dr inż. Jacek Naruniec

Wielkość: px
Rozpocząć pokaz od strony:

Download "dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl"

Transkrypt

1 dr inż. Jacek Naruniec

2 Coraz większa ilość danych obrazowych How much information, University of California Berkeley, 2002: przyrost zdjęć rentgenowskich to 17,2 PB rocznie Kłopoty z odpowiednią kategoryzacją Kłopoty z sensownym zarządzaniem danych

3 Potrzebujemy efektywnych narzędzi: tworzenia metadanych indeksowania danych wyszukiwania danych kompresji danych

4 Indeksowanie obrazu jest to proces budowy indeksów kolekcji obrazów Prosty indeks w książce:

5 - w książce jest to słowo kluczowe - w przypadku obiektu obrazowego jest to atrybut (który może być s.k.) -w książce jest to odniesienie do stron zawierających dane wyrażenie - w przypadku obiektu obrazowego jest to zwykle wskaźnik do listy obiektów odpowiadających atrybutowi

6 Atrybut obrazowana część ciała kręgosłup 1, 2 mózg 5 pierś 3, 4 Lista obiektów

7 Atrybut typ badania Lista obiektów MRI 1, 2, 3, 5 mammografia 4

8 Atrybut a Obraz o należący do kolekcji obrazów scharakteryzowany jest przez swoje cechy: c ( 1 a1 o),..., c k ak ( o) Dana cecha c obiektu o uwzględnia pewien aspekt tego obiektu charakteryzowany pewnym atrybutem a i jest wartością tego atrybutu.

9 atrybut Obraz 1 (o1) Obraz 2 (o2) Obraz 3 (o3) Rodzaj badania (a1) Obrazowana część ciała (a2) Jakość obrazu 0-1 (a3) Kierunek główny obrazu (a4) MRI (c1) MRI mammografia Mózg (c2) Mózg Pierś 0.8 (c3) (0, 10) (c4) (0, 9) (4, 5) Dany aspekt nie musi dotyczyć wszystkich obiektów w kolekcji (np. kolor dominujący).

10 Pozyskiwanie cech (ekstrakcja cech): manualne automatyczne Cechy reprezentatywne podzbiór wszystkich cech danego atrybutu, których reprezentatywność cech oznacza istnienie funkcji przypisującą dowolnej wartości atrybutu cechy reprezentatywnej, zamiana na cechę reprezentacyjną redukuje pamięć przeznaczoną na indeks, nie obniża selektywności wyszukiwania poniżej założonego progu

11 Cecha reprezentatywna (przykład 1): w przypadku słów kluczowych reprezentatywną cechą może być przedrostek rdzeniowy, polityk, polityka, politykowi, politykom, politycy cecha reprezentatywna to polity

12 Cecha reprezentatywna (przykład 2): atrybut a = kolor w modelu RGB, cechy to wszystkie trójki r, g, b[0,255] Mamy 2 24 wszystkich możliwych cech. Można zredukować liczbę bitów z 24 do 8: r / 64, g /32, /32) c( r, g, b) ( b Redukcja taka będzie praktycznie niezauważalna przy indeksowaniu względem koloru

13 Indeks danej kolekcji obiektów multimedialnych budowany jest dla każdego rozpatrywanego atrybutu osobno. Indeks kolekcji obiektów zawiera dla każdej reprezentatywnej cechy listę identyfikatorów obiektów, które mają cechę podobną Liczba elementów l c na liście obiektowej cechy c kontrolowana jest przez 3 parametry K min, K max - minimalną i maksymalną liczbę elementów na liście i minimalny próg podobieństwa cechy ρ (0..1) Jeśli l c >K max to wybieranych jest na liście K max identyfikatorów najbardziej podobnych obiektów Jeśli l c <K min to brakujących K min -l c obiektów dobiera się spośród najbardziej podobnych obiektów

14 Kiedy uznajemy, że dwie cechy są do siebie zbliżone? zależnie od rodzaju deskryptora i narzuconego progu podobieństwa

15 Zakładamy, że podobieństwo p zawiera się w przedziale [0..1] W przypadku przykładu książki podobieństwo słów kluczowych definiujemy na podstawie zgodności przedrostka rdzeniowego: p(c 1, c 2 ) = 1 gdy słowa c 1 i c 2 mają taki sam przedrostek rdzeniowy p(c 1, c 2 ) = 0 gdy słowa c 1 i c 2 nie mają takiego samego przedrostka rdzeniowego

16 W przypadku atrybutu a = histogram krawędzi (4 elementowy wektor krawędzie poziome, pionowe i skośne x 1, x 2, x 3, x 4 ) Miara kosinusowa: ), cos( ), ( y y y y x x x x y x y x y x y x y x y x y x y x p t

17 Typowy scenariusz wyszukiwania: Zapytanie. Na wejściu wprowadzana jest cecha c query określona na podstawie użytkownika lub zdjęcia przykładowego Najbardziej podobne cechy reprezentatywne. W zbiorze reprezentatywnych cech znajdowanych jest co najwyżej K max reprezentatywnych cech spełniających określone kryterium podobieństwa K najbardziej podobnych obiektów. Spośród wszystkich obiektów należących do wyznaczonych w poprzednim kroku cech wybieranych jest minimalnie K min i maksymalnie K max najbardziej podobnych obiektów.

18 W jaki sposób ocenić poprawność wyszukiwania? Precyzja (precision) stosunek zwróconych obiektów poprawnych do wszystkich zwróconych obiektów Przywołanie (recall) stosunek zwróconych obiektów poprawnych do wszystkich poprawnych obiektów

19 [źródło:

20 Dobór atrybutów uzależniony jest od rodzaju systemu (obrazy różnej modalności/tej samej modalności) i rodzaju danych. Dla większości różnych badań istotne będą inne atrybuty. Istotne jest tutaj istnienie dziury semantycznej (semantic gap) polegającej na tym, że obrazy są podobne względem pewnego kryterium, ale nie subiektywnego - ludzkiego

21 Przykłady dziur semantycznych: Obrazy wskazane jako podobne w systemie indeksowania: Obrazy wskazane jako niepodobne w systemie indeksowania: [Źródło: H. Eidenberger. Visual Information Retrieval. PhD thesis, Technischen Universitat Wien, 2004.]

22 W diagnostyce medycznej istotna jest tzw. dziura czułości (sensory gap) wynikająca z niedoskonałości urządzeń akwizycji Podział atrybutów: atrybuty lokalne analiza obszarów zainteresowania, wysegmentowanych regionów atrybuty globalne analiza całego obrazu

23 Histogram poziomów jasności może być kwantowany (szczególnie istotne przy obrazach kolorowych) Użyteczny raczej jedynie do indeksowania różnych modalności

24 Cechy teksturowe Tamury, m.in.: skrośność (coarsness) wielkość ziarna w teksturze kontrast (contrast), kierunkowość (directionality) na podstawie wykrywania krawędzi, regularność (regularity)

25 mała/duża skrośność mały/duży kontrast mała/duża kierunkowość

26 Standard MPEG-7 przewiduje szereg deskryptorów wizualnych, m.in.: koloru, tekstury, kształtu, Deskryptor obszarów jednorodnych Deskryptor tekstury Deskryptor przeglądania tekstur Deskryptor histogramu krawędzi Deskryptor koloru Deskryptor koloru dominującego Skalowalny deskryptor koloru Deskryptory GOF i GOP Deskryptor struktury koloru Deskryptor widoku (layout) koloru Temperatura barwowa

27

28 Deskryptor określa histogram kierunków krawędzi w każdym podobrazie Kierunek może być wyznaczany za pomocą prostych masek: Jeśli wartość absolutna filtracji żadną z masek nie da wysokiej wartości, jest to obszar bez krawędzi

29 deskryptor obszaru deskryptor konturu

30 przedstawienie kształtu jako ważonej sumy regionów bazowych obiekt może składad się z wielu regionów niezależne od obrotu reprezentacja za pomocą Angular Radial Transform(ART)

31 Funkcja bazowa ART: 0 ) 2cos( 0 1 ) ( ) exp( 2 1 ) ( ) ( ) ( ), ( n n n R jm A R A V n m n m nm

32 Często wykorzystywana w analizie obrazów medycznych [źródło: wikipedia]

33

34

35

36

37

38 Można porównywać położenie punktów charakterystycznych. Problem z określeniem podobnych punktów we wszystkich obrazach Problem z doborem ilości punktów Problem z doborem sposobu ich określania

39 Rozkład punktów szczególnych tego samego obrazu przy różnych parametrach obrazu [2]

40

41 Wykład opracowano z wykorzystaniem materiałów: [1] W. Skarbek: Indeksowanie multimediów, materiały wykładowe, 2005 [2] P. Boniński: Metody indeksowania obrazów medycznych na potrzeby radiologii cyfrowej, rozprawa doktorska, Politechnika Warszawska, 2007

dr inż. Jacek Naruniec

dr inż. Jacek Naruniec dr inż. Jacek Naruniec J.Naruniec@ire.pw.edu.pl Wykład (poniedziałek 10:15) Laboratoria (3-godzinne) w 08 (C++, Python, Java, ) Poniedziałki 12:15 Środy 11:15 Projekt Punktacja: Laboratorium (L) 5*10 punktów

Bardziej szczegółowo

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania

Bardziej szczegółowo

EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW

EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW 1. Motywacja Strony internetowe zawierają 70% multimediów Tradycyjne wyszukiwarki wspierają wyszukiwanie tekstu Kolekcje obrazów: Dwie

Bardziej szczegółowo

Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia. Mgr inż.

Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia. Mgr inż. Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia Mgr inż. Dorota Smorawa Plan prezentacji 1. Wprowadzenie do zagadnienia 2. Opis urządzeń badawczych

Bardziej szczegółowo

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego

Bardziej szczegółowo

Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2)

Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2) Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna

Bardziej szczegółowo

Pojęcia to. porównanie trzech sposobów ujmowania pojęć. Monika Marczak IP, UAM

Pojęcia to. porównanie trzech sposobów ujmowania pojęć. Monika Marczak IP, UAM Pojęcia to. porównanie trzech sposobów ujmowania pojęć Monika Marczak IP, UAM Takiego zwierzęcia nie ma?????????? Jeśli brakuje umysłowej reprezentacji pewnego fragmentu rzeczywistości, fragment ten dla

Bardziej szczegółowo

Obraz jako funkcja Przekształcenia geometryczne

Obraz jako funkcja Przekształcenia geometryczne Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych

Bardziej szczegółowo

POPULACYJNY PROGRAM WCZESNEGO WYKRYWANIA RAKA PIERSI OCENA KLINICZNA MAMMOGRAMÓW PODSUMOWANIE AUDYTU

POPULACYJNY PROGRAM WCZESNEGO WYKRYWANIA RAKA PIERSI OCENA KLINICZNA MAMMOGRAMÓW PODSUMOWANIE AUDYTU POPULACYJNY PROGRAM WCZESNEGO WYKRYWANIA RAKA PIERSI OCENA KLINICZNA MAMMOGRAMÓW PODSUMOWANIE AUDYTU Opracowanie: Ewa Wesołowska Mammografia rentgenowska jest podstawową metodą badania piersi, ale musi

Bardziej szczegółowo

Wykład II. Reprezentacja danych w technice cyfrowej. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład II. Reprezentacja danych w technice cyfrowej. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład II Reprezentacja danych w technice cyfrowej 1 III. Reprezentacja danych w komputerze Rodzaje danych w technice cyfrowej 010010101010 001010111010

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Sposoby wyszukiwania multimedialnych zasobów w Internecie

Sposoby wyszukiwania multimedialnych zasobów w Internecie Sposoby wyszukiwania multimedialnych zasobów w Internecie Lidia Derfert-Wolf Biblioteka Główna Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy e-mail: lidka@utp.edu.pl III seminarium z cyklu INFOBROKER:

Bardziej szczegółowo

SYLABUS/KARTA PRZEDMIOTU

SYLABUS/KARTA PRZEDMIOTU PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU Metody przetwarzania danych graficznych. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

Grafika 2D. Animacja Zmiany Kształtu. opracowanie: Jacek Kęsik

Grafika 2D. Animacja Zmiany Kształtu. opracowanie: Jacek Kęsik Grafika 2D Animacja Zmiany Kształtu opracowanie: Jacek Kęsik Wykład przedstawia podstawy animacji zmiany kształtu - morfingu Animacja zmiany kształtu Podstawowe pojęcia Zlewanie (Dissolving / cross-dissolving)

Bardziej szczegółowo

PLATFORMA DO PRZETWARZANIA ZDJĘĆ TOMOGRAFII KOMPUTEROWEJ MÓZGU ORAZ ZDJĘĆ MAMMOGRAFICZNYCH WSPOMAGAJĄCA DIAGNOZOWANIE CHORÓB

PLATFORMA DO PRZETWARZANIA ZDJĘĆ TOMOGRAFII KOMPUTEROWEJ MÓZGU ORAZ ZDJĘĆ MAMMOGRAFICZNYCH WSPOMAGAJĄCA DIAGNOZOWANIE CHORÓB PLATFORMA DO PRZETWARZANIA ZDJĘĆ TOMOGRAFII KOMPUTEROWEJ MÓZGU ORAZ ZDJĘĆ MAMMOGRAFICZNYCH WSPOMAGAJĄCA DIAGNOZOWANIE CHORÓB Międzynarodowa Konferencja Naukowa Studentów Uczelni Medycznych. Kraków, 2009

Bardziej szczegółowo

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

Eksploracja tekstu. Wprowadzenie Wyszukiwanie dokumentów Reprezentacje tekstu. Eksploracja danych. Eksploracja tekstu wykład 1

Eksploracja tekstu. Wprowadzenie Wyszukiwanie dokumentów Reprezentacje tekstu. Eksploracja danych. Eksploracja tekstu wykład 1 Eksploracja tekstu Wprowadzenie Wyszukiwanie dokumentów Reprezentacje tekstu Eksploracja tekstu wykład 1 Tematem wykładu są zagadnienia związane z eksploracją tekstu. Rozpoczniemy od krótkiego wprowadzenia

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

AUTOMATYCZNA AKTUALIZACJA BAZY DANYCH O BUDYNKACH W OPARCIU O WYSOKOROZDZIELCZĄ ORTOFOTOMAPĘ SATELITARNĄ

AUTOMATYCZNA AKTUALIZACJA BAZY DANYCH O BUDYNKACH W OPARCIU O WYSOKOROZDZIELCZĄ ORTOFOTOMAPĘ SATELITARNĄ AUTOMATYCZNA AKTUALIZACJA BAZY DANYCH O BUDYNKACH W OPARCIU O WYSOKOROZDZIELCZĄ ORTOFOTOMAPĘ SATELITARNĄ Ireneusz WYCZAŁEK Zakład Geodezji Politechnika Poznańska CEL Aktualizacja baz danych przestrzennych,

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Wyszukiwanie informacji w internecie. Nguyen Hung Son

Wyszukiwanie informacji w internecie. Nguyen Hung Son Wyszukiwanie informacji w internecie Nguyen Hung Son Jak znaleźć informację w internecie? Wyszukiwarki internetowe: Potężne machiny wykorzystujące najnowsze metody z różnych dziedzin Architektura: trzy

Bardziej szczegółowo

Sztuczna inteligencja i inżynieria wiedzy. laboratorium

Sztuczna inteligencja i inżynieria wiedzy. laboratorium Sztuczna inteligencja i inżynieria wiedzy laboratorium Ćwiczenie 4. Analiza obrazu określanie podobieństwa obrazów opracowanie: M. Paradowski, H. Kwaśnicka Cel ćwiczenia Zapoznanie się z podstawowymi metodami

Bardziej szczegółowo

Wrota Parsęty II o bazie danych przestrzennych - wprowadzenie

Wrota Parsęty II o bazie danych przestrzennych - wprowadzenie Wrota Parsęty II o bazie danych przestrzennych - wprowadzenie Czym jest baza danych? zbiór powiązanych danych z pewnej dziedziny, zorganizowanych w sposób dogodny do korzystania z nich, a zwłaszcza do

Bardziej szczegółowo

Podstawowe pojęcia statystyczne

Podstawowe pojęcia statystyczne Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

Dekompozycja w systemach wyszukiwania informacji

Dekompozycja w systemach wyszukiwania informacji METODY DEKOMPOZYCJI: Dekompozycja w systemach wyszukiwania informacji ATRYBUTOWA OBIEKTOWA HIERARCHICZNA (zależna i wymuszona) Dekompozycje mają cel wtedy kiedy zachodzi któryś z poniższych warunków: Duża

Bardziej szczegółowo

Π 1 O Π 3 Π Rzutowanie prostokątne Wiadomości wstępne

Π 1 O Π 3 Π Rzutowanie prostokątne Wiadomości wstępne 2. Rzutowanie prostokątne 2.1. Wiadomości wstępne Rzutowanie prostokątne jest najczęściej stosowaną metodą rzutowania w rysunku technicznym. Reguły nim rządzące zaprezentowane są na rysunkach 2.1 i 2.2.

Bardziej szczegółowo

Tworzenie prezentacji w MS PowerPoint

Tworzenie prezentacji w MS PowerPoint Tworzenie prezentacji w MS PowerPoint Program PowerPoint dostarczany jest w pakiecie Office i daje nam możliwość stworzenia prezentacji oraz uatrakcyjnienia materiału, który chcemy przedstawić. Prezentacje

Bardziej szczegółowo

Szczegółowy opis przedmiotu zamówienia

Szczegółowy opis przedmiotu zamówienia Załącznik nr 1 do ogłoszenia/umowy. Szczegółowy opis przedmiotu zamówienia 1 Przedmiotem zamówienia jest zakup 3 szt. aparatów cyfrowych wraz z dodatkowym wyposażeniem. 2 Wykaz asortymentowy Lp. Nazwa

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy

Bardziej szczegółowo

Porównanie zdjęć rentgenowskich wewnątrzustnych wykonanych za pomocą RVG.

Porównanie zdjęć rentgenowskich wewnątrzustnych wykonanych za pomocą RVG. Porównanie zdjęć rentgenowskich wewnątrzustnych wykonanych za pomocą RVG. Spis treści: 1. Wstęp... 3 2. Porównanie zdjęć wykonanych na fantomie.... 4 2.1. Test osiowości.... 4 2.2. Test rozdzielczości....

Bardziej szczegółowo

Microsoft PowerPoint 2003 efektywne tworzenie i prezentacji multimedialnych

Microsoft PowerPoint 2003 efektywne tworzenie i prezentacji multimedialnych Microsoft PowerPoint 2003 efektywne tworzenie i prezentacji multimedialnych Projekt: Wdrożenie strategii szkoleniowej prowadzony przez KancelarięPrezesa Rady Ministrów Projekt współfinansowany przez Unię

Bardziej szczegółowo

Wykrywanie twarzy na zdjęciach przy pomocy kaskad

Wykrywanie twarzy na zdjęciach przy pomocy kaskad Wykrywanie twarzy na zdjęciach przy pomocy kaskad Analiza i przetwarzanie obrazów Sebastian Lipnicki Informatyka Stosowana,WFIIS Spis treści 1. Wstęp... 3 2. Struktura i funkcjonalnośd... 4 3. Wyniki...

Bardziej szczegółowo

Rozpoznawanie Twarzy i Systemy Biometryczne

Rozpoznawanie Twarzy i Systemy Biometryczne Filtry Plan wykładu Przegląd dostępnych filtrów Zastosowanie filtrów na różnych etapach pracy systemu Dalsze badania Kontrast i ostrość Kontrast różnica w kolorze i świetle między częściami ś i obrazu

Bardziej szczegółowo

UML w Visual Studio. Michał Ciećwierz

UML w Visual Studio. Michał Ciećwierz UML w Visual Studio Michał Ciećwierz UNIFIED MODELING LANGUAGE (Zunifikowany język modelowania) Pozwala tworzyć wiele systemów (np. informatycznych) Pozwala obrazować, specyfikować, tworzyć i dokumentować

Bardziej szczegółowo

LK1: Wprowadzenie do MS Access Zakładanie bazy danych i tworzenie interfejsu użytkownika

LK1: Wprowadzenie do MS Access Zakładanie bazy danych i tworzenie interfejsu użytkownika LK1: Wprowadzenie do MS Access Zakładanie bazy danych i tworzenie interfejsu użytkownika Prowadzący: Dr inż. Jacek Habel Instytut Technologii Maszyn i Automatyzacji Produkcji Zakład Projektowania Procesów

Bardziej szczegółowo

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU obraz dr inż. Jacek Naruniec Analiza Składowych Niezależnych (ICA) Independent Component Analysis Dąży do wyznaczenia zmiennych niezależnych z obserwacji Problem opiera

Bardziej szczegółowo

Bazy danych. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wykład 3: Model związków encji.

Bazy danych. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wykład 3: Model związków encji. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Bazy danych Wykład 3: Model związków encji. dr inż. Magdalena Krakowiak makrakowiak@wi.zut.edu.pl Co to jest model związków encji? Model związków

Bardziej szczegółowo

PROGRAM STAŻU SZKOLENIOWEGO DLA NAUCZYCIELI W ZAWODZIE TECHNIK ELEKTRORADIOLOG

PROGRAM STAŻU SZKOLENIOWEGO DLA NAUCZYCIELI W ZAWODZIE TECHNIK ELEKTRORADIOLOG PROGRAM STAŻU SZKOLENIOWEGO DLA NAUCZYCIELI W ZAWODZIE TECHNIK ELEKTRORADIOLOG Symbol cyfrowy [19] Spis treści Wprowadzenie I. Założenia programowo-organizacyjne stażu. 1. Charakterystyka zawodu - elektroradiolog..

Bardziej szczegółowo

Semantyczne podobieństwo stron internetowych

Semantyczne podobieństwo stron internetowych Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Marcin Lamparski Nr albumu: 184198 Praca magisterska na kierunku Informatyka Semantyczne podobieństwo stron internetowych Praca wykonana

Bardziej szczegółowo

Wykład I. Wprowadzenie do baz danych

Wykład I. Wprowadzenie do baz danych Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles

Bardziej szczegółowo

Algorytmy graficzne. Charakterystyki oraz wyszukiwanie obrazów cyfrowych

Algorytmy graficzne. Charakterystyki oraz wyszukiwanie obrazów cyfrowych Algorytmy graficzne Charakterystyki oraz wyszukiwanie obrazów cyfrowych 1 Pojęcie i reprezentacje obrazu Obraz cyfrowy, I, definiuje się jako odwzorowanie z przestrzeni pikseli P do przestrzeni kolorów

Bardziej szczegółowo

Załącznik nr 1 WYMAGANIA DOTYCZĄCE OPISU I PRZEGLĄDU OBRAZÓW REJESTROWANYCH W POSTACI CYFROWEJ I. Wymagania ogólne

Załącznik nr 1 WYMAGANIA DOTYCZĄCE OPISU I PRZEGLĄDU OBRAZÓW REJESTROWANYCH W POSTACI CYFROWEJ I. Wymagania ogólne Załączniki do rozporządzenia Ministra Zdrowia z dnia 18 lutego 2011 r. Załącznik nr 1 WYMAGANIA DOTYCZĄCE OPISU I PRZEGLĄDU OBRAZÓW REJESTROWANYCH W POSTACI CYFROWEJ I. Wymagania ogólne 1. W radiologii

Bardziej szczegółowo

Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students:

Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students: 1. Wczytywanie danych do programu R Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students: > students

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów. Karol Czapnik

Cyfrowe Przetwarzanie Obrazów. Karol Czapnik Cyfrowe Przetwarzanie Obrazów Karol Czapnik Podstawowe zastosowania (1) automatyka laboratoria badawcze medycyna kryminalistyka metrologia geodezja i kartografia 2/21 Podstawowe zastosowania (2) komunikacja

Bardziej szczegółowo

Akademia Górniczo - Hutnicza im. Stanisława Staszica w Krakowie. Projekt. z przedmiotu Analiza i Przetwarzanie Obrazów

Akademia Górniczo - Hutnicza im. Stanisława Staszica w Krakowie. Projekt. z przedmiotu Analiza i Przetwarzanie Obrazów 30 czerwca 2015 Akademia Górniczo - Hutnicza im. Stanisława Staszica w Krakowie Projekt z przedmiotu Analiza i Przetwarzanie Obrazów Wykrywanie tablic rejestracyjnych Jagieła Michał IS (GKiPO) Michał Jagieła

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III 1 Na podstawie materiałów autorstwa dra inż. Marka Wnuka. Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania

Bardziej szczegółowo

Instrukcja obsługi Konfigurator MLAN-1000

Instrukcja obsługi Konfigurator MLAN-1000 Instrukcja obsługi Konfigurator MLAN-1000 Strona 2 z 8 SPIS TREŚCI 1. Logowanie... 3 2. Diagnostyka... 4 3. Konfiguracja sterownika... 5 3.1 Konfiguracja sterownika aktualizacja oprogramowania... 5 4.

Bardziej szczegółowo

Oprogramowanie. DMS Lite. Podstawowa instrukcja obsługi

Oprogramowanie. DMS Lite. Podstawowa instrukcja obsługi Oprogramowanie DMS Lite Podstawowa instrukcja obsługi 1 Spis treści 1. Informacje wstępne 3 2. Wymagania sprzętowe/systemowe 4 3. Instalacja 5 4. Uruchomienie 6 5. Podstawowa konfiguracja 7 6. Wyświetlanie

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

Miejski System Zarządzania - Katowicka Infrastruktura Informacji Przestrzennej

Miejski System Zarządzania - Katowicka Infrastruktura Informacji Przestrzennej Miejski System Zarządzania - Katowicka Infrastruktura Informacji Przestrzennej Inwestycje Instrukcja użytkownika Historia zmian Wersja Data Kto Opis zmian 1.0 2013-12-13 Sygnity S.A. Utworzenie dokumentu

Bardziej szczegółowo

Dziedzinowa Baza Wiedzy w zakresie Nauk Technicznych

Dziedzinowa Baza Wiedzy w zakresie Nauk Technicznych Jak Nas widzą, tak Nas piszą Dziedzinowa Baza Wiedzy w zakresie Nauk Technicznych Warszawa Maj 2013 Plan prezentacji 1. Stan informacji naukowej w zakresie nauk technicznych w Polsce 2. Koncepcja systemu

Bardziej szczegółowo

Multimedialne bazy danych. Andrzej Łachwa, WFAiIS UJ 2011

Multimedialne bazy danych. Andrzej Łachwa, WFAiIS UJ 2011 5 Multimedialne bazy danych Andrzej Łachwa, WFAiIS UJ 2011 Wyszukiwanie obrazów w bazach danych www.cs.put.poznan.pl/mwojciechowski/papers/plougtki03.pdf PLOUG tki nr 28/grudzień 2003 Podstawowe wymagania

Bardziej szczegółowo

Wyszukiwanie tekstów

Wyszukiwanie tekstów Wyszukiwanie tekstów Dziedzina zastosowań Elektroniczne encyklopedie Wyszukiwanie aktów prawnych i patentów Automatyzacja bibliotek Szukanie informacji w Internecie Elektroniczne teksy Ksiązki e-book Artykuły

Bardziej szczegółowo

WYKŁAD 11. Kolor. fiolet, indygo, niebieski, zielony, żółty, pomarańczowy, czerwony

WYKŁAD 11. Kolor. fiolet, indygo, niebieski, zielony, żółty, pomarańczowy, czerwony WYKŁAD 11 Modelowanie koloru Kolor Światło widzialne fiolet, indygo, niebieski, zielony, żółty, pomarańczowy, czerwony ~400nm ~700nm Rozróżnialność barw (przeciętna): 150 czystych barw Wrażenie koloru-trzy

Bardziej szczegółowo

Praca Interwencyjna: Redukcja zapotrzebowania na polecenie OSP

Praca Interwencyjna: Redukcja zapotrzebowania na polecenie OSP Część II SIWZ Opis przedmiotu zamówienia PSE Operator S.A. SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA (SIWZ) DLA USŁUGI Praca Interwencyjna: Redukcja zapotrzebowania na polecenie OSP CZĘŚĆ II SIWZ Opis

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

i ruchów użytkownika komputera za i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Promotor: dr Adrian Horzyk

i ruchów użytkownika komputera za i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Promotor: dr Adrian Horzyk System śledzenia oczu, twarzy i ruchów użytkownika komputera za pośrednictwem kamery internetowej i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Mirosław ł Słysz Promotor:

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Teoria decyzji Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności February 5, 2016 1 Definicje 2 Normatywna teoria decyzji 3 Opisowa teoria decyzji 4 Naturalistyczny model podejmowania decyzji

Bardziej szczegółowo

Przetwarzanie obrazów wykład 7. Adam Wojciechowski

Przetwarzanie obrazów wykład 7. Adam Wojciechowski Przetwarzanie obrazów wykład 7 Adam Wojciechowski Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany zawsze lecz tylko jeśli spełniony jest

Bardziej szczegółowo

Spis treêci. Wstęp 1. Wprowadzenie do DTP 9. 2. Budowanie makiety publikacji 26. 3. Przygotowanie tekstu 41

Spis treêci. Wstęp 1. Wprowadzenie do DTP 9. 2. Budowanie makiety publikacji 26. 3. Przygotowanie tekstu 41 Wstęp 1. Wprowadzenie do DTP 9 1.1. Etapy procesu przygotowania publikacji do drukowania 12 1.2. Programy i urządzenia do przygotowania publikacji 12 1.3. Struktura funkcjonalna programów łamania 13 1.4.

Bardziej szczegółowo

prof. Paweł Strumiłło dr hab. Michał Strzelecki tel , p. 216, godz. przyj: poniedziałek 12-13, wtorek 15-16

prof. Paweł Strumiłło dr hab. Michał Strzelecki tel , p. 216, godz. przyj: poniedziałek 12-13, wtorek 15-16 prof. Paweł Strumiłło dr hab. Michał Strzelecki tel. 631 26 31, p. 216, mstrzel@p.lodz.pl godz. przyj: poniedziałek 12-13, wtorek 15-16 Strumillo, Strzelecki Literatura: 1. Notatki i materiały wykładowe

Bardziej szczegółowo

PODSTAWOWE ANALIZY I WIZUALIZACJA Z WYKORZYSTANIEM MAP W STATISTICA

PODSTAWOWE ANALIZY I WIZUALIZACJA Z WYKORZYSTANIEM MAP W STATISTICA PODSTAWOWE ANALIZY I WIZUALIZACJA Z WYKORZYSTANIEM MAP W STATISTICA Krzysztof Suwada, StatSoft Polska Sp. z o.o. Wstęp Wiele różnych analiz dotyczy danych opisujących wielkości charakterystyczne bądź silnie

Bardziej szczegółowo

Modelowanie i Programowanie Obiektowe

Modelowanie i Programowanie Obiektowe Modelowanie i Programowanie Obiektowe Wykład I: Wstęp 20 październik 2012 Programowanie obiektowe Metodyka wytwarzania oprogramowania Metodyka Metodyka ustandaryzowane dla wybranego obszaru podejście do

Bardziej szczegółowo

E.14.1 Tworzenie stron internetowych / Krzysztof T. Czarkowski, Ilona Nowosad. Warszawa, Spis treści

E.14.1 Tworzenie stron internetowych / Krzysztof T. Czarkowski, Ilona Nowosad. Warszawa, Spis treści E.14.1 Tworzenie stron internetowych / Krzysztof T. Czarkowski, Ilona Nowosad. Warszawa, 2014 Spis treści Przewodnik po podręczniku 8 Wstęp 10 1. Hipertekstowe języki znaczników 1.1. Elementy i znaczniki

Bardziej szczegółowo

FORMATY PLIKÓW GRAFICZNYCH

FORMATY PLIKÓW GRAFICZNYCH FORMATY PLIKÓW GRAFICZNYCH Różnice między nimi. Ich wady i zalety. Marta Łukasik Plan prezentacji Formaty plików graficznych Grafika wektorowa Grafika rastrowa GIF PNG JPG SAV FORMATY PLIKÓW GRAFICZNYCH

Bardziej szczegółowo

INDEKSOWANIE DUŻYCH ZBIORÓW OBRAZÓW

INDEKSOWANIE DUŻYCH ZBIORÓW OBRAZÓW Paweł Forczmański, Przemysław Szeptycki INDEKSOWANIE DUŻYCH ZBIORÓW OBRAZÓW Streszczenie W artykule zaprezentowane zostały wybrane metody indeksowania dużych zbiorów obrazów statycznych bazujące na autorskich

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM)

ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM) ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM) LABORATORIUM 5 - LOKALIZACJA OBIEKTÓW METODĄ HISTOGRAMU KOLORU 1. WYBÓR LOKALIZOWANEGO OBIEKTU Pierwszy etap laboratorium polega na wybraniu lokalizowanego obiektu.

Bardziej szczegółowo

Promotor: dr inż. Adam Piórkowski. Jakub Osiadacz Marcin Wróbel

Promotor: dr inż. Adam Piórkowski. Jakub Osiadacz Marcin Wróbel Promotor: dr inż. Adam Piórkowski Jakub Osiadacz Marcin Wróbel Magazynowanie i przetwarzanie obrazów Jakub Osiadacz Marcin Wróbel Mapa geologiczna jest przykładem mapy tematycznej. Na mniej lub bardziej

Bardziej szczegółowo

Oprogramowanie IPCCTV. ipims. Podstawowa instrukcja obsługi

Oprogramowanie IPCCTV. ipims. Podstawowa instrukcja obsługi Oprogramowanie IPCCTV ipims Podstawowa instrukcja obsługi Spis treści 1. Informacje wstępne 3 2. Wymagania sprzętowe/systemowe 4 3. Instalacja 5 4. Uruchomienie 6 5. Podstawowa konfiguracja 7 6. Wyświetlanie

Bardziej szczegółowo

EmotiWord, semantyczne powiązanie i podobieństwo, odległość znaczeniowa

EmotiWord, semantyczne powiązanie i podobieństwo, odległość znaczeniowa , semantyczne powiązanie i podobieństwo, odległość Projekt przejściowy ARR Politechnika Wrocławska Wydział Elektroniki Wrocław, 22 października 2013 Spis treści 1 językowa 2, kryteria 3 Streszczenie artykułu

Bardziej szczegółowo

Instrukcja do skanera 3D MF:

Instrukcja do skanera 3D MF: Instrukcja do skanera 3D MF: Jak używać skanera: Skaner został zaprojektowany aby można go było używać w różnie naświetlonych pomieszczeniach. Jeśli planujesz skanowanie na zewnątrz, należy pamiętać, że

Bardziej szczegółowo

Wymagania edukacyjne na ocenę z informatyki klasa 3

Wymagania edukacyjne na ocenę z informatyki klasa 3 Wymagania edukacyjne na ocenę z informatyki klasa 3 0. Logo [6 godz.] PODSTAWA PROGRAMOWA: Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, stosowanie podejścia algorytmicznego.

Bardziej szczegółowo

Instrukcja elektronicznej rezerwacji sal dydaktycznych za pomocą systemu Talent Plus.

Instrukcja elektronicznej rezerwacji sal dydaktycznych za pomocą systemu Talent Plus. Instrukcja elektronicznej rezerwacji sal dydaktycznych za pomocą systemu Talent Plus. 1. Logując się do systemu Talent Plus należy podać login - imię i nazwisko oraz hasło- jak do skrzynki mailowej: https://e-talent.umed.wroc.pl/accounts/login/?next=/home/dashboard/

Bardziej szczegółowo

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław

Bardziej szczegółowo

Rysunek 1: Przykłady graficznej prezentacji klas.

Rysunek 1: Przykłady graficznej prezentacji klas. 4 DIAGRAMY KLAS. 4 Diagramy klas. 4.1 Wprowadzenie. Diagram klas - w ujednoliconym języku modelowania jest to statyczny diagram strukturalny, przedstawiający strukturę systemu w modelach obiektowych przez

Bardziej szczegółowo

Wizja maszynowa w robotyce i automatyzacji Kod przedmiotu

Wizja maszynowa w robotyce i automatyzacji Kod przedmiotu Wizja maszynowa w robotyce i automatyzacji - opis przedmiotu Informacje ogólne Nazwa przedmiotu Wizja maszynowa w robotyce i automatyzacji Kod przedmiotu 11.9-WE-AiRD-WMwRiA Wydział Kierunek Wydział Informatyki,

Bardziej szczegółowo

Badania sondażowe. Schematy losowania. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Schematy losowania. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badania sondażowe Schematy losowania Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa 1 Próba jako miniatura populacji CELOWA subiektywny dobór jednostek

Bardziej szczegółowo

Zamiana reprezentacji wektorowej na rastrową - rasteryzacja

Zamiana reprezentacji wektorowej na rastrową - rasteryzacja MODEL RASTROWY Siatka kwadratów lub prostokątów stanowi elementy rastra. Piksel - pojedynczy element jest najmniejszą rozróŝnialną jednostką powierzchniową, której własności są opisane atrybutami. Model

Bardziej szczegółowo

Krzysztof Ślot Biometria Łódź, ul. Wólczańska 211/215, bud. B9 tel

Krzysztof Ślot Biometria Łódź, ul. Wólczańska 211/215, bud. B9 tel Krzysztof Ślot Biometria 9-924 Łódź, ul. Wólczańska 211/215, bud. B9 tel. 42 636 65 www.eletel.p.lodz.pl, ie@p.lodz.pl Wprowadzenie Biometria Analiza rejestrowanych zachowań i cech osobniczych (np. w celu

Bardziej szczegółowo

I.1.1. Technik elektroradiolog 322[19]

I.1.1. Technik elektroradiolog 322[19] I.1.1. Technik elektroradiolog 322[19] Do egzaminu zostało zgłoszonych: 417 Przystąpiło łącznie: 399 przystąpiło: 399 ETAP PISEMNY ETAP PRAKTYCZNY zdało: 320 (80,2%) DYPLOM POTWIERDZAJĄCY KWALIFIKACJE

Bardziej szczegółowo

Algorytmy sortujące i wyszukujące

Algorytmy sortujące i wyszukujące Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.

Bardziej szczegółowo

System automatycznego odwzorowania kształtu obiektów przestrzennych 3DMADMAC

System automatycznego odwzorowania kształtu obiektów przestrzennych 3DMADMAC System automatycznego odwzorowania kształtu obiektów przestrzennych 3DMADMAC Robert Sitnik, Maciej Karaszewski, Wojciech Załuski, Paweł Bolewicki *OGX Optographx Instytut Mikromechaniki i Fotoniki Wydział

Bardziej szczegółowo

Topologia działek w MK2005 (Mariusz Zygmunt) Podział działki nr 371 w środowisku MicroStation (PowerDraft)

Topologia działek w MK2005 (Mariusz Zygmunt) Podział działki nr 371 w środowisku MicroStation (PowerDraft) Topologia działek w MK2005 (Mariusz Zygmunt) Podział działki nr 371 w środowisku MicroStation (PowerDraft) Uruchomić program MicroStation (PowerDraft). Wybrać przestrzeń roboczą GeoDeZy przez Uzytkownik

Bardziej szczegółowo

Wstępne wyniki analizy "sample entropy" w badaniach sygnału elektrohisterograficznego.

Wstępne wyniki analizy sample entropy w badaniach sygnału elektrohisterograficznego. Wstępne wyniki analizy "sample entropy" w badaniach sygnału elektrohisterograficznego. Dariusz Radomski, Antoni Grzanka, Sławomir Graczyk Politechnika Warszawska Uniwersytet Medyczny w Poznaniu Podstawy

Bardziej szczegółowo

WSTAWIANIE GRAFIKI DO DOKUMENTU TEKSTOWEGO

WSTAWIANIE GRAFIKI DO DOKUMENTU TEKSTOWEGO WSTAWIANIE GRAFIKI DO DOKUMENTU TEKSTOWEGO Niezwykle uŝyteczną cechą programu Word jest łatwość, z jaką przy jego pomocy moŝna tekst wzbogacać róŝnymi obiektami graficznymi, np. zdjęciami, rysunkami czy

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT Wyższa Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT Grupa ID306, Zespół 5 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 1 Temat: Akwizycja i przetwarzanie

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Raport. Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010

Raport. Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010 Raport Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010 1. Wykrywanie krawędzi 1.0. Obraz oryginalny 1. 1.1. Sobel. Parametry: domyślne. 1.2. Prewitt. Parametry: domyślne. 1.3. Roberts. Parametry: domyślne.

Bardziej szczegółowo

Sklejanie warstw wektorowych wersja 1.02 Instrukcja

Sklejanie warstw wektorowych wersja 1.02 Instrukcja Sklejanie warstw wektorowych wersja 1.02 Instrukcja A. Opcje wejścia a. Wybór źródła Klikając na [Wybierz katalog] otwieramy okienko ze strukturą katalogów na dysku po czym dokonujemy wyboru katalogu,

Bardziej szczegółowo

Planowanie, realizacja i dokumentacja wzorcowego procesu digitalizacji 3D

Planowanie, realizacja i dokumentacja wzorcowego procesu digitalizacji 3D Planowanie, realizacja i dokumentacja wzorcowego procesu digitalizacji 3D obiektów muzealnych Robert Sitnik OGX OPTOGRAPHX Instytut Mikromechaniki i Fotoniki Politechnika Warszawska Plan prezentacji 1)

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

Badanie struktury sieci WWW

Badanie struktury sieci WWW Eksploracja zasobów internetowych Wykład 1 Badanie struktury sieci WWW mgr inż. Maciej Kopczyński Białystok 214 Rys historyczny Idea sieci Web stworzona została w 1989 przez Tima BernersaLee z CERN jako

Bardziej szczegółowo