Grafika 2D. Animacja Zmiany Kształtu. opracowanie: Jacek Kęsik

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Grafika 2D. Animacja Zmiany Kształtu. opracowanie: Jacek Kęsik"

Transkrypt

1 Grafika 2D Animacja Zmiany Kształtu opracowanie: Jacek Kęsik

2 Wykład przedstawia podstawy animacji zmiany kształtu - morfingu

3 Animacja zmiany kształtu Podstawowe pojęcia Zlewanie (Dissolving / cross-dissolving) łączenie dwóch obrazów poprzez płynne przejście - uśrednianie Wstawianie (tweening) proces sekwencyjnej interpolacji obrazów pośrednich między dwoma stanami kluczowymi w celu uzyskania wrażenia płynnego przejścia między nimi Deformowanie (warping) zniekształcanie obrazu uzależnione od obszaru tego obrazu, matematyczny odpowiednik nadruku na elastycznej powierzchni (rozciąganej i ściskanej w różnych miejscach) Przekształcanie (morphing) jest kombinacją powyższych

4 Na postawie pracy dr Stevena Seitza (University of Washington)

5 Czym jest morphing? Próba znalezienia stanu pośredniego pomiędzy dwoma obiektami NIE stan pośredni między dwoma obrazami obiektów tylko obraz obiektu pośredniego

6 Próba znalezienia stanu pośredniego pomiędzy dwoma obiektami Animacja wiąże się ze znalezieniem ważonych stanów pośrednich zależnych od czasu t Jak wygląda obiekt pośredni? Nie mamy pojęcia Ale możemy sfingować coś sensownego

7 Morphing jest kombinacją zlewania, wstawiania i deformowania Czasem wystarczy tylko zlewanie(uśrednianie) i wstawianie Obraz pośredni = (1-t)*Obraz 1 + t*obraz 2 Najczęściej 0 < t < 1

8 Jak znaleźć wartość pośrednią między P i Q? v = Q - P P Q Interpolacja liniowa dowolny punkt pośredni ap + bq, Zdefiniowany tylko gdy a+b = 1 więc ap+bq = ap+(1-a)q P + 0.5v = P + 0.5(Q P) = 0.5P Q P + 1.5v = P + 1.5(Q P) = -0.5P Q (ekstrapolacja) P i Q dowolne wartości: Punkty w 2D lub 3D Kolory RGB, HSV (3D) Całe obrazy (m-na-n D)

9 Metoda filmowa nazywana zlewanie / przenikanie Ale co gdy obrazy nie są dopasowane do siebie?

10 Najpierw dopasowanie potem przenikanie Dopasowanie wykorzystuje przekształcenie globalne (najczęściej rzut/przekrzywienie)

11 Co gdy obiekty różnią się kształtem? Przenikanie nie działa Globalne dopasowanie nie działa Ani żadna globalna transformacja (np. afiniczna)

12 Rozwiązanie: Dopasowywanie szczegółów Ogon do ogona, oko do oka... Wprowadzamy tym samym zniekształcenia lokalne (nie parametryczne)

13 Procedura morphingu dla każdego t, 1. Znajdź kształt pośredni każdego z obrazów Lokalne zniekształcenia 2. Interpoluj kolory pikseli z tych 2 obrazów pośrednich przenikanie

14 Konieczność zdefiniowana bardziej złożonego przekształcenia Przekształcenia globalne były funkcjami kilku parametrów Przekształcenia lokalne u(x,y) i v(x,y) mogą być zdefiniowane niezależnie dla każdej pozycji x,y! (każdego szczegółu) Gdy znamy zbiór wektorów przekształceń u,v możemy łatwo przekształcić każdy piksel (przekształcenie odwrotne + interpolacja)

15 Punkty kontrolne określają krzywe zniekształcenia Krzywe zapewniają gładkość zbioru wektorów przekształceń

16 Jak określić przekształcenie? Zdefiniować punkty kontrolne odpowiadających sobie krzywych Interpolacja reszty pozycji by uzyskać pełne przekształcenie Ale nie chcemy definiować całej siatki a tylko kilka punktów

17 Jak określić przekształcenie? Zdefiniować odpowiadające sobie punkty kontrolne Interpolacja reszty pozycji by uzyskać pełne przekształcenie Ale jak? Jak zdefiniować przejście od punktów kontrolnych do pikseli?

18 Rozwiązanie - siatka trójkątów 1. Oznaczenie odpowiadających sobie punktów w kluczowych obszarach obiektów

19 Rozwiązanie - siatka trójkątów 2. Zdefiniowanie siatki trójkątów, rozpiętej na tych punktach Ta sama siatka na obu obrazach Siatki określają odpowiadające sobie trójkąty na obrazach

20 Rozwiązanie - siatka trójkątów 3. Każdy trójkąt jest przekształcany osobno od wyglądu początkowego do końcowego Ale jak zbudować taką siatkę?

21 Podział otoczki wypukłej zestawu punktów na powierzchni na trójkąty jest nazywany Triangularyzacją. Punkty znajdują się tylko i wyłącznie w wierzchołkach trójkątów Istnieje wiele wyników triangularyzacji zestawu punktów

22 Algorytm triangularyzacji o złożoności O(n 3 ) Powtarzaj tak długo jak możliwe Wybierz 2 wierzchołki Jeśli linia je łącząca nie przecina poprzednich linii zapisz ją

23 Jakość triangularyzacji Niech (T) = ( 1, 2,.., 3t ) będzie wektorem kątów triangularyzacji T Triangularyzacja T 1 będzie lepsza od T 2 jeśli (T 1 ) > (T 2 ) leksykograficznie Najlepsza triangulacja maksymalizuje najmniejsze kąty (Delaunay triangulation) dobrze źle

24 Poprawianie triangularyzacji W każdym czworokącie wypukłym możliwe jest odwrócenie krawędzi wewnętrznej. Jeśli poprawia to lokalną jakość triangularyzacji, poprawia również jakość triangularyzacji globalnej Jeśli odwrócenie krawędzi poprawia triangularyzację, poprzednia krawędź jest nazywana nielegalną

25 Naiwny algorytm Delaunay Rozpocznij z dowolną triangularyzacją Odwracaj kolejno nielegalne krawędzie, tak długo jak występują Może pracować bardzo długo

26 algorytm Delaunay (Delone) Wykorzystuje podział płaszczyzny na komórki Woronoja (dla danego zbioru n punktów, dzieli się płaszczyznę na n obszarów, w taki sposób, że każdy punkt w dowolnym obszarze znajduje się bliżej określonego punktu ze zbioru n punktów niż do pozostałych n 1 punktów ) Łącząc punkty z sąsiadujących ze sobą obszarów uzyskujemy triangularyzację Delaunay Złożoność zredukowana do O(nlogn)

27 Wiemy już jak przekształcić jeden obiekt w drugi ale jak stworzyć animowaną sekwencję morfingu? 1. Utworzyć kształty pośrednie (interpolacja siatek) 2. Przekształcić do nich oba obrazy 3. Wykonać zlanie kolorów obu przekształconych obrazów

28 Obraz źródłowy Siatka źródłowa Siatka pośrednia Obraz pośredni 1 Obraz pośredni 2 Obraz połączony Siatka docelowa Obraz docelowy f 0 1 czas 0 n Przekształć obraz źródłowy zgodnie z siatką Morf = f P+(1-f)Q Przekształć obraz docelowy godnie z siatką

29 Dla siatki trójkątnej Uzyskanie siatki pośredniej w chwili t t = [0,1] Liniowa interpolacja dla każdej pary szczegółów np. (1-t)*p1+t*p0 dla odpowiedników p0 i p1

30 Ograniczenie dla morfingu 2D Możliwość wystąpienia złożenia trójkątów Pojawia się w przypadku zmiany kolejności punktów kontrolnych na obrazie Z reguły w przypadku próby wykonania przekształcenia pseudo 3D Działa poprawnie tylko z danymi 3D Za pomocą ekstrapolacji można osiągnąć ciekawe efekty - karykatury

31 Morfing można wykonać również na obrazach dynamicznie zmienianych

32 Morfing widoku view morphing Morfowaniu podlega pozycja wirtualnej kamery

33 Morfing widoku view morphing Metoda i efekt Kamery rejestrujące ten sam obiekt w tej samej chwili Tworzą zgrubną ścieżkę ruchu wokół obiektu Płynny ruch kamery wokół obiektu uzyskany dzięki morfowaniu pozycji wirtualnej kamery pomiędzy poszczególnymi rzeczywistymi kamerami w ścieżce

34 That s all folks

Grafika 2D. Animacja Zmiany Kształtu. Wykład przedstawia podstawy animacji zmiany kształtu - morfingu. opracowanie: Jacek Kęsik

Grafika 2D. Animacja Zmiany Kształtu. Wykład przedstawia podstawy animacji zmiany kształtu - morfingu. opracowanie: Jacek Kęsik Grafika 2D Animacja Zmiany Kształtu opracowanie: Jacek Kęsik Wykład przedstawia podstawy animacji zmiany kształtu - morfingu 1 Animacja zmiany kształtu Podstawowe pojęcia Zlewanie (Dissolving / cross-dissolving)

Bardziej szczegółowo

Grafika 2D. Animacja Zmiany Kształtu. opracowanie: Jacek Kęsik

Grafika 2D. Animacja Zmiany Kształtu. opracowanie: Jacek Kęsik Grafika 2D Animacja Zmiany Kształtu opracowanie: Jacek Kęsik Wykład przedstawia podstawy animacji zmiany kształtu - morfingu Animacja zmiany kształtu Podstawowe pojęcia Zlewanie (Dissolving / cross-dissolving)

Bardziej szczegółowo

Metody animacji komputerowych

Metody animacji komputerowych Metody animacji komputerowych Definicja Animacja jest procesem automatycznego generowania serii obrazów, gdy kolejny obraz przedstawia pewną zmianę w stosunku do poprzedniego. Pojęcie to obejmuje zmiany

Bardziej szczegółowo

KSMM PG. Definicja. Pojęcie to obejmuje zmiany pozycji w czasie (dynamika ruchu), kształtu, barwy, przezroczystości,

KSMM PG. Definicja. Pojęcie to obejmuje zmiany pozycji w czasie (dynamika ruchu), kształtu, barwy, przezroczystości, Metody animacji KSMM PG Definicja Animacja jest procesem automatycznego generowania serii obrazów, gdy kolejny obraz przedstawia pewną zmianę w stosunku do poprzedniego. Pojęcie to obejmuje zmiany pozycji

Bardziej szczegółowo

Grafika 2D. Animacja - wstęp. Wykład obejmuje podstawowe pojęcia związane z animacja komputerową. opracowanie: Jacek Kęsik

Grafika 2D. Animacja - wstęp. Wykład obejmuje podstawowe pojęcia związane z animacja komputerową. opracowanie: Jacek Kęsik Grafika 2D - wstęp opracowanie: Jacek Kęsik Wykład obejmuje podstawowe pojęcia związane z animacja komputerową 1 podstawowe pojęcia Scena Rodzaje animacji Symbole Bardzo szybkie wyświetlanie sekwencji

Bardziej szczegółowo

1. Prymitywy graficzne

1. Prymitywy graficzne 1. Prymitywy graficzne Prymitywy graficzne są elementarnymi obiektami jakie potrafi bezpośrednio rysować, określony system graficzny (DirectX, OpenGL itp.) są to: punkty, listy linii, serie linii, listy

Bardziej szczegółowo

Modelowanie i wstęp do druku 3D Wykład 1. Robert Banasiak

Modelowanie i wstęp do druku 3D Wykład 1. Robert Banasiak Modelowanie i wstęp do druku 3D Wykład 1 Robert Banasiak Od modelu 3D do wydruku 3D Typowa droga...czasem wyboista... Pomysł!! Modeler 3D Przygotowanie modelu do druku Konfiguracja Programu do drukowania

Bardziej szczegółowo

Techniki animacji komputerowej

Techniki animacji komputerowej Techniki animacji komputerowej 1 Animacja filmowa Pojęcie animacji pochodzi od ożywiania i ruchu. Animować oznacza dawać czemuś życie. Słowem animacja określa się czasami film animowany jako taki. Animacja

Bardziej szczegółowo

Przygotowanie grafiki 3D do gier komputerowych

Przygotowanie grafiki 3D do gier komputerowych Grafika Komputerowa i Wizualizacja Przygotowanie grafiki 3D do gier komputerowych Rafał Piórkowski Plan wykładu 1. Ogólne wiadomości 2. Modelowanie high poly 3. Rzeźbienie 4. Modelowanie low poly 5. Model

Bardziej szczegółowo

Synteza i obróbka obrazu. Modelowanie obiektów 3D

Synteza i obróbka obrazu. Modelowanie obiektów 3D Synteza i obróbka obrazu Modelowanie obiektów 3D Grafika 2D a 3D W obu przypadkach efekt jest taki sam: rastrowy obraz 2D. W grafice 2D od początku operujemy tylko w dwóch wymiarach, przekształcając obraz

Bardziej szczegółowo

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Powierzchnia obiektu 3D jest renderowana jako czarna jeżeli nie jest oświetlana żadnym światłem (wyjątkiem są obiekty samoświecące) Oświetlenie

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

1. Podstawowe algorytmy techniki rastrowe a) dwa przecinające się odcinki mogą nie mieć wspólnego piksela (T) b) odcinek o współrzędnych końcowych

1. Podstawowe algorytmy techniki rastrowe a) dwa przecinające się odcinki mogą nie mieć wspólnego piksela (T) b) odcinek o współrzędnych końcowych 1. Podstawowe algorytmy techniki rastrowe a) dwa przecinające się odcinki mogą nie mieć wspólnego piksela (T) b) odcinek o współrzędnych końcowych (2,0), (5,6) narysowany przy wykorzystaniu algorytmu Bresenhama

Bardziej szczegółowo

INTERAKTYWNA KOMUNIKACJA WIZUALNA ANIMACJA

INTERAKTYWNA KOMUNIKACJA WIZUALNA ANIMACJA INTERAKTYWNA KOMUNIKACJA WIZUALNA ANIMACJA LITERATURA: R. Reinhardt, S. Dowd, Adobe Flash Professional. Biblia. D. Hirmes, JD Hooge, K. Jokol, FLASH. AKADEMIA MATEMATYCZNYCH SZTUCZEK ZASTOSOWANIA ANIMACJI

Bardziej szczegółowo

Photoshop. Podstawy budowy obrazu komputerowego

Photoshop. Podstawy budowy obrazu komputerowego Photoshop Podstawy budowy obrazu komputerowego Wykład 1 Autor: Elżbieta Fedko O czym dzisiaj będziemy mówić? Co to jest grafika komputerowa? Budowa obrazu w grafice wektorowej i rastrowej. Zastosowanie

Bardziej szczegółowo

10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu.

10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu. Waldemar Izdebski - Wykłady z przedmiotu SIT 91 10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu. 10.3.1. Wyznaczanie

Bardziej szczegółowo

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ.

Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ. Gramatyki grafowe Def. Nieskierowany NL-graf (etykietowane wierzchołki) jest czwórką g = (V, E, Σ, ϕ), gdzie: V niepusty zbiór wierzchołków, E V V zbiór krawędzi, Σ - skończony, niepusty alfabet etykiet

Bardziej szczegółowo

Plan wykładu. Akcelerator 3D Potok graficzny

Plan wykładu. Akcelerator 3D Potok graficzny Plan wykładu Akcelerator 3D Potok graficzny Akcelerator 3D W 1996 r. opracowana została specjalna karta rozszerzeń o nazwie marketingowej Voodoo, którą z racji wspomagania procesu generowania grafiki 3D

Bardziej szczegółowo

Graficzne modelowanie scen 3D. POV-Ray. Wykład 3

Graficzne modelowanie scen 3D. POV-Ray. Wykład 3 POV-Ray Wykład 3 Krzywa Beziera Krzywa Beziera to krzywa wielomianowa trzeciego stopnia, czyli taka która może być definiowana za pomocą trzech wielomianów z pewnym parametrem t (odpowiednio dla współrzędnych

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Laboratorium grafiki komputerowej i animacji. Ćwiczenie V - Biblioteka OpenGL - oświetlenie sceny

Laboratorium grafiki komputerowej i animacji. Ćwiczenie V - Biblioteka OpenGL - oświetlenie sceny Laboratorium grafiki komputerowej i animacji Ćwiczenie V - Biblioteka OpenGL - oświetlenie sceny Przygotowanie do ćwiczenia: 1. Zapoznać się ze zdefiniowanymi w OpenGL modelami światła i właściwości materiałów.

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie

Bardziej szczegółowo

Obrót wokół początku układu współrzędnych o kąt φ można wyrazić w postaci macierzowej następująco

Obrót wokół początku układu współrzędnych o kąt φ można wyrazić w postaci macierzowej następująco Transformacje na płaszczyźnie Przesunięcie Przesunięcie (translacja) obrazu realizowana jest przez dodanie stałej do każdej współrzędnej, co w postaci macierzowej można przedstawić równaniem y'] = [ x

Bardziej szczegółowo

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,

Bardziej szczegółowo

Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University.

Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 14 Wykorzystanie warstw Opis zadania Obrazy do ćwiczeń Zadania

Bardziej szczegółowo

Modelowanie dłoni. 1. Obraz referencyjny

Modelowanie dłoni. 1. Obraz referencyjny Modelowanie dłoni 1. Obraz referencyjny Obrazy referencyjne ustawiamy na panelach Properties (uaktywnienie/dezaktywacja klawiszem N), w zakładce Backgraund Images. Należy zaznaczyć opcje wyświetlania obrazu

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Filtry górnoprzepustowe - gradienty Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje

Bardziej szczegółowo

Techniki wstawiania tabel

Techniki wstawiania tabel Tabele w Wordzie Tabela w Wordzie to uporządkowany układ komórek w postaci wierszy i kolumn, w które może być wpisywany tekst lub grafika. Każda komórka może być formatowana oddzielnie. Możemy wyrównywać

Bardziej szczegółowo

Analiza obrazu. wykład 1. Marek Jan Kasprowicz Uniwersytet Rolniczy Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.

Analiza obrazu. wykład 1. Marek Jan Kasprowicz Uniwersytet Rolniczy Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r. Analiza obrazu komputerowego wykład 1 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Plan wykładu Wprowadzenie pojęcie obrazu cyfrowego i analogowego Geometryczne przekształcenia obrazu Przekształcenia

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Reprezentacja i analiza obszarów

Reprezentacja i analiza obszarów Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek cięŝkości ułoŝenie przestrzenne momenty wyŝszych rzędów promienie max-min centryczność

Bardziej szczegółowo

Elementarna analiza statystyczna

Elementarna analiza statystyczna MatLab część V 1 Elementarna analiza statystyczna W standardowym pakiecie MatLab-a istnieją jedynie podstawowe funkcje analizy statystycznej. Bardziej zaawansowane znajdują się w pakiecie statystycznym

Bardziej szczegółowo

Modelowanie krzywych i powierzchni

Modelowanie krzywych i powierzchni 3 Modelowanie krzywych i powierzchni Modelowanie powierzchniowe jest kolejną metodą po modelowaniu bryłowym sposobem tworzenia części. Jest to też sposób budowy elementu bardziej skomplikowany i wymagający

Bardziej szczegółowo

Przetwarzanie obrazów wykład 7. Adam Wojciechowski

Przetwarzanie obrazów wykład 7. Adam Wojciechowski Przetwarzanie obrazów wykład 7 Adam Wojciechowski Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany zawsze lecz tylko jeśli spełniony jest

Bardziej szczegółowo

Tworzenie prezentacji w MS PowerPoint

Tworzenie prezentacji w MS PowerPoint Tworzenie prezentacji w MS PowerPoint Program PowerPoint dostarczany jest w pakiecie Office i daje nam możliwość stworzenia prezentacji oraz uatrakcyjnienia materiału, który chcemy przedstawić. Prezentacje

Bardziej szczegółowo

Wprowadzenie do programu 3ds Max THEBRAIN

Wprowadzenie do programu 3ds Max THEBRAIN Szkolenie obejmuje zapoznanie się z interface m programu oraz zagadnieniami związanymi z modelowaniem w programie 3Ds Max. W trakcie szkolenia uczestnik będzie przyswajał wiedzę poprzez wykonywanie ćwiczeń,

Bardziej szczegółowo

Ćwiczenie 1 Automatyczna animacja ruchu

Ćwiczenie 1 Automatyczna animacja ruchu Automatyczna animacja ruchu Celem ćwiczenia jest poznanie procesu tworzenia automatycznej animacji ruchu, która jest podstawą większości projektów we Flashu. Ze względu na swoją wszechstronność omawiana

Bardziej szczegółowo

(1,10) (1,7) (5,5) (5,4) (2,1) (0,0) Grafika 3D program POV-Ray - 73 -

(1,10) (1,7) (5,5) (5,4) (2,1) (0,0) Grafika 3D program POV-Ray - 73 - Temat 10: Tworzenie brył obrotowych poprzez obrót krzywych (lathe). W poprzednim temacie wymodelowaliśmy kieliszek obracając krzywą Beziera wokół osi Y. Zastosowaliśmy w tym celu polecenie lathe. Krzywa

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu GRAFIKA KOMPUTEROWA 1. Układ przedmiotu semestr VI - 20000 semestr VII - 00200 Dr inż. Jacek Jarnicki Instytut Cybernetyki Technicznej p. 226 C-C 3, tel. 320-28-2323 jacek@ict.pwr.wroc.pl www.zsk.ict.pwr.wroc.pl

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

GRK 4. dr Wojciech Palubicki

GRK 4. dr Wojciech Palubicki GRK 4 dr Wojciech Palubicki Uproszczony Potok Graficzny (Rendering) Model Matrix View Matrix Projection Matrix Viewport Transform Object Space World Space View Space Clip Space Screen Space Projection

Bardziej szczegółowo

Oświetlenie obiektów 3D

Oświetlenie obiektów 3D Synteza i obróbka obrazu Oświetlenie obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Rasteryzacja Spłaszczony po rzutowaniu obraz siatek wielokątowych

Bardziej szczegółowo

GIMP - Filtr Deformowanie (IWarp) r

GIMP - Filtr Deformowanie (IWarp) r Poradnik Przegląd GIMP - Filtr Deformowanie (IWarp) 10-12-2015r Obraz oryginalny Zastosowanie filtra Deformacja Rysunek 1. Przykład zastosowania filtra Deformacja Filtr pozwala deformować interaktywnie

Bardziej szczegółowo

OpenGL przezroczystość

OpenGL przezroczystość OpenGL przezroczystość W standardzie OpenGL efekty przezroczystości uzyskuje się poprzez zezwolenie na łączenie kolorów: Kolor piksela tworzy się na podstawie kolorów obiektu przesłanianego i przesłaniającego

Bardziej szczegółowo

Przetwarzanie grafiki rastrowej na wektorową

Przetwarzanie grafiki rastrowej na wektorową Przetwarzanie grafiki rastrowej na wektorową Inaczej wektoryzacja, lub trasowanie, czyli zastąpienie rysunku rastrowego rysunkiem wektorowym. Wykonanie: Piotr Dróżdż Podstawowe różnice między grafiką wektorową,

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

Grafika Komputerowa Materiały Laboratoryjne

Grafika Komputerowa Materiały Laboratoryjne Grafika Komputerowa Materiały Laboratoryjne Laboratorium 10 Blender, podstawy Wstęp Blender jest rozbudowanym narzędziem do tworzenia i edycji obiektów, scen i animacji 3D. Poznanie go na przyzwoitym poziomie

Bardziej szczegółowo

Młodzieżowe Uniwersytety Matematyczne. dr Michał Lorens

Młodzieżowe Uniwersytety Matematyczne. dr Michał Lorens Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ODLEGŁOŚĆ NA POWIERZCHNI WIELOŚCIANU dr Michał Lorens 28.04.2012 Projekt

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Transformacje obiektów 3D

Transformacje obiektów 3D Synteza i obróbka obrazu Transformacje obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Lokalny układ współrzędnych Tworząc model obiektu, zapisujemy

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Waldemar Izdebski - Wykłady z przedmiotu SIT / Mapa zasadnicza 30

Waldemar Izdebski - Wykłady z przedmiotu SIT / Mapa zasadnicza 30 Waldemar Izdebski - Wykłady z przedmiotu SIT / Mapa zasadnicza 30 2.3. Model rastrowy Rastrowy model danych wykorzystywany jest dla gromadzenia i przetwarzania danych pochodzących ze skanowania istniejących

Bardziej szczegółowo

Elastyczne projektowanie produktu w ZW3D. ZW3D CAD/CAM Biała księga

Elastyczne projektowanie produktu w ZW3D. ZW3D CAD/CAM Biała księga Elastyczne projektowanie produktu w ZW3D Wprowadzenie Doświadczenie użytkownika wraz z efektem wizualnym zawsze było bardzo istotną częścią ZW3D. Ludzie wolą produkty z kształtami rzucającymi się w oczy,

Bardziej szczegółowo

Struktury Danych i Złożoność Obliczeniowa

Struktury Danych i Złożoność Obliczeniowa Struktury Danych i Złożoność Obliczeniowa Zajęcia 2 Algorytmy wyszukiwania, sortowania i selekcji Sortowanie bąbelkowe Jedna z prostszych metod sortowania, sortowanie w miejscu? Sortowanie bąbelkowe Pierwsze

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Grafika komputerowa Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności December 12, 2016 1 Wprowadzenie 2 Optyka 3 Geometria 4 Grafika rastrowa i wektorowa 5 Kompresja danych Wprowadzenie

Bardziej szczegółowo

Bartosz Bazyluk SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok

Bartosz Bazyluk SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok Synteza grafiki 3D Pod pojęciem syntezy grafiki rozumiemy stworzenie grafiki

Bardziej szczegółowo

Spis treści. Księgarnia PWN: Roland Zimek - SWiSH Max2 i SWiSH Max3. Wprowadzenie... 9

Spis treści. Księgarnia PWN: Roland Zimek - SWiSH Max2 i SWiSH Max3. Wprowadzenie... 9 Księgarnia PWN: Roland Zimek - SWiSH Max2 i SWiSH Max3 Spis treści Wprowadzenie... 9 1. Opis programu i instalacja... 13 1.1. Nowości w SWiSH Max2... 13 1.1.1. Wygląd okna programu... 13 1.1.2. Język skryptowy...

Bardziej szczegółowo

Animowana grafika 3D Laboratorium 3

Animowana grafika 3D Laboratorium 3 3DStudio MAX teksturowanie modelu budynku dla potrzeb gry 3D W ćwiczeniu tym zakładamy, że mamy już ukończony model naszego budynku. Składa się on z wielu elementów: ścian, okien, drzwi, dachu itp. W teorii

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Programy CAD Modelowanie geometryczne

Programy CAD Modelowanie geometryczne Programy CAD Modelowanie geometryczne Komputerowo wspomagane projektowanie CAD Narzędzia i techniki wspomagające prace w zakresie: projektowania, modelowania geometrycznego, obliczeniowej analizy FEM,

Bardziej szczegółowo

Mobili in mobile, czyli animacje w Baltie

Mobili in mobile, czyli animacje w Baltie www.trendy.codn.edu.pl nr 11, wrzesień 2006 Mobili in mobile, czyli animacje w Baltie Jerzy Mil Animacja to jedno z bardziej atrakcyjnych dla uczniów zastowań Baltiego. Artykuł opisuje różne sposoby tworzenia

Bardziej szczegółowo

Zastosowanie CP-grafów do generacji siatek

Zastosowanie CP-grafów do generacji siatek Zastosowanie CP-grafów do generacji siatek 1 Cel zajęć Celem zajęć jest praktyczne zaznajomienie się z pojęciem CP-grafu i gramatyk grafowych, przy pomocy których można je tworzyć i nimi manipulować. Jako

Bardziej szczegółowo

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ). Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

Antyaliasing w 1 milisekundę. Krzysztof Kluczek

Antyaliasing w 1 milisekundę. Krzysztof Kluczek Antyaliasing w 1 milisekundę Krzysztof Kluczek Zasada działania Założenia: Metoda bazująca na Morphological Antialiasing (MLAA) wejście: obraz wyrenderowanej sceny wyjście: zantyaliasowany obraz Krótki

Bardziej szczegółowo

ELEMENTY TEORII WĘZŁÓW

ELEMENTY TEORII WĘZŁÓW Łukasz Janus 10B2 ELEMENTY TEORII WĘZŁÓW Elementarne deformacje węzła Równoważność węzłów Węzły trywialne Ruchy Reidemeistera Twierdzenie o równoważności węzłów Grafy Powtórzmy Diagram węzła Węzły reprezentuje

Bardziej szczegółowo

Grafika Komputerowa Materiały Laboratoryjne

Grafika Komputerowa Materiały Laboratoryjne Grafika Komputerowa Materiały Laboratoryjne Laboratorium 14 Blender, podstawy animacji Wstęp Zagadnienie tworzenia animacji 3D w Blenderze jest bardzo szerokie i wiąże się z wieloma grupami rozwiązao.

Bardziej szczegółowo

Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D

Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D autorzy: Michał Dajda, Łojek Grzegorz opiekun naukowy: dr inż. Paweł Rotter I. O projekcie. 1. Celem projektu było stworzenie

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Patryk Żywica 5 maja 2008 1 Spis treści 1 Problem wydawania reszty 3 1.1 Sformułowanie problemu...................... 3 1.2 Algorytm.............................. 3 1.2.1 Prosty

Bardziej szczegółowo

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. 1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie

Bardziej szczegółowo

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26 Rozdział 4 Macierze szyfrujące Opiszemy system kryptograficzny oparty o rachunek macierzowy. W dalszym ciągu przypuszczamy, że dany jest 26 literowy alfabet, w którym utożsamiamy litery i liczby tak, jak

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

Czworościany ortocentryczne zadania

Czworościany ortocentryczne zadania Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości

Bardziej szczegółowo

Wirtualny rzeźbiarz cz.2

Wirtualny rzeźbiarz cz.2 Andrzej Fałkowski 119315 Dawid Kwiatkowski 119374 Paweł Pieniążek 119423 Wirtualny rzeźbiarz cz.2 Projekt realizowany w ramach przedmiotu rzeczywistość wirtualna Założenia ogólne Projekt polega na stworzeniu

Bardziej szczegółowo

Przetwarzanie obrazów wykład 6. Adam Wojciechowski

Przetwarzanie obrazów wykład 6. Adam Wojciechowski Przetwarzanie obrazów wykład 6 Adam Wojciechowski Przykłady obrazów cyfrowych i ich F-obrazów Parzysta liczba powtarzalnych wzorców Transformata Fouriera może być przydatna przy wykrywaniu określonych

Bardziej szczegółowo

Dodawanie grafiki i obiektów

Dodawanie grafiki i obiektów Dodawanie grafiki i obiektów Word nie jest edytorem obiektów graficznych, ale oferuje kilka opcji, dzięki którym można dokonywać niewielkich zmian w rysunku. W Wordzie możesz zmieniać rozmiar obiektu graficznego,

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-052 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Modelowanie 3D. Obiekty regularne. Powierzchnie proste możliwe do wymodelowania ręcznie na podstawie poligonów lub powierzchni parametrycznych.

Modelowanie 3D. Obiekty regularne. Powierzchnie proste możliwe do wymodelowania ręcznie na podstawie poligonów lub powierzchni parametrycznych. 1/49 2/49 Obiekty regularne Powierzchnie proste możliwe do wymodelowania ręcznie na podstawie poligonów lub powierzchni parametrycznych. 1 3/49 Opis parametryczny obiekty parametryczne opisane równaniami

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 12 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 12 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

R n jako przestrzeń afiniczna

R n jako przestrzeń afiniczna R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1

Bardziej szczegółowo

GRAKO: ŚWIATŁO I CIENIE. Modele barw. Trochę fizyki percepcji światła. OŚWIETLENIE: elementy istotne w projektowaniu

GRAKO: ŚWIATŁO I CIENIE. Modele barw. Trochę fizyki percepcji światła. OŚWIETLENIE: elementy istotne w projektowaniu GRAKO: ŚWIATŁO I CIENIE Metody oświetlania Metody cieniowania Przykłady OŚWIETLENIE: elementy istotne w projektowaniu Rozumienie fizyki światła w realnym świecie Rozumienie procesu percepcji światła Opracowanie

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Grafika 2D. Pojęcia podstawowe. opracowanie: Jacek Kęsik

Grafika 2D. Pojęcia podstawowe. opracowanie: Jacek Kęsik Grafika 2D Pojęcia podstawowe opracowanie: Jacek Kęsik Obraz - przedmiot, przeważnie płaski, na którym za pomocą plam barwnych i kreski, przy zastosowaniu różnych technik malarskich i graficznych autor

Bardziej szczegółowo

37. Podstawy techniki bloków

37. Podstawy techniki bloków 37 37. Podstawy techniki bloków Bloki stosujemy w przypadku projektów zawierających powtarzające się identyczne złożone obiekty. Przykłady bloków pokazano na rysunku. Zacieniowane kwadraty to tzw. punkty

Bardziej szczegółowo

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności

Bardziej szczegółowo

Wykład 12. Animacja postaci

Wykład 12. Animacja postaci Wykład 12. Animacja postaci W grach komputerowych i wideo stosowane są następujące rodzaje animacji postaci: duszki i animacja tekstury (sprite animation) morfing (morph target animation) animacja hierarchii

Bardziej szczegółowo

INTERAKTYWNA KOMUNIKACJA WIZUALNA

INTERAKTYWNA KOMUNIKACJA WIZUALNA INTERAKTYWNA KOMUNIKACJA WIZUALNA 1 Animacja i edytor ruchu 2 Animacja klatka po klatce Edycja wielu klatek animacji jednocześnie i tryb przenikania się klatek Automatyczna animacja kształtu Wskaźniki

Bardziej szczegółowo

Maskowanie i selekcja

Maskowanie i selekcja Maskowanie i selekcja Maska prostokątna Grafika bitmapowa - Corel PHOTO-PAINT Pozwala definiować prostokątne obszary edytowalne. Kiedy chcemy wykonać operacje nie na całym obrazku, lecz na jego części,

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność

Bardziej szczegółowo

Spis treści. Księgarnia PWN: Roland Zimek - Swish Max3

Spis treści. Księgarnia PWN: Roland Zimek - Swish Max3 Księgarnia PWN: Roland Zimek - Swish Max3 Spis treści Wprowadzenie... 11 1. Opis programu i instalacja... 15 1.1. Nowości w SWiSH Max3... 15 1.1.1. Projekty... 15 1.1.2. Ścieżka ruchu... 16 1.1.3. Narzędzie

Bardziej szczegółowo