SPIS TREŚCI 2 SPIS TREŚCI REFORMA TEMAT NUMERU NAUCZANIE MATEMATYKI MATERIAŁY ZOSTATNIEJŁAWKI. Danuta Buniecka: Fizyka z plusem przetestowana...
|
|
- Helena Wiktoria Owczarek
- 8 lat temu
- Przeglądów:
Transkrypt
1
2 SPIS TREŚCI REFORMA Danuta Buniecka: Fizyka z plusem przetestowana... 3 TEMAT NUMERU Agnieszka Ciesielska: Cenność bryły... 4 Iwona Goslar: Figury przestrzenne w zabytkach... 6 Maria Sierocka: Cotojestlitr?... 8 Agnieszka Ciesielska: Ostrosłup na topie... 9 Elżbieta Kowalczyk: Niejedno zadanie o zwykłym sześcianie Jarosław Szydełko: Diaskop na matematyce Roman Bukurski: Jedenaście siatek sześcianu NAUCZANIE MATEMATYKI Zofia Zyzak: Równania z kredek Barbara Gniewosz: Walec i stożek w życiu codziennym Klasa patronacka Matematyki z plusem Aleksandra Grabowska: Dwa sposoby kształtowania intuicji Halina Kolak: Dowodzimy tw. Pitagorasa Anna Bołtuć: Planowanie urlopu Zadania Tomka Renata Baraniak: Poleświecznika Gabriela Chudobska: Tabliczka mnożenia Joanna Marszałek: Konkurs Zagadka Matematołka Danuta Buniecka: Energia na matematyce Agnieszka Piecewska-Łoś: Trzynaście ksiąg Gabriela Wencel: Jak oceniam słabszych uczniów Mam pomysł Jacek Lech: ListzAmeryki Listy MATERIAŁY Sprawdzian dla szóstoklasistów ZOSTATNIEJŁAWKI Matematołkowa poczta SPIS TREŚCI
3 Agnieszka Ciesielska Cenność bryły Czyli o problemach z geometrią przestrzenną. Taki sobie wzór Cenność bryły (C) obliczamy, mnożąc jej wat (w) przez liczbę krawędzi (k) i dzieląc w wypadku ostrosłupa przez 3, graniastosłupa przez 2, a innej bryły przez 7. Ile wynosi cenność graniastosłupa prawidłowego trójkątnego o wacie 5zł? C =5 9:2=22, 50 (zł). Tyle, że... nie mam pojęcia, co to jest wat i cenność bryły. Ale czy to w czymkolwiek przeszkadza? Obawiam się, że dla wielu uczniów, zwłaszcza w szkole podstawowej, zadania ze stereometrii niewiele się różnią od przytoczonego wyżej. Podajemy jakieś tajemnicze liczby i za ich pomocą każemy obliczyć jakąś inną liczbę, równie oderwaną od rzeczywistości. Trzeba tylko uważać, żeby nie pomylić wzorów. W gimnazjum jest troszeczkę lepiej. Uczniowie muszą nieraz samodzielnie wyliczać z twierdzenia Pitagorasa pewne długości, więc nie mogą być one zupełną abstrakcją. Dużo czy mało Nawet ci uczniowie, którzy rozumieją pojęcie wysokości, pola podstawy, objętości, otrzymują liczby, które nic im nie mówią, np. 50 cm 3. Pięćdziesiąt to spora liczba. Pięćdziesiąt centymetrów pół metra. Czy którykolwiek z uczniów ma świadomość, że 50 cm 3 to niecałe ćwierć szklanki? Gdy mówimy o polach powierzchni figur płaskich, rozpoczynamy od wypełniania figur centymetrami kwadratowymi. Następnie obliczamy pola narysowanych prostokątów czy trójkątów, niekiedy zaczynając od zmierzenia potrzebnych długości. Dopiero potem pojawiają się zadania, w których mowa o jakiejś wymyślonej figurze. Jak ważne są dla uczniów narysowane figury, widać, gdy część klasy traktuje szkic w podręczniku jak figurę, o której mowa, i chce mierzyć potrzebne długości, zamiast znaleźć je w treści zadania lub obliczyć. W geometrii przestrzennej nie ma zadań typu zmierz i oblicz. Od razu pojawia się obliczanie np. objętości bryły o podanych wymiarach, której żaden z uczniów nie widział na oczy. A przecież objętości czy pola powierzchni figur przestrzennych powinniśmy obliczać dla brył, które uczeń widzinacodzień modelizpracowni matematycznej, szafy stojącej w klasie, puszki po mące. Jeśli obliczenia są zbyt skomplikowane, to po prostu użyjmy kalkulatora. Dobrym ćwiczeniem jest również szacowanie objętości (pojemności) różnych przedmiotów. Pomiary i przybliżone obliczenia dokonywane w celu sprawdzenia dokładności szacowania mogą uczniów więcej nauczyć o obliczaniu objętości niż cała seria podręcznikowych zadań. Płasko czy przestrzennie Popatrzmy na przedstawiony na następnej stronie rysunek. Co na nim widać? Oczywiście siatkę i szkic sześcianu? A może krzyż z kwadratów i sześciokąt z dziwną plątaniną linii 4 TEMAT NUMERU
4 w środku? Czy potrafią Państwo właśnie tak spojrzeć na te rysunki? Niełatwo, prawda? Równie ciężko jest czwartoklasistom zobaczyć powyższe figury tak, jak my je widzimy. Może jeszcze widzą tę kostkę na drugim rysunku. Ale spojrzeć na pierwszy rysunek jak na potencjalny sześcian, wyobrazić sobie, które kwadraty do których będą przylegać to naprawdę dużo pracy. O dzieciach, dla których takie operacje długo stanowią problem, mówimy, że nie mają wyobraźni przestrzennej. A może po prostu miały zbyt mało okazji do operowania modelami? Modele, modele Byłoby idealnie, gdyby każdy uczeń miał na ławce zestaw brył. Słabszy uczeń powinien mieć tych brył więcej i przez dłuższy czas, aby w wypadku wątpliwości mógł dotknąć, obrócić, sprawdzić, policzyć wierzchołki i krawędzie. W praktyce oczywiście czasem dajemy modele uczniom, ale ci najsłabsi starają się być od nich jak najdalej (a nuż padnie jakieś pytanie?). I kłopoty ze stereometrią rosną... Co gorsza, im starszy uczeń, tym trudniej o dobre modele. W czwartej klasie nie ma kłopotów niemal każde pudełko to model prostopadłościanu, o sześcian też nie jest zbyt trudno. Później jest coraz gorzej. Jeszcze dość łatwo jest zrobić model graniastosłupa, przy ostrosłupie trzeba się już trochę napracować, a kulę wpisaną w stożek możemy tylko kupić w fabryce pomocy naukowych. Może więc odwrócić problem i zamiast martwić się o modele skomplikowanych brył, lepiej wykonywać wiele różnorodnych ćwiczeń na sześcianach czy prostopadłościanach? Umiejętności tak nabyte na pewno przydadzą się później. Pomysły na rozwijanie wyobraźni przestrzennej Dobrym ćwiczeniem jest na przykład rysowanie rzutów budowli złożonej z kilku prostopadłościanów albo budowanie jej na podstawie rzutów. W podręcznikach niestety nie ma zbyt wielu takich ćwiczeń, możemy jednak wykorzystać pomysłowość uczniów. Jeśli pokażemy im przykład, mogą zadawać sobie nawzajem różne pytania. Na ogół wtedy bardzo dobrze stopniują ich trudność. Lekcja może mieć formę ćwiczeń w parach lub konkursu między grupami. Takie zajęcia możemy przeprowadzać w dowolnym momencie w pierwszy dzień wiosny, w Dzień Dziecka albo gdy klasa jest po trudnej klasówce więc wiadomo, że i tak się nie skupi. Ważne jest, aby uczniowie mieli pod ręką modele, bo wtedy sami mogą sprawdzać poprawność rozwiązania. Mogą ponadto pomagać sobie modelami, gdy zadanie jest zbyt trudne do rozwiązania w wyobraźni. Takie zajęcia wciągają wszystkich, zarówno zdolnych, jak i najsłabszych. Uczniowie cieszą się, że mają luźną lekcję, a my będziemy zbierać plony, gdy przyjdzie czas na poważną stereometrię. TEMAT NUMERU 5
5 Zofia Zyzak Równania z kredek Wprowadzamy metodę przeciwnych współczynników. Do lekcji należy przygotować kilka szablonów kredek w dwóch rozmiarach i kolorach. Rozpoczynamy od prostego zadania: Szara i niebieska kredka mają razem 8 cm długości. Jedna kredka szara i dwie niebieskie mają długość 10 cm. Jaka jest długość każdej kredki? Uczniowie zapisują treść zadania w postaci układu równań, a ja przedstawiam je za pomocą szablonów na tablicy. Szablony zrobione są z kolorowych kartonów, mocuję je magnesami na metalowej tablicy. Szablony układam w ten sposób (jeden dokładnie pod drugim), aby można było od razu odczytać długość niebieskiej kredki, pod spodem natomiast rysuję kredą linię pokazującą długość. x długość szarej kredki y długość niebieskiej kredki { x + y =8 x +2y =10 y =10 8=2 x =8 2=6 Uczniowie mogą łatwo zauważyć, że jedna niebieska kredka ma 2 cm długości, a długość drugiej wynosi 6 cm. Rozwiązujemy następne zadanie: Kredka szara i niebieska mają razem 10 cm, a szara i cztery niebieskie mają razem 19 cm długości. Jaką długość ma każda kredka? Zapisujemy układ równań oraz układamy szablony: a długość szarej kredki b długość niebieskiej kredki { a + b =10 a +4b =19 3b =19 10 = 9 b =3 a =10 3=7 Skoro trzy krótsze kredki mają razem 9 cm, to jedna musi mieć 3 cm. Dłuższa kredka ma więc 7 cm. Po tych przykładach uczniowie powinni już zauważyć, że rozwiązywanie tego typu układów odpowiada odejmowaniu równań stronami. Rozwiązujemy kolejne zadanie: Szara i niebieska kredka mają razem 12 cm, trzy szare kredki i pięć niebieskich mają w sumie 40 cm. Jaka jest długość każdej kredki? 18 GRAFICZNE ROZWIĄZYWANIE ZADAŃ
6 Zapisujemy układ równań i układamy szablony. s długość szarej kredki n długość niebieskiej kredki { s + n =12 3s +5n =40 Uczniowie podają ( burza mózgów ) sposoby postępowania. Wspólnie ustalamy, że należy pierwsze równanie doprowadzić do takiej postaci, aby można było układ rozwiązać podobnie, jak dwa pierwsze. Osiągamy to, mnożąc je stronami przez 3, co odpowiada na rysunku zestawieniu trzech kompletów (komplet to kredka szara i kredka niebieska). { 3s +3n =36 3s +5n =40 2n =4 n =2 s =10 Uczniowie teraz już łatwo zauważą, że dwie małe niebieskie kredki mają długość 4 cm, czyli jedna ma 2 cm (szara ma 10 cm). Teraz formułujemy zasadę postępowania w takich przypadkach mnożymy obie strony jednego równania tak, aby w obu równaniach przy tej samej niewiadomej były te same współczynniki (tasamaliczbakredek). W miarę potrzeb i czasu można rozwiązać kilka takich prostych układów ułożonych przez uczniów. Rozwiążmy teraz takie zadanie: Kredka szara i trzy kredki niebieskie mają 13 cm długości. Kredka szara jest o 5 cm dłuższa od niebieskiej. Jaka jest długość każdej kredki? d długość szarej kredki k długość niebieskiej kredki d +3k =13 d k =5 3k + k =8 4k =8 k =2 Zauważamy, że skoro cztery niebieskie kredki mają długość 8 cm, to jednamadługość2cm.szaramawięc 7cm. Pokazujemy teraz uczniom, że odejmowanie stronami [3k ( k) =3k+ +k =4k], gdy współczynniki są ujemne, może być uciążliwe. Dlatego aby ułatwić sobie obliczenia, dążymy do sytuacji, w której przy jednej niewiadomej byłyby przeciwne współczynniki, wtedy odejmowanie stronami zastępujemy dodawaniem. Uczniowie na lekcji prowadzonej w ten sposób sami formułują zasady postępowania obowiązujące przy stosowaniu metody przeciwnych współczynników, rozumieją, skąd się taka metoda wzięła, uczą się wnioskowania oraz uogólniania. Nawet słabsi z nich potrafią sobie poradzić z rozwiązywaniem prostych układów równań za pomocą rysunków. GRAFICZNE ROZWIĄZYWANIE ZADAŃ 19
7 Konkursy W numerze trzynastym na podstawie rysunków do zagadki Matematołka należało odgadnąć pojęcia matematyczne: Figury przystające oraz Trójka pitagorejska. Spośród uczestników konkursu wylosowaliśmy dwie panie: Magdę Dąbrowską z Warszawy i Wiolettę Walichnowską z Poznania, które otrzymują Astronomię Dinah L. Moche. Gratulujemy wygranej! Niektórzy z Państwa przysyłają własne propozycje zagadek. Jedną z nich autorstwa pana Jacka Cackowskiego prezentujemy w tym numerze, za wszystkie bardzo dziękujemy. Podziękowanie Organizatorzy konkursu matematycznego dla klas IV Muszelka serdecznie dziękują firmie CASIO za ufundowanie atrakcyjnych nagród w postaci kalkulatorów. Matematyka w Szkole Czasopismo dla nauczycieli szkół podstawowych i gimnazjów Adres redakcji: Gdańsk, ul. Trzy Lipy 3, tel. (58) w. 180 fax (58) w. 111 Dział sprzedaży: tel Adres do korespondencji: Matematyka w Szkole Czasopismo dla nauczycieli szkół podstawowych i gimnazjów skr. poczt Gdańsk 52 gazetamws@gwo.com.pl Redaktor naczelny: Marcin Braun Wydawca: Gdańskie Wydawnictwo Oświatowe, Gdańsk, ul. Trzy Lipy 3 Redaguje kolegium: Marcin Braun Agnieszka Ciesielska Aleksandra Golecka Marcin Karpiński Joanna Kniter Jacek Lech Michał Stukow Projekt graficzny, okładka, ilustracje: Sławomir Kilian Skład: Maria Chojnicka Zdjęcie na okładce: Magda Saja Druk i oprawa: Stella Maris Nakład: 6000 egz. 48 TEMAT NASTĘPNEGO NUMERU: PRACA W GRUPACH
8
ROZKŁAD MATERIAŁU DLA KLASY VI SZKOŁY PODSTAWOWEJ
ROZKŁAD MATERIAŁU DLA KLASY VI SZKOŁY PODSTAWOWEJ Prezentowany rozkład materiału jest zgodny z nową podstawą programową z 3 grudnia 008 r., obowiązującą w klasie IV od roku szkolnego 0/03 oraz stanowi
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:17.04.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016
Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.
w najprostszych przypadkach, np. dla trójkątów równobocznych
MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu
SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:15.05.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ Nauczyciel: Małgorzata Drejka Gimnazjum nr 4 w Legionowie, klasa I F, zajęcia edukacyjne: matematyka Data: 12.06.2006. Cel główny: Obserwacja osiągniętego poziomu sprawności
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. Ocena niedostateczna. Zna nazwy argumentów działań Pamięciowo i pisemnie wykonuje każde z czterech działań na liczbach
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Jak obracać trójkąt, by otrzymać bryłę o największej. objętości?
Jak obracać trójkąt, by otrzymać bryłę o największej objętości? Czas trwania zajęć: 40 minut Kontekst w jakim wprowadzono doświadczenie: Trójkąt o bokach długości: cm, 4 cm, 5 cm obrócono o kąt 60 o w
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
SPIS TREŚCI SPIS TREŚCI 1 TEMAT NUMERU NAUCZANIE MATEMATYKI MATERIAŁY ZOSTATNIEJŁAWKI
SPIS TREŚCI TEMAT NUMERU Marcin Braun: Zadania bez danych... 3 Metoda projektu cz. 1... 4 Urszula Kaprusiak: Biwak na każdą kieszeń... 7 Robert Kowalski: Remontujemy mieszkanie... 10 Agnieszka Ciesielska:
Plan wynikowy, klasa 3 ZSZ
Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI
Ewa Koralewska LP..... 5... OGÓLNA PODSTA- WA PROGRA- MOWA PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Potęga
Wymagania dla klasy szóstej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: Mnożenie ułamków zwykłych
Wymagania dla klasy szóstej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: Mnożenie ułamków zwykłych Dzielenie ułamków zwykłych Liczby całkowite na osi liczbowej Dodawanie liczb całkowitych
Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
Wymagania edukacyjne z matematyki : Matematyka z plusem GWO
klasy Ewy Pakulskiej Wymagania edukacyjne z matematyki : Matematyka z plusem GWO KLASA IV Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych.
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania
GEOPLAN Z SIATKĄ TRÓJKĄTNĄ
TEMAT NUMERU 9 GEOPLAN Z SIATKĄ TRÓJKĄTNĄ Marzenna Grochowalska W Matematyce w Szkole wiele miejsca poświęcono geoplanom z siatką kwadratową oraz ich zaletom 1. Równie ciekawą pomocą dydaktyczną jest geoplan
Plan wynikowy klasa 3. Zakres podstawowy
Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA
KONSPEKT do przeprowadzenia lekcji matematyki
Zespół Szkół im A. Mickiewicza we Wręczycy Wielkiej Szkoła Podstawowa Przedmiot: Matematyka, klasa VI b. Podręcznik: Matematyka wokół nas Prowadzący: mgr Ewa Mika KONSPEKT do przeprowadzenia lekcji matematyki
XXI Konferencja SNM UKŁADY RÓWNAŃ. Kilka słów o układach równań.
1 XXI Konferencja SNM UKŁADY RÓWNAŃ Piotr Drozdowski (Józefów), piotr.trufla@wp.pl Krzysztof Mostowski (Siedlce), kmostows@o.pl Kilka słów o układach równań. Streszczenie. 100 układów równań w 5 min, jak
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
wymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:05.03.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn
Osiągnięcia ponadprzedmiotowe
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych
Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe KONIECZNE( 2) PODSTAWOWE (3) ROZSZERZAJĄCE (4) DOPEŁNIAJACE
Katalog wymagań na poszczególne stopnie szkolne klasa 3
Katalog wymagań na poszczególne stopnie szkolne klasa 3 Katalog wymagań jest dostosowany do podręcznika, należącego do obudowy programu nauczania Gimnazjum. Materiał ten może ułatwić nauczycielowi planowanie
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
Osiągnięcia ponadprzedmiotowe. Osiągnięcia przedmiotowe
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu matematycznym
WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE
WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE I. Szkolne zasady oceniania i sposoby sprawdzania osiągnięć edukacyjnych 1. Ocenianie ma charakter systematyczny i wieloaspektowy.
Wymagania edukacyjne z matematyki w klasie III gimnazjum
Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych
DZIAŁ II: PIERWIASTKI
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w II klasie gimnazjum w roku szkolnym 2016/2017 Wymagania edukacyjne dostosowane do obowiązującej
Katalog wymagań na poszczególne stopnie szkolne klasa 3
Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,
Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: IV 67 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi:
1 Copyright by Wydawnictwa Szkolne i Pedagogiczne, Warszawa 2017 Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: czytać teksty
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017
NAUCZYCIEL: edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 mgr Dorota Maj PODRĘCZNIK: Liczy się matematyka WYD. WSiP Na lekcjach matematyki
Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym
14 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 3 uczeń potrafi: czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji nowych treści W rezultacie
Wymagania edukacyjne z matematyki dla kl. VI
Wymagania edukacyjne z matematyki dla kl. VI Semestr I Wymagane wiadomości i umiejętności (uczeń zna, umie, potrafi) na ocenę: dopuszczającą: nazwy argumentów działań algorytmy czterech działań pisemnych
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
Kryteria ocen z matematyki dla klasy III gimnazjum. Osiągnięcia przedmiotowe
umiejętności konieczne ocena dopuszczający umiejętności podstawowe ocena dostateczny umiejętności rozszerzające ocena dobry umiejętności dopełniające ocena bardzo dobry umiejętności wykraczające ocena
PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA
PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA Cele kształcenia i treści nauczania reguluje podstawa programowa przedmiotu, zatwierdzona przez właściwego ministra dla II etapu
1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
Wymagania edukacyjne z matematyki w klasach IV
Wymagania edukacyjne z matematyki w klasach IV Program nauczania: Matematyka z plusem Gdańskie Wydawnictwo Oświatowe Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu roku: 130 Matematyka
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,
Rozkład materiału nauczania z matematyki dla klasy V
Rozkład materiału nauczania z matematyki dla klasy V Lp. Temat lekcji uwagi D Lekcja organizacyjna. Zapoznanie uczniów z programem nauczania oraz systemem oceniania. LICZBY NATURALNE 1-22 1. Liczba, a
Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14
I. FUNKCJE 1 Podstawowe Ponadpodstawowe grupuje dane elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowa opisanych słownie lub za pomocą grafu
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria
1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
Wymagania na poszczególne oceny szkolne KLASA VI
Matematyka Matematyka z pomysłem Klasa Szkoła podstawowa Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych.
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 12
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 12 Zadanie domowe Jednoznaczność. Uogólnienie. Liniowe równanie diofantyczne. Zadanie domowe Pojęcie kąta
Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)
Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW
Test na koniec nauki w klasie trzeciej gimnazjum
3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE
WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów
WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.
MATEMATYKA ROZPOZNAWANIE FIGUR PRZESTRZENNYCH
SCENARIUSZ LEKCJI PRZEDMIOT: MATEMATYKA TEMAT: ROZPOZNAWANIE FIGUR PRZESTRZENNYCH AUTOR SCENARIUSZA : mgr Elżbieta Szmytkowska OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI Rozpoznawanie
I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje
Wymagania edukacyjne z matematyki dla klasy III gimnazjum
Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy
Temat: Pole równoległoboku.
Scenariusz lekcji matematyki w klasie V Temat: Pole równoległoboku. Ogólne cele edukacyjne - rozwijanie umiejętności posługiwania się językiem matematycznym - rozwijanie wyobraźni i inwencji twórczej -
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który nie spełnia poniższych wymagań edukacyjnych
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów
Przedmiotowe zasady oceniania i wymagania edukacyjne
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa 3 Przedmiotowe zasady oceniania i wymagania edukacyjne Przed przystąpieniem do omawiania zagadnień programowych i przed rozwiązywaniem
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1
KRYTERIA OCEN DLA KLASY VI Zespół Szkolno-Przedszkolny nr 1 2 3 KRYTERIA OCEN Z MATEMATYKI DLA KLASY VI LICZBY NATURALNE I UŁAMKI Na ocenę dopuszczającą uczeń powinien: - znać algorytm czterech
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIEIEŃ 2015 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku
Wybrane scenariusze lekcji matematyki aktywizujące uczniów. mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku Scenariusz 1- wykorzystanie metody problemowej i czynnościowej.
LEKCJA OTWARTA Z MATEMATYKI. Temat lekcji: Pole powierzchni prostopadłościanu i sześcianu.
LEKCJA OTWARTA Z MATEMATYKI w ramach Rządowego programu rozwijania szkolnej infrastruktury oraz kompetencji uczniów i nauczycieli w zakresie technologii informacyjno-komunikacyjnych Aktywna tablica Prowadząca:
Egzamin gimnazjalny z matematyki 2016 analiza
Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 8 Scenariusze na temat objętości Niestety scenariusze są słabe, średnia: 1,21 p./3p. Wiele osób zapomniało,
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej
Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Temat ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. TRYGONOMETRIA (15 h )
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7 Lang: Pole powierzchni kuli Nierówność dla objętości skorupki: (pow. małej kuli) h objętość skorupki