenia projektu: a) Program ma pobierać dane z pliku wskazanego przez użytkownika

Bardziej szczegółowo

Załącznik techniczny przedmiotu zamówienia komponentu

Załącznik techniczny przedmiotu zamówienia komponentu Załącznik nr 1 mapowego dla portalu WWW Załącznik techniczny przedmiotu zamówienia komponentu 1.1 Komponent mapowy Zleceniodawcy pozostawia się wolną rękę w wyborze technologii w jakiej zostanie stworzony

Bardziej szczegółowo

1. Zbiornik mleka. woda. mleko

1. Zbiornik mleka. woda. mleko Założenia ogólne 1. Każdy projekt realizuje zespół złożóny z max. 2 osób. 2. Projekt składa się z 3 części: - aplikacji SCADA PRO-2000; - programu sterującego - realizującego obsługę urządzeń w sterowniku;

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 3 Generacja realizacji zmiennych losowych Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia: Generowanie

Bardziej szczegółowo

Rodzaje badań statystycznych

Rodzaje badań statystycznych Rodzaje badań statystycznych Zbieranie danych, które zostaną poddane analizie statystycznej nazywamy obserwacją statystyczną. Dane uzyskuje się na podstawie badania jednostek statystycznych. Badania statystyczne

Bardziej szczegółowo

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański

Bardziej szczegółowo