Prąd stały Elementy obwodu elektrycznego. Wykład 2

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prąd stały Elementy obwodu elektrycznego. Wykład 2"

Transkrypt

1 Prąd stały lementy obwodu elektrycznego Wykład

2 Prądelektryczny Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych, odbywający się w określonym środowisku pod wpływem pola elektrycznego. Za kierunek przepływu prądu elektrycznego przyjmuje się umownie kierunek ruchu dodatnich ładunków elektrycznych, chociaż w rzeczywistości w przewodnikach nośnikami prądu są elektrony.

3 Do tego, żeby w przewodniku powstał i trwał długo prąd elektryczny konieczne jest aby w przewodniku istniało pole elektryczne, które powodowałoby uporządkowane przemieszczenie ładunków. Aby prąd trwał dostatecznie długo, energia pola elektrycznego, która jest wydatkowana na przemieszczenie ładunków, musi być stale uzupełniana. A wiec niezbędne jest takie urządzenie, które w sposób ciągły przekształcałoby dowolny rodzaj energii w energię pola elektrycznego. Urządzenie takie nazywamy źródłem prądu albo źródłem siły elektromotorycznej. To są baterii, akumulatory, prądnice elektryczne i inne urządzenie, które wytwarzają pole elektryczne w przewodniku podłączonym do zewnętrznych doprowadzeń źródła prądu.

4 Podział prądów z punktu widzenia sposobu przenoszenia ładunków:. prąd przewodzenia,. prąd unoszenia. prąd przesunięcia.

5 Prąd przewodzenia Prąd przewodzenia występuje w materiałach przewodzących. stnieją dwa rodzaje(dwie kategorie) takich materiałów. Przewodniki rodzaju: metale i ich stopy, a także węgiel. (elektrony swobodne, gaz elektronowy)- przewodnictwo elektronowe. Przewodniki rodzaju: wodne, zdysocjowane roztwory kwasów, zasad i soli- przewodnictwo jonowe.

6 Prąd unoszenia (zwany też prądem konwekcyjnym) jest to przemieszczanie się ładunków elektrycznych przez środowisko izolacyjne(np. przez próżnię). Występuje np. w lampach elektronowych i polega na ruchu chmury elektronów od katody do anody z prędkością zależną od napięcia.

7 Prąd przesunięcia występuje w środowiskach nieprzewodzących zwanych ogólnie dielektrykami i polega na przemieszczaniu sie czastek dodatnich i ujemnych jedynie wewnatrz atomów bez wywoływania jonizacji.

8 Z punktu widzenia przebiegu (zmiany natężenia prądu w czasie) rozróżniamy:. prąd stały - którego natężenie i kierunek nie ulegają żadnym zmianom w czasie ustalonej pracy obwodu elektrycznego (akumulatory ołowiowe, ogniwa elektrycznegalwaniczne np. Daniella Zn-, ZnSO4,- baterie alkaliczne V); Obwód, w którym płynie taki prad, nazywamy obwodem pradu stałego.

9 . prąd zmienny, którego natężenie zmienia się wczasie: a) nieokresowo(prad nieokresowy) b) okresowo - prąd przemienny - sinusoidalny, prostokątny, piłokształtny. Obwód, w którym płynie taki prąd, nazywamy obwodem prądu zmiennego.

10 Wielkości charakteryzujące prąd elektryczny Natężenie prądu -stosunek wartości ładunku do czasu, w którym ten ładunek przepłynął (przez rozpatrywany przekrój): q t Natężenie prądu jest wielkością skalarną. Wartość średnia: śr. Wartość chwilową (w chwili t ): i( t) i lim t 0 Jednostka natężenia prądu - jeden amper ( A) - jednostka podstawowa układu S. Definiowana jest na podstawie oddziaływania siłowego pola magnetycznego na przewodnik z prądem: wartośćprądu wynosijeden amperjeżeliprąd ten płynącwdwu oddalonych od siebie o jeden metr nieskończenie długich przewodnikach, o przekrojach kołowych, nieskończenie małych, powoduje oddziaływanie siłowe o wartości 0 7 niutonanametrdługościprzewodnika. q t

11 Wielkości charakteryzujące prąd elektryczny Gęstość prądu -stosunek natężenia do pola przekroju, przez który płynie prąd o tym natężeniu : -wektor jednostkowy Wielkość wektorowa. J J S Jednostka gęstości prądu: [ i] [ J ] [ S] A m Jednostka praktyczna: A [ J ] mm

12 Praca i moc prądu elektrycznego Praca prądu elektrycznego stałego U t W U t t [ VAs J ] Oznaczenia W -praca; -rezystancja; U -różnica potencjałów (napięcie); t -czas przepływu; natężenie prądu; Moc prądu elektrycznego stałego W U P U t J [ W] s Oznaczenia P -moc; W -praca; U -różnica potencjałów (napięcie); t -czas wykonywania pracy; natężenie prądu;

13 Prąd stały Prąd elektryczny jest prądem stałym wtedy gdy wartości chwilowe jego natężenia (w tym znak, a więc zwrot prądu) pozostają niezmienne w czasie. Dotyczy to wszystkich innych charakteryzujących go wielkości (napięć, potencjałów, sił elektromotorycznych, itp.). Wielkości charakteryzujące prądy stałe oznacza się dużymiliterami(np.:,u,v,,j).dlanatężeniaprądu stałego słuszne jest zatem: iconst.

14 Struktura obwodu elektrycznego Obwód elektryczny stanowi zamkniętą drogę, wzdłuż której przepływa prąd elektryczny. Jeżeli obwód elektryczny zawiera tylko jedną zamkniętą drogę dla przepływu prądu, wówczas nosi on nazwę obwodu nierozgałęzionego. Obwód elektryczny rozgałęziony zawiera więcej niż jedną zamkniętą drogę dla przepływu prądu.

15 Typowy obwód elektryczny zawiera źródło napięcia, odbiorniki i przewody łączące. Źródło napięcia i odbiorniki przedstawiane są na schematach za pomocą umownych symboli graficznych, zaś przewody łączące są rysowane pojedynczą linią ciągłą.

16 Odbiornik elektryczny Odbiornikiem elektrycznym jest urządzenie, w którym zachodzi przemiana energii elektrycznej w inną formę energii, na przykład w ciepło (w grzejniku), energię mechaniczną (w silniku), energię promienistą(w lampie) lub w inną formę energii elektrycznej (w prostownikach).

17 lementy wchodzące w skład obwodu elektrycznego dzielą się na aktywne (czynne) oraz pasywne (bierne). lementami aktywnymi są źródła energii elektrycznej, w których następuje przetwarzanie innych rodzajów energii w energię elektryczną. lementami pasywnymi są odbiorniki, w których energia elektryczna jest akumulowana lub zamieniana na inny rodzaj energii (np. cieplną, świetlną, mechaniczną. Takimi elementami są cewki, kondensatory i rezystory.

18 W schemacie obwodu elektrycznego występują gałęzie, węzły i oczka. Gałąź obwodu elektrycznego tworzy jeden lub kilka połączonych szeregowo elementów obwodu. Węzeł obwodu elektrycznego jest to taki punkt, w którym kończą się co najmniej trzy gałęzie. Oczkiem obwodu elektrycznego nazywa się zbiór połączonych ze sobą gałęzi, tworzących drogę zamkniętą dla przepływu prądu, mającą tę właściwość, że po usunięciu dowolnej gałęzi ze zbioru pozostałe gałęzie nie tworzą drogi zamkniętej.

19 Strzałkowanienapięć i prądów W celu jednoznacznego odczytywania schematów elektrycznych wprowadzono umowne oznaczenia zwrotów napięć i prądów poszczególnych gałęzi. Prąd elektryczny oznacza się na schemacie za pomocą strzałki. Grot strzałki prądu wskazuje przy dodatnich wartościach prądu zwrot ruchu ładunków dodatnich. Symbol graficzny źródła napięcia stałego

20 Napięcie występujące na odbiorniku nazywa się napięciem odbiornikowym. Strzałka napięcia odbiornikowego posiada zwrot przeciwny do zwrotu strzałki prądu płynącego przez ten odbiornik. Zatem grot strzałki napięcia odbiornikowego wskazuje punkt o wyższym potencjale. A. B. U AB

21 Obwody z jednym źródłem energii Prąd płynący w obwodzie przedstawionym na określony jest zależnością:

22 Źródła napięciowe idealne są dwójnikami aktywnymi, które na zaciskach utrzymują stałe napięcie niezależnie od pobieranego natężenia prądu. Źródło napięciowe rzeczywiste charakteryzuje się występowaniem spadku napięcia przy wzroście prądu. Schemat zastępczy źródła rzeczywistego składa się z szeregowego połączenia źródła idealnego i rezystancji wewnętrznej. U o w U W U 0 o U 0 -* w Szeregowe i równoległe połączenie źródeł napięcia

23 Źródła prądowe idealne są dwójnikami aktywnymi wymuszającymi stałe natężenie prądu, niezależnie od napięcia na zaciskach źródła. Źródło prądowe rzeczywiste charakteryzuje się występowaniem zmniejszania prądu przy wzroście napięcia na zaciskach źródła. Schemat zastępczy źródła prądowego rzeczywistego składa się z równoległego połączenia źródła prądowego idealnego i konduktancji wewnętrznej. o we G w G o

24 Podstawowe prawa elektrotechniki

25 Prawo Ohma Jednym z najwcześniejszych odkryć dotyczących prądu elektrycznego dokonałgeorgsimonohmw86roku. Georg Simon Ohm (ur. 6 marca 789 w rlangen, zm. 6 lipca 854 w Monachium), matematyk niemiecki, profesor politechniki w Norymberdze w latach i uniwersytetu w Monachium po roku 849. Nauczyciel matematyki. Po zainteresowaniu się fizyką napisał prace głównie z zakresu elektryczności i akustyki. Sformułował (86) i udowodnił prawo opisujące związek pomiędzy natężeniem prądu elektrycznego, a napięciem elektrycznym (tzw. Prawo Ohma). Badał nagrzewanie się przewodników przy przepływie prądu elektrycznego. Badając zależność oporu od formy geometrycznej przewodnika udowodnił istnienie oporności właściwej. W 84 stwierdził, że najprostsze wrażenie słuchowe jest wywołane drganiami harmonicznymi, przy czym ucho jest zdolne rozkładać dźwięki na składowe sinusoidalne. Prace pisane skomplikowanym językiem matematyki długo nie były uznawane przez współczesnych mu fizyków. Na jego cześć jednostce rezystancji nadano nazwę om.

26 Prawo Ohma Prawo sformułowane na podstawie eksperymentu jest opisane zależnością: U V A Ω gdzie to rezystancja (opór elektryczny). Z równania tego wynika, że natężenie prądu jest wprost proporcjonalne do napięcia na zaciskach rezystancji i odwrotnie proporcjonalne do wartości rezystancji, przez którą przepływa.

27 Prawo Ohma Jednostką rezystancji jest om[ω]. Om jest rezystancją pomiędzy dwoma punktami przewodu, gdy niezmienna różnica potencjałów między tymi punktami, równa jednemu woltowi, wywołuje w tym przewodzie prąd o natężeniu jednego ampera, a przewód nie jest źródłem napięcia.

28 Prawo Ohma Jeżeli w miejsce rezystancji wprowadzi się pojęcie konduktancji (przewodności): G to prawo Ohma przyjmuje postać: GU Jednostką konduktancji jest simens [S].

29 Zależność rezystancji od wymiarów geometrycznych przewodnika Doświadczalnie stwierdzono, że w określonej temperaturze rezystancja przewodnika zależy wprost proporcjonalnie od jego długości i odwrotnie proporcjonalnie od powierzchni przekroju, a współczynnikiem jest tzw. rezystywność materiału. ρ l S [Ω] gdzie: l długość przewodnika [m], S powierzchnia przekroju poprzecznego [m ], ρ-rezystywność [Ωm].

30 Jednostka rezystywności wynika z zależności: [ ][ S] Ωm [ ρ] Ωm [] m W praktyce przekrój przewodu podaje się w milimetrach kwadratowych, a długość w metrach, więc jednostką rezystywnościjestwówczasωmm. Odwrotnością rezystywności jest konduktywność: γ ρ Jednostką konduktywności jest [ γ ] [ ] Ωm ρ S m

31 Prawa Kirchhoffa Fundamentem teorii obwodów elektrycznych są dwa prawa Kirchhoffa. O nie to oparte są wszystkie metody obliczeniowe. Prawa Kirchhoffa nazywane są również prawami równowagi. Pierwsze prawo Kirchhoffa to prawo równowagi prądów. Drugie prawo Kirchhoffa- prawo równowagi napięć.

32 . Pierwsze -prądowe prawo Kirchhoffa -dotyczy bilansu prądów w węźle obwodu elektrycznego. Ponieważ ładunki elektryczne nie mogą znikać, ani powstawać z niczego, a standardowy przewodnik właściwie nie potrafi ich gromadzić (wyjątkiem są kondensatory), to jasne jest, że: suma prądów dopływających do węzła jest (w każdej chwili czasowej) równe sumie prądów z węzła wypływających - (pierwsze prawo Kirchhoffa zwane jest prawem równowagi prądów):

33 Drugie prawo Kirchhoffa jest uzupełnieniem pierwszego prawa Kirchhoffa. Oba te prawa łącznie pozwalają na tzw. rozwiązywanie obwodów, czyli na obliczaniu natężeń prądów płynących w różnych gałęziach obwodu, dzięki znajomości rezystancji i sił elektromotorycznych źródeł. prawo Kirchhoffa odnosi się do spadków napięć na elementach obwodu. Wynika ono ze zrozumienia faktu, że napięcia w obwodzie nie biorą się znikąd. Jeżeli gdzieś na oporniku jest jakieś napięcie, to znaczy, że musi też gdzieś istnieć źródło które wywołało prąd przepływający przez opornik. wszystkie napięcia pochodzące od źródeł muszą sumować się z napięciami odkładającymi się na opornikach. Drugie prawo Kirchhoffa (prawo równowagi napięć): suma napięć w wyodrębnionym w danym układzie obwodzie zamkniętym jest (w każdej chwili czasowej) równa zeru. Druga definicja: W obwodzie zamkniętym suma spadków napięć na wszystkich odbiornikach prądu musi być równa sumie napięć na źródłach napięcia.

34 Zastosowanie praw Kirchhoffa Obliczenie rozpływu prądu w obwodzie można wykonać z zastosowaniem i prawa Kirchhoffa. Załóżmy, że obwód ma n gałęzi i k węzłów. Zagadnienie sprowadza się do wyznaczenia n niewiadomych prądów płynących w poszczególnych gałęziach, zwanych prądami gałęziowymi obwodu. Na schemacie obwodu oznaczmy zwroty prądów gałęziowych za pomocą strzałek, które przyjmujemy zupełnie dowolnie. Jeśli bowiem przyjmiemy niewłaściwy zwrot prądu, to okaże się po wykonaniu obliczeń, że prąd ma wartość ujemną.

35 Przykład Prądy wpływające do rozgałęzienia (należy zwrócić uwagę na zwroty strzałek) Σ wpływające A A 5A 0A Σ wypływające 7A A Σ wpływające Σ wypływające Przykład Dla sytuacji na rysunku: Bo prądy,, wpływają do węzła, a prądy 4, 5, 6 z niego wypływają.

36 Przykład Na rysunku podłączono woltomierze do źródła prądu oraz dwóch oporników odbiorników prądu. Jaki związek zachodzi między napięciami przez nie wskazywanymi? Ten przykład jest prosty, bo mamy tu tylko jedno źródło prądu. Jeśli napięcie na źródle oznaczymy U, a napięcia na opornikach odpowiednio U i U, to prawdziwy będzie związek: U U U czyli np. U 6 V U 4 V U V lub U 6 V U V U 5 V

37 Przykład 4 W celu otrzymania n równań, układamy k- równań na podstawie prawa Kirchhoffa, a pozostałe n-k równań układamy na podstawie prawa Kirchhoffa dla wszystkich niezależnych oczek obwodu. W wyniku rozwiązania tych równań otrzymuje się n prądów gałęziowych.

38 ozpatrywany obwód ma k 4 węzły i n 6 gałęzi. Na podstawie prawa Kirchhoffa układamy k- równania dla węzłów A, B, C: Na podstawie prawa Kirchhoffa układamy n-k równań dla oczek ADCA, BDCB, ADBA: Teraz pozostaje podstawić dane (najczęściej i ) i rozwiązać układ równań.

39 Prawo Joula-Lenza Omawiając przepływ prądu elektrycznego jako przykład można podać zjawisko rozładowania kondensatora. Naładowany kondensator posiada określoną energię, natomiast energia kondensatora po jego rozładowaniu jest równa zeru. Początkowa energia kondensatora zamienia się w energię cieplną, wydzielającą się w przewodzie łączącym okładki kondensatora podczas przepływu prądu. Można więc stwierdzić, ze przepływ prądu elektrycznego przez przewodnik powoduje wydzielanie się w nim ciepła, co można łatwo sprawdzić doświadczalnie.

40 Wyprowadzimy teraz wzór, określający energię cieplną wydzielaną w danym przewodniku przy przepływie prądu stałego. ozważmy odcinek przewodnika, miedzy końcami którego istnieje napięcie U i przez który płynie prąd o natężeniu. Przy przeniesieniu ładunku q przez ten przewodnik siły pola elektrycznego wykonują pracę: WqU. Ponieważ w przypadku przepływu prądu stałego q t, gdzie: t czas przepływu ładunku q, wiec: W U t.

41 Zgodnie z zasadą zachowania energii ostatnie wyrażenie musi być równa energii cieplnej, wydzielanej w przewodniku. Otrzymany wzór nosi nazwę prawa Joule a - Lenza. Wydzielona w przewodniku moc prądu: dw P dt wyraża sie wiec wzorem: P U.

42 Prawo Joula-Lenza lość wydzielonego ciepła na przewodniku jest równa pracy prądu elektrycznego, jaką on wykonał podczas przejścia przez obwód: QW Jeżeli w obwodzie zmienia się temperatura, to ciepło liczymy wg wzoru: Qm*c*ΔT gdzie: Q - lość wydzielonego ciepła na przewodniku; W-praca; m-masa; c - ciepło właściwe (cecha charakterystyczna danej substancji); T- zmiana temperatury

43 Sprawność urządzeń elektrycznych Sprawność urządzenia elektrycznego: η P P Z P 00% Oznaczenia η-sprawność urządzenia elektrycznego; P Z -moc zużyta do przez urządzenie; P P -moc pobrana przez urządzenie

44 stan jałowy stan obciążenia stan zwarcia Podstawowe stany pracy obwodu elektrycznego Stan jałowy W obwodzie stan taki uzyskuje się przez otwarcie wyłącznika ( istnieją stany jałowe innych urządzeń np. silnika, transformatora). W stanie jałowym moc użyteczna równa jest zeru. W praktyce stan jałowy jest wykorzystywany do pomiarów napięć źródłowych U z (sił elektromotorycznych). Stan obciążenia Stan obciążenia odpowiada przedziałowi wartości prądów pracy. Zmiany natężenia prądu wywołują zmiany napięcia na odbiornikach. Wahania napięcia nie powinny przekraczać wartości dopuszczalnych. Aby to osiągnąć p (rezystancja przewodów łączących) i w (rezystancja wewnętrzna źródła zasilania) muszą mieć wartości wystarczająco małe. ezystancje wewnętrzne generatorów mocy są w praktyce bardzo małe. ezystancje przewodów zależą od zastosowanego (dobranego) przewodu.

45 Stan zwarcia Zwarciem dwóch punktów nazywamy połączenie tych punktów, elementem o rezystancji równej zeru (zetknięcie dwóch przewodów). W praktyce wystarczy aby rezystancja pomiędzy zwartymi punktami była znacznie mniejsza od rezystancji występującej między tymi punktami podczas normalnej pracy. a) zwarcie odbiornika Zwarcie odbiornika stwarza zagrożenie cieplne dla przewodów. Konieczne jest zabezpieczenie przewodów przed skutkami zwarć odbiorników. Stosowane są: bezpieczniki topikowe wyzwalacze elektromagnetyczne Zabezpieczenia są dobrane do przekroju przewodów. W istniejącej instalacji niedopuszczalna jest zamiana zabezpieczeń na odpowiadające większemu natężeniu prądu. b) zwarcie źródła Zagrożenie elektrodynamiczne źródeł, w przypadku zwarcia źródło może ulec zniszczeniu. Przykład: Obliczyć prąd przy zwarciu odbiornika oraz przy zwarciu źródła wobwodzie o parametrach U z 40V, w 0,Ω, p 0,9Ω, o Ω. U z 40 U z 40 zo 40 A zź 400 A 0, 0,9 0, w p w

46 Metody rozwiązywania obwodów elektrycznych

47 ozwiązaniem obwodu elektrycznego - określa się wyznaczenie wartości wszystkich prądów płynących w rozpatrywanym obwodzie bądź wartości wszystkich napięć panujących w nim. Proces ten wymaga skorzystania z podstawowych praw i własności obwodów elektrycznych. Zazwyczaj stosuje się: metodę potencjałów węzłowych, metodę prądów oczkowych, metodę Thevenina. W zależności od typu obwodu konieczne może być także zastosowanie: metody składowych symetrycznych - dla niesymetrycznych trójfazowych obwodów prądu przemiennego liczb zespolonych - metody symbolicznej - dla obwodów prądu przemiennego w stanie ustalonym transformaty Laplace'a - dla obwodów z przebiegami odkształconymi (w stanie nieustalonym).

48 Metoda praw Kirchhoffa Jest to metoda klasyczna, która polega na ułożeniu odpowiedniej liczby równań na podstawie i prawa Kirchhoffa. Dla obwodu elektrycznego zawierającego w węzłów, należy ułożyć /w-/ równań z prawa Kirchhoffa. Ogólna liczba równań, jakie należy ułożyć dla obwodu o k gałęziach jest równa liczbie gałęzi, czyli sumie szukanych prądów. Zatem z prawa Kirchhoffa należy ułożyć pozostałe równania, czyli k-(w-) równań.

49 Metoda praw Kirchhoffa Tok obliczeń jest następujący:. Strzałkuje się dowolnie prądy we wszystkich gałęziach obwodu.. Strzałkuje się napięcia(przeciwnie do strzałki prądu) na wszystkich elementach rezystancyjnych oraz źródła napięcia.. Układa się (w-) równań węzłowych według pierwszego prawa Kirchhoffa opuszczając jeden dowolny węzeł. 4. Układa się tyle równań według drugiego prawa Kirchhoffa ile dany obwód zawiera oczek. 5. ozwiązuje się powyższy układ ze względu na nieznane prądy gałęziowe. Zaletą metody równań Kirchhoffa jest duża prostota w trakcie układania równań, natomiast wadą jest duża pracochłonność przy ich rozwiązywaniu.

50 ozwiązywanie obwodu metodą praw Kirchhoffa 5Ω 0Ω 0Ω 0V 5V - * - * 0 * - * 0 -( )* - * 0 * - * 0 - * - * - * 0 - * * 0 - * - *( - )0 - * * 0 ( * )/ * - * 0 ( ) ( ) A A A,5 0,875 0,75 0, ,75 5 0,

51 Metoda prądów oczkowych Metoda ta zwana inaczej metodą prądów cyklicznych polega na wprowadzeniu fikcyjnych (umyślonych) prądów oczkowych (cyklicznych) płynących przez wszystkie gałęzie rozpatrywanego oczka. Za zwrot obiegowy danego oczka przyjmuje się zwrot prądu cyklicznego tego oczka. Układając równanie bilansu napięć oczka należy uwzględnić spadki napięć od wszystkich prądów cyklicznych płynących przez gałęzie rozpatrywanego oczka. Prąd gałęziowy, czyli rzeczywisty prąd płynący przez daną gałąź, jest równy sumie algebraicznej prądów cyklicznych płynących przez gałąź.

52 Metoda prądów oczkowych 5Ω 0Ω 0Ω 0V 5V ( ) ( ) 0 0 ( ) ( ) W rozpatrywanym obwodzie wprowadzamy prądy oczkowe, krążące jak gdyby wzdłuż poszczególnych oczek obwodu. ( ) A A A A A 0,75 0,875,5, , , ) ( poszczególnych oczek obwodu. Najwygodniej jest przyjąć, że zwroty prądów oczkowych są takie same we wszystkich oczkach, na przykład są zgodne z ruchem wskazówek zegara. Prądy w gałęziach zewnętrznych obwodu, tj. w gałęziach nie będących wspólnymi dla dwóch oczek, są równe odpowiednim prądom oczkowym. Prądy w gałęziach wspólnych dla dwóch oczek równają się różnicy odpowiednich prądów oczkowych.

53 Metoda potencjałów węzłowych Metoda analizy obwodów elektrycznych o stałych współczynnikach (liniowych), wynikająca z praw Kirchhoffa. Polega na wprowadzeniu tzw. potencjałów węzłowych, czyli napięć między węzłem odniesienia (0), a pozostałymi węzłami sieci elektrycznej. Przyjęcie potencjałów węzłowych automatycznie powoduje spełnienie napięciowego prawa Kirchhoffa w obwodzie. Pozostają więc do ułożenia równania wynikające z prądowego prawa Kirchhoffa w liczbieilośćwęzłówobwodu-.

54 Metoda potencjałów węzłowych Napięcia każdej gałęzi (fragmentu obwodu między dwoma węzłami) da się zapisać jako różnica potencjałów w węzłach na końcach gałęzi. Przyrównanie tej różnicy do napięcia gałęzi obliczonego za pomocą prądu gałęzi i jej elementów elektrycznych (źródeł, impedancji) daje wzór na prąd gałęzi w zależności od potencjałów na jej końcach. Tak przedstawione prądy gałęzi należy zsumować zgodnie z prądowym prawem Kirchhoffa, dla każdego węzła oprócz węzła (0). Powstanie wówczas układ równań w liczbie (ilość węzłów obwodu - ) na szukane potencjały węzłowe obwodu.

55 ozwiązywanie obwodów metodą potencjałów węzłowych 5Ω 0Ω 0Ω 0V 5V A B V V V V V V V V V V V V A A A A A A A A A A A A Tok obliczeń prądów gałęziowych jest następujący:. Strzałkuje się dowolnie prądy we wszystkich gałęziach obwodu.. Strzałkuje się napięcia (przeciwnie do strzałki prądu) na A A A V V V A A 0,75 0,75 0, ,75,5 5,75 0,75 0 4, Strzałkuje się napięcia (przeciwnie do strzałki prądu) na wszystkich elementach rezystancyjnych obwodu.. Oznacza się potencjały węzłów, przyjmując potencjał jednego dowolnego węzła równy zeru (węzeł odniesienia). 4. Układa się równania węzłowe dla (w-) węzłów obwodu, opuszczając węzeł odniesienia. 5. ozwiązuje się powyższy układ równań ze względu na potencjały węzłowe. 6. Oblicza się napięcia występujące na poszczególnych gałęziach wzorem U kl V k -V l. 7. Prądy gałęziowe wyznacza się z prawa Ohma.

56 Twierdzenie Thevenina Jednym z ważniejszych twierdzeń w teorii obwodów jest twierdzenie Thevenina. Pozwala ono zastąpić złożony obwód elektryczny o dowolnej strukturze i wartościach elementów, przez obwód prosty będący połączeniem szeregowym jednej impedancji zastępczej oraz źródła napięciowego. Umożliwia znaczne uproszczenie struktury obwodu, a w następstwie w bardzo prosty sposób wyznaczyć prąd lub napięcie jednej wybranej gałęzi obwodu.

57 Z AB Z U AB Z Prąd występujący w gałęzi AB obwodu oryginalnego jest równy prądowi w tej samej gałęzi obwodu uproszczonego. Napięcie występujące na rysunku reprezentuje źródło zastępcze, natomiast impedancja jest impedancją zastępczą obwodu. Przy załoŝeniu, Ŝe gałąź AB w której obliczamy prąd, reprezentowana jest przez impedancję, prąd tej gałęzi moŝna obliczyć korzystając z prawa napięciowego Kirchhoffa z którego wynika wyraŝenie na prąd gałęzi w następującej postaci Metoda Thevenina w większości przypadków znakomicie upraszcza analizę obwodu. Jest szczególnie uŝyteczna w przypadkach, w których trzeba wyznaczyć tylko jeden prąd w obwodzie, gdyŝ moŝna dokonać tego bez konieczności rozwiązywania układu równań algebraicznych lub przy znacznej redukcji liczby tych równań.

58 ozwiązywanie obwodu metodą Thevenina A 5Ω 0Ω 0Ω 0V 5V B A w U U AB B ozwieramy U AB zaciski A i B 0 5 U AB 0 5 5V 5 0 Likwidujemyźródła napięa w U w AB Ω ,75 A

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Prąd stały. Prawa, twierdzenia, metody obliczeniowe 42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Celem ćwiczenia jest doświadczalne sprawdzenie praw obowiązujących w obwodach prądu stałego,

Bardziej szczegółowo

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.

Bardziej szczegółowo

Elektrotechnika 2. Stany nieustalone w obwodach elektrycznych: Metoda klasyczna. Kolokwium. Metoda operatorowa. Kolokwium

Elektrotechnika 2. Stany nieustalone w obwodach elektrycznych: Metoda klasyczna. Kolokwium. Metoda operatorowa. Kolokwium Wybrane zagadnienia teorii obwodów Osoba odpowiedzialna za przedmiot (wykłady): dr hab. inż. Ryszard Pałka prof. PS ćwiczenia i projekt: dr inż. Krzysztof Stawicki e-mail: ks@ps.pl w temacie wiadomości

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Prąd elektryczny. 1.1.Pojęcie prądu elektrycznego

Prąd elektryczny. 1.1.Pojęcie prądu elektrycznego Prąd elektryczny 1.1.Pojęcie prądu elektrycznego Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych. Czynnikiem wywołującym ten ruch jest różnica potencjałów, czyli istnienie napięcia.

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego: Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:

Bardziej szczegółowo

XXXIII OOWEE 2010 Grupa Elektryczna

XXXIII OOWEE 2010 Grupa Elektryczna 1. W jakich jednostkach mierzymy natężenie pola magnetycznego: a) w amperach na metr b) w woltach na metr c) w henrach d) w teslach 2. W przedstawionym na rysunku układzie trzech rezystorów R 1 = 8 Ω,

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

średnia droga swobodna L

średnia droga swobodna L PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa

Bardziej szczegółowo

4. OBWODY LINIOWE PRĄDU STAŁEGO 4.1. ŹRÓDŁA RZECZYWISTE

4. OBWODY LINIOWE PRĄDU STAŁEGO 4.1. ŹRÓDŁA RZECZYWISTE OODY I SYGNŁY 1 4. OODY LINIOE PRĄDU STŁEGO 4.1. ŹRÓDŁ RZECZYISTE Z zależności (2.19) oraz (2.20) wynika teoretyczna możliwość oddawania przez źródła idealne do obwodu dowolnie dej mocy chwilowej. by uniknąć

Bardziej szczegółowo

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej

Bardziej szczegółowo

Czego można się nauczyć z prostego modelu szyny magnetycznej

Czego można się nauczyć z prostego modelu szyny magnetycznej Czego można się nauczyć z prostego modelu szyny magnetycznej 1) Hamowanie magnetyczne I B F L m v L Poprzeczka o masie m może się przesuwać swobodnie po dwóch równoległych szynach, odległych o L od siebie.

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Człowiek najlepsza inwestycja

Człowiek najlepsza inwestycja Człowiek najlepsza inwestycja Fizyka ćwiczenia F6 - Prąd stały, pole magnetyczne magnesów i prądów stałych Prowadzący: dr Edmund Paweł Golis Instytut Fizyki Konsultacje stałe dla projektu; od Pn. do Pt.

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna ruge, elgium, May 2005 W-14 (Jaroszewicz) 19 slajdów Indukcja elektromagnetyczna Prawo indukcji Faraday a Indukcja wzajemna i własna Indukowane pole magnetyczna prawo Amper a-maxwella Dywergencja prądu

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Semestr I Elektrostatyka Ocenę dopuszczającą otrzymuje uczeń, który: Wie że materia zbudowana jest z cząsteczek Wie że cząsteczki składają się

Bardziej szczegółowo

Lekcja 3 Temat: Budowa obwodu prądu stałego i jego elementy

Lekcja 3 Temat: Budowa obwodu prądu stałego i jego elementy Lekcja 3 Temat: Budowa obwodu prądu stałego i jego elementy Obwód elektryczny tworzą elementy połączone ze sobą w taki sposób, że istnieje co najmniej jedna droga zamknięta dla przepływu prądu. Odwzorowaniem

Bardziej szczegółowo

średnia droga swobodna L

średnia droga swobodna L PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

Wykładowca: dr inż. Mirosław Mizan - Wydz. Elektrotechniki i Automatyki, Katedra Elektrotechniki Teoretycznej i Informatyki

Wykładowca: dr inż. Mirosław Mizan - Wydz. Elektrotechniki i Automatyki, Katedra Elektrotechniki Teoretycznej i Informatyki ELEKTROTECHNIKA Wykładowca: dr inż. Mirosław Mizan - Wydz. Elektrotechniki i Automatyki, Katedra Elektrotechniki Teoretycznej i Informatyki Dane kontaktowe: budynek główny Wydz. E i A, pok. E-117 (I piętro),

Bardziej szczegółowo

Prąd ą d s t s ały ał

Prąd ą d s t s ały ał Prąd stały Pod względem elektrycznym wszystkie ciała występujące w przyrodzie dzieli się na: przewodniki, izolatory (dielektryki), półprzewodniki. Przewodniki są to ciała, przez które może przepływać prąd

Bardziej szczegółowo

Test 4. 1. (4 p.) 2. (1 p.) Wskaż obwód, który umożliwi wyznaczenie mocy żarówki. A. B. C. D. 3. (1 p.) str. 1

Test 4. 1. (4 p.) 2. (1 p.) Wskaż obwód, który umożliwi wyznaczenie mocy żarówki. A. B. C. D. 3. (1 p.) str. 1 Test 4 1. (4 p.) Na lekcji fizyki uczniowie (w grupach) wyznaczali opór elektryczny opornika. Połączyli szeregowo zasilacz, amperomierz i opornik. Następnie do opornika dołączyli równolegle woltomierz.

Bardziej szczegółowo

10.2. Źródła prądu. Obwód elektryczny

10.2. Źródła prądu. Obwód elektryczny rozdział 10 o prądzie elektrycznym 62 10.2. Źródła prądu. Obwód elektryczny W doświadczeniu 10.1 obserwowaliśmy krótkotrwałe przepływy ładunków elektrycznych w przewodzie łączącym dwa elektroskopy. Żeby

Bardziej szczegółowo

XXXIV OOwEE - Kraków 2011 Grupa Elektryczna

XXXIV OOwEE - Kraków 2011 Grupa Elektryczna 1. Przed zamknięciem wyłącznika prąd I = 9A. Po zamknięciu wyłącznika będzie a) I = 27A b) I = 18A c) I = 13,5A d) I = 6A 2. Prąd I jest równy a) 0,5A b) 0 c) 1A d) 1A 3. Woltomierz wskazuje 10V. W takim

Bardziej szczegółowo

1. Obwody prądu stałego

1. Obwody prądu stałego Obwody prądu stałego 3 1. Obwody prądu stałego 1.1. Źródła napięcia i źródła prądu. Symbol źródła pokazuje rys. 1.1. Pokazane źródła są źródłami idealnymi bezrezystancyjnymi i charakteryzują się jedynie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia zna pojęcia pracy

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Obliczanie i pomiary parametrów obwodu prądu stałego 724[01]O1.02

Obliczanie i pomiary parametrów obwodu prądu stałego 724[01]O1.02 MINISTERSTWO EDUKACJI NARODOWEJ Barbara Kapruziak Obliczanie i pomiary parametrów obwodu prądu stałego 724[01]O1.02 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji Państwowy Instytut Badawczy

Bardziej szczegółowo

R o z d z i a ł 9 PRĄD ELEKTRYCZNY

R o z d z i a ł 9 PRĄD ELEKTRYCZNY R o z d z i a ł 9 PRĄD ELEKTRYCZNY 9.1. Natężenie prądu elektrycznego Przez przepływ prądu elektrycznego rozumiemy ruch ładunków elektrycznych. Czynnikiem wywołującym ten ruch jest istnienie napięcia,

Bardziej szczegółowo

Wymagania edukacyjne fizyka kl. 3

Wymagania edukacyjne fizyka kl. 3 Wymagania edukacyjne fizyka kl. 3 Wymagania na poszczególne oceny konieczne podstawowe rozszerzające dopełniające dopuszczająca dostateczna dobra bardzo dobra Rozdział 1. Elektrostatyka wymienia dwa rodzaje

Bardziej szczegółowo

Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013

Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013 Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013 Lp. Temat lekcji Uszczegółowienie treści Wymagania na ocenę dopuszczającą

Bardziej szczegółowo

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH Ć w i c z e n i e 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH. Wiadomości ogólne Prostowniki są to urządzenia przetwarzające prąd przemienny na jednokierunkowy. Prostowniki stosowane są m.in. do ładowania akumulatorów,

Bardziej szczegółowo

BADANIE WYŁĄCZNIKA SILNIKOWEGO

BADANIE WYŁĄCZNIKA SILNIKOWEGO BADANIE WYŁĄCZNIKA SILNIKOWEGO Z WYZWALACZEM BIMETALOWYM Literatura: Wprowadzenie do urządzeń elektrycznych, Borelowski M., PK 005 Elektrotechnika i elektronika dla nieelektryków, Hempowicz P i inni, WNT

Bardziej szczegółowo

Temat: PODSTAWY PRZETWARZANIA ENERGII W ODNAWIALNYCH ŹRÓDŁA ENERGII

Temat: PODSTAWY PRZETWARZANIA ENERGII W ODNAWIALNYCH ŹRÓDŁA ENERGII Temat: PODSTAWY PRZETWARZANIA ENERGII W ODNAWIALNYCH ŹRÓDŁA ENERGII 1. Przetwarzanie (wytwarzanie) energii elektrycznej 2. Podział źródeł energii 3. Podstawowe pojęcia z dziedziny elektryczności 1 WYTWARZANIE

Bardziej szczegółowo

6. Oryginalny bezpiecznik można w razie potrzeby zastąpić kawałkiem grubego drutu. a) prawda, b) fałsz. 8. Przyrządem do pomiaru napięcia jest:...

6. Oryginalny bezpiecznik można w razie potrzeby zastąpić kawałkiem grubego drutu. a) prawda, b) fałsz. 8. Przyrządem do pomiaru napięcia jest:... 1. Jeśli obojętnej elektrycznie kulce odbierzemy część elektronów, stanie się ona naelektryzowana:.. 2. Powłoki elektronowe atomu tlenu zawierają 8 elektronów. Ile protonów zawiera jądro tlenu?... 3. Przedstaw

Bardziej szczegółowo

ĆWICZENIE 66 BADANIE SPRAWNOŚCI GRZEJNIKA ELEKTRYCZNEGO

ĆWICZENIE 66 BADANIE SPRAWNOŚCI GRZEJNIKA ELEKTRYCZNEGO ĆWICZENIE 66 BADANIE SPRAWNOŚCI GRZEJNIKA EEKTRYCZNEGO Wprowadzenie Uporządkowany ruch ładunków nazywamy prądem elektrycznym. Warunkiem koniecznym przepływu prądu jest obecność nośników (ładunków elektrycznych)

Bardziej szczegółowo

Plan wynikowy. Elektrostatyka (6-7 godz. + 2 godz. (łącznie) na powtórzenie materiału (podsumowanie działu) i sprawdzian) R treści nadprogramowe

Plan wynikowy. Elektrostatyka (6-7 godz. + 2 godz. (łącznie) na powtórzenie materiału (podsumowanie działu) i sprawdzian) R treści nadprogramowe Plan wynikowy Plan wynikowy (propozycja), obejmujący treści nauczania zawarte w podręczniku Spotkania z fizyką, część 3" (a także w programie nauczania), jest dostępny na stronie internetowej www.nowaera.pl

Bardziej szczegółowo

AC/DC. Jedno połówkowy, jednofazowy prostownik

AC/DC. Jedno połówkowy, jednofazowy prostownik AC/DC Przekształtniki AC/DC można podzielić na kilka typów, mianowicie: prostowniki niesterowane; prostowniki sterowane. Zależnie od stopnia skomplikowania układu i miejsca przyłączenia do sieci elektroenergetycznej

Bardziej szczegółowo

PODSTAWOWE WIADOMOŚCI O PRĄDZIE ELEKTRYCZNYM

PODSTAWOWE WIADOMOŚCI O PRĄDZIE ELEKTRYCZNYM PODSTAWOWE WADOMOŚC O PĄDZE ELEKTYCZNYM. Co to jest prąd elektryczny? Prąd elektryczny polega na uporządkowanym ruchu nośników ładunku elektrycznego. Nie należy jednak sobie wyobrażać, że gdy płynie w

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 02 Analiza obwodów prądu stałego Źródło napięciowe Idealne źródło napięciowe jest dwójnikiem, na którego zaciskach

Bardziej szczegółowo

Temat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia.

Temat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia. Temat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia. Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą wykonuje

Bardziej szczegółowo

Finał IV edycji konkursu ELEKTRON zadania ver.0

Finał IV edycji konkursu ELEKTRON zadania ver.0 ul. Janiszewskiego 11/17, 50-372 Wrocław www.wemif.pwr.wroc.pl www.wemif.pwr.wroc.pl/elektron.dhtml Finał IV edycji konkursu ELEKTRON zadania ver.0 1. Połącz w pary: A. Transformator B. Prądnica C. Generator

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie

Bardziej szczegółowo

Badanie obwodów prądu stałego 312[02].O1.03

Badanie obwodów prądu stałego 312[02].O1.03 MINISTERSTWO EDUKACJI NARODOWEJ Barbara Kapruziak Badanie obwodów prądu stałego 312[02].O1.03 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji Państwowy Instytut Badawczy Radom 2007 Recenzenci:

Bardziej szczegółowo

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Maszyny elektryczne Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział maszyn elektrycznych Transformatory - energia prądu przemiennego jest zamieniana w energię

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA

INDUKCJA ELEKTROMAGNETYCZNA Wstęp INDKCJA ELEKTROMAGNETYCZNA Zajęcia wyrównawcze, Częstochowa, 009/00 Ewa Jakubczyk Michalel Faraday (79-867) odkrył w 83roku zjawisko indukcji elektromagnetycznej. Oto pierwsza prądnica -generator

Bardziej szczegółowo

OPORNIKI POŁĄCZONE SZEREGOWO: W połączeniu szeregowym rezystancja zastępcza jest sumą poszczególnych wartości:

OPORNIKI POŁĄCZONE SZEREGOWO: W połączeniu szeregowym rezystancja zastępcza jest sumą poszczególnych wartości: REZYSTOR Opornik (rezystor) najprostszy, rezystancyjny element bierny obwodu elektrycznego. Jest elementem liniowym: spadek napięcia jest wprost proporcjonalny do prądu płynącego przez opornik. Przy przepływie

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000 SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁ AD ELEKTROENERGETYKI Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW WIROWYCH Opracował: mgr inż. Edward SKIEPKO Warszawa 000 Wersja 1.0 www.labenergetyki.prv.pl

Bardziej szczegółowo

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Maszyny elektryczne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Podział maszyn elektrycznych Transformatory - energia prądu przemiennego jest zamieniana w

Bardziej szczegółowo

6. Zamiana energii elektrycznej w ciepło

6. Zamiana energii elektrycznej w ciepło Cel ćwiczenia: 6. Zamiana energii elektrycznej w ciepło Dr inŝ. Dorota Nowak-Woźny Zapoznanie z metodami grzania rezystancyjnego pośredniego i bezpośredniego oraz ich zastosowaniami w przemyśle. Wyznaczenie

Bardziej szczegółowo

Prąd i opór elektryczny

Prąd i opór elektryczny Prąd i opór elektryczny Prąd elektryczny to przepływ ładunków elektrycznych Ilustracją jest rysunek przedstawiający strumieo ładunków płynących prostopadle do powierzchni A Natężenie prądu elektrycznego

Bardziej szczegółowo

Rys. 1 Schemat układu L 2 R 2 E C 1. t(0+)

Rys. 1 Schemat układu L 2 R 2 E C 1. t(0+) Autor: Piotr Fabijański Koreferent: Paweł Fabijański Zadanie Obliczyć napięcie na stykach wyłącznika S zaraz po jego otwarciu, w chwili t = (0 + ) i w stanie ustalonym, gdy t. Do obliczeń przyjąć następujące

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury

Bardziej szczegółowo

Klasyczny efekt Halla

Klasyczny efekt Halla Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp

Bardziej szczegółowo

4. SPRZĘGŁA HYDRAULICZNE

4. SPRZĘGŁA HYDRAULICZNE 4. SPRZĘGŁA HYDRAULICZNE WYTYCZNE PROJEKTOWE www.immergas.com.pl 26 SPRZĘGŁA HYDRAULICZNE 4. SPRZĘGŁO HYDRAULICZNE - ZASADA DZIAŁANIA, METODA DOBORU NOWOCZESNE SYSTEMY GRZEWCZE Przekazywana moc Czynnik

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

Algorytm obliczania charakterystycznych wielkości prądu przy zwarciu trójfazowym (wg PN-EN 60909-0:2002)

Algorytm obliczania charakterystycznych wielkości prądu przy zwarciu trójfazowym (wg PN-EN 60909-0:2002) Andrzej Purczyński Algorytm obliczania charakterystycznych wielkości prądu przy zwarciu trójfazowym (wg PN-EN 60909-0:00) W 10 krokach wyznaczane są: prąd początkowy zwarciowy I k, prąd udarowy (szczytowy)

Bardziej szczegółowo

Moc (praca w jednostce czasu) pobierana przez urządzenie elektryczne wynosi:

Moc (praca w jednostce czasu) pobierana przez urządzenie elektryczne wynosi: Ćwiczenie POMIARY MOCY. Wprowadzenie Moc (praca w jednostce czasu) pobierana przez urządzenie elektryczne wynosi: P = U I (.) Jest to po prostu (praca/ładunek)*(ładunek/czas). Dla napięcia mierzonego w

Bardziej szczegółowo

I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I

I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I C ZĘŚĆ I I I Podręcznik dla nauczycieli klas III liceum ogólnokształcącego i

Bardziej szczegółowo

Badanie układów elektrycznych i elektronicznych 315[01].O3.01

Badanie układów elektrycznych i elektronicznych 315[01].O3.01 MINISTERSTWO EDUKACJI NARODOWEJ Józef Butkowski Badanie układów elektrycznych i elektronicznych 315[01].O3.01 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji Państwowy Instytut Badawczy Radom

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Oddziaływanie wirnika

Oddziaływanie wirnika Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

teoretyczne podstawy działania

teoretyczne podstawy działania Techniki Niskotemperaturowe w medycynie Seminarium Termoelektryczne urządzenia chłodnicze - teoretyczne podstawy działania Edyta Kamińska IMM II st. Sem I 1 Spis treści Termoelektryczność... 3 Zjawisko

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe . Czas trwania: h lementy elektroniczne i przyrządy pomiarowe. Cele ćwiczenia Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem itp. Nabycie umiejętności

Bardziej szczegółowo

Wykłady z Fizyki. Elektromagnetyzm

Wykłady z Fizyki. Elektromagnetyzm Wykłady z Fizyki 08 Zbigniew Osiak Elektromagnetyzm OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW

WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW POLTECHNKA WARSZAWSKA NSTYTUT RADOELEKTRONK ZAKŁAD RADOKOMUNKACJ WECZOROWE STUDA ZAWODOWE LABORATORUM OBWODÓW SYGNAŁÓW Ćwiczenie 1 Temat: OBWODY PRĄDU STAŁEGO Opracował: mgr inż. Henryk Chaciński Warszawa

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Teoria Pola Elektromagnetycznego

Teoria Pola Elektromagnetycznego Teoria Pola Elektromagnetycznego Wykład 3 Pole elektryczne w środowisku przewodzącym 19.05.2006 Stefan Filipowicz 3.1. Prąd i gęstość prądu przewodzenia Jeżeli w przewodniku istnieje pole elektryczne,

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Wzmacniacz jako generator. Warunki generacji

Wzmacniacz jako generator. Warunki generacji Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego

Bardziej szczegółowo

TEST DLA GRUPY ELEKTRYCZNEJ

TEST DLA GRUPY ELEKTRYCZNEJ XXXV Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej 29-30.03.2012 Wałbrzych TEST DLA GRUPY ELEKTRYCZNEJ WYJAŚNIENIE: Przed przystąpieniem do udzielenia odpowiedzi przeczytaj uważnie tekst.

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Obwody elektryczne Jacek.Szczytko@fuw.edu.pl

Obwody elektryczne Jacek.Szczytko@fuw.edu.pl Obwody elektryczne Jacek.Szczytko@fuw.edu.pl 1. Podstawowe pojęcia ładunek elektryczny - wyrażamy w kulombach [C] (analogia hydrodynamiczna: masa wody) Źródło: np. Wikipedia! natężenie prądu I wyrażamy

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna Rozdział 6 ndukcja elektromagnetyczna 6.1 Zjawisko indukcji elektromagnetycznej 6.1.1 Prawo Faraday a i reguła Lenza W rozdziale tym rozpatrzymy niektóre zagadnienia, związane ze zmiennymi w czasie polami

Bardziej szczegółowo

Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAZOWYCH

Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAZOWYCH Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAOWYCH Celem ćwiczenia jest poznanie własności odbiorników trójfazowych symetrycznych i niesymetrycznych połączonych w trójkąt i gwiazdę w układach z przewodem neutralnym

Bardziej szczegółowo

Ćwiczenie 3 Sporządzanie Charakterystyk Triody

Ćwiczenie 3 Sporządzanie Charakterystyk Triody WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA Ćwiczenie 3 Sporządzanie Charakterystyk Triody POJĘCIA I

Bardziej szczegółowo

Elektryczność i magnetyzm cz. 2 powtórzenie 2013/14

Elektryczność i magnetyzm cz. 2 powtórzenie 2013/14 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Czajnik elektryczny o mocy 1000 W pracuje przez 5 minut. Oblicz, ile energii elektrycznej uległo przemianie w inne formy energii. Zadanie

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY. Podstawowe właściwości wzmacniaczy operacyjnych. Rodzaj wzmacniacza Rezystancja wejściowa Rezystancja wyjściowa

WZMACNIACZ OPERACYJNY. Podstawowe właściwości wzmacniaczy operacyjnych. Rodzaj wzmacniacza Rezystancja wejściowa Rezystancja wyjściowa WZMACNIACZ OPEACYJNY kłady aktywne ze wzmacniaczami operacyjnymi... Podstawowe właściwości wzmacniaczy operacyjnych odzaj wzmacniacza ezystancja wejściowa ezystancja wyjściowa Bipolarny FET MOS-FET Idealny

Bardziej szczegółowo

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Pole magnetyczne jest nierozerwalnie związane z polem elektrycznym. W zależności

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 26 lutego 2010 r. zawody II stopnia (rejonowe) Schemat punktowania zadań

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 26 lutego 2010 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 6 lutego 00 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Uwaga!. Za poprawne rozwiązanie zadania

Bardziej szczegółowo