Prace badawcze w dziedzinie optoelektroniki oraz czasu i częstotliwości

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prace badawcze w dziedzinie optoelektroniki oraz czasu i częstotliwości"

Transkrypt

1 Zakład Centralna Izba Pomiarów Telekomunikacyjnych (Z-12) Prace badawcze w dziedzinie optoelektroniki oraz czasu i częstotliwości Praca nr Warszawa, grudzień 2010

2 Prace badawcze w dziedzinie optoelektroniki oraz czasu i częstotliwości. Praca nr Słowa kluczowe: detektor optyczny, anodyzacja, światłowodowe siatki Bragga, lasery, kryształy fotonicznej, cezowy wzorzec częstotliwości i czasu Kierownik pracy: prof. dr hab. inż. Paweł Szczepański Wykonawcy pracy: prof. dr hab. inż. Paweł Szczepański prof. dr hab. Zbigniew Jaroszewicz dr inż. Tomasz Osuch dr inż. Tomasz Kossek mgr inż. Michał Marszalec mgr inż. Marcin Koba mgr Marzenna Lusawa mgr inż. Grzegorz Kędzierski mgr inż. Karol Korszeń mgr inż. Dariusz Nerkowski dr inż. Zofia Rau Kierownik Zakładu: inż. Anna Warzec Copyright by Instytut Łączności, Warszawa 2010

3 Spis treści 1. Wstęp Zadanie 1. Prace badawcze nad elementami dyfrakcyjnymi do nanoszenia światłowodowych siatek Bragga Analiza numeryczna procesu nanoszenia apodyzowanych siatek Bragga metoda maski fazowej o zmiennej wydajności dyfrakcyjnej Weryfikacja eksperymentalna apodyzowanych masek fazowych wykonanych w technologii analogowej z użyciem szkieł HEBS Najnowsze wyniki badań Podsumowanie i wnioski Bibliografia Zadanie 2. Prace badawcze nad modelami teoretycznymi (analityczne i numeryczne) źródeł promieniowania optycznego z ośrodkiem aktywnym o strukturze kryształu fotonicznego Lasery z ośrodkiem aktywnym w postaci jednowymiarowego kryształu fotonicznego Model pracy na progu i ponad progiem generacji Wyniki obliczeń Lasery z ośrodkiem aktywnym w postaci dwuwymiarowego kryształu fotonicznego Teoria modów sprzężonych Bilans energetyczny Model półklasyczny Wnioski Bibliografia Zadanie 3. Prace badawcze nad metodami kalibracji detektorów promieniowania optycznego dla telekomunikacji optycznej w zakresie częstotliwości do 10GHz Wstęp Metoda heterodynowania sygnałów optycznych Metoda kalibracji detektora przy wykorzystaniu analizatora wektorowego Metoda odpowiedzi impulsowej Wynik przeprowadzonych pomiarów charakterystyki częstotliwościowej detektora na przykładzie miernika współczynnika modulacji FOS-860A Detekcja sygnału optycznego zdudnionego Pomiar charakterystyki częstotliwościowej detektora metodą heterodynowania Podsumowanie Bibliografia

4 5. Zadanie 4. Raport z badań atomowych wzorców czasu i częstotliwości Optymalne sterowanie skali czasu IŁ w odniesieniu do wybranych grupowych skal czasu lub częstotliwości Badania systemu pomiarowego do testowania sterowania skalą czasu IŁ Organizacja systemu pomiarowego sterowania Opis działania programu usteppert Kalibracja systemu sterowania Wyniki sterowania skali czasu IŁ w odniesieniu do wzorca zespołowego częstotliwości Wnioski Algorytm sterowania skali czasu IŁ oraz wyniki krajowych i międzynarodowych komparacji wzorców częstotliwości i czasu IŁ Przebieg porównań Wyniki porównań skal czasu Ocena niepewności poprawki skali czasu IŁ1 w odniesieniu do UTC Uczestnictwo wzorców IŁ w TAI Wyniki porównań częstotliwości Zespołowy wzorzec częstotliwości Wyniki porównania wzorców IŁ z wzorcem zespołowym Niepewność porównania z wzorcem zespołowym Wnioski Załącznik do Raportu

5 1. Wstęp Niniejsza praca składa się z czterech zadań i dotyczy prac badawczych z dziedziny optoelektroniki oraz czasu i częstotliwości. Zadanie pierwsze dotyczy prac badawczych związanych z elementami dyfrakcyjnymi dla potrzeb telekomunikacji jako elementów pasywnych w sieciach optycznych. Kolejnym tematem są badania nad modelami teoretycznymi (analitycznymi i numerycznymi) źródłem promieniowania optycznego z ośrodkiem aktywnym o strukturze kryształu fotonicznego. Trzeci zagadnienie związane jest z metodami kalibracji detektorów promieniowania optycznego dla telekomunikacji. Ostatnie zadanie niniejszej pracy dotyczy badań w dziedzinie metrologii czasu i częstotliwości. 2. Zadanie 1. Prace badawcze nad elementami dyfrakcyjnymi do nanoszenia światłowodowych siatek Bragga Obserwowany na przestrzeni ostatnich lat dynamiczny wzrost zastosowań światłowodowych siatek Bragga (ang. fiber Bragg grating) głównie w telekomunikacji optycznej i systemach czujnikowych pociąga za sobą konieczność doskonalenia metod wytwarzania oraz modelowania zjawisk towarzyszących ich powstawaniu oraz funkcjonowaniu w konkretnych rozwiązaniach. Niezmiernie szeroki obszar aplikacji siatek Bragga można podzielić na dwie grupy. Pierwsza to zastosowania telekomunikacyjne, gdzie siatki znajdują zastosowanie jako kompensatory dyspersji chromatycznej [1], multipleksery/demultipleksery optyczne [2] i elementy spłaszczające charakterystykę wzmocnienia wzmacniaczy EDFA [3]. Ponadto spełniają rolę zwierciadeł w laserach światłowodowych [4], a także służą do stabilizacji długości fali diod laserowych [5]. Siatki Bragga stosuje się również w systemach optycznych OCDMA [6], oraz do monitorowania sieci optycznych FTTH-PON [7]. Poza zastosowaniami telekomunikacyjnymi siatki okazują się być znakomitymi czujnikami temperatury oraz naprężenia [8], a także znajdują zastosowanie w technice opto-mikrofalowej (głównie w konstrukcjach linii opóźniających do sterowania sykiem antenowym) [9]. Jedną z metod nanoszenia struktur braggowskich jest technika wykorzystująca dyfrakcyjne elementy optyczne (tzw. maski fazowe) do formowania wzoru interferencyjnego, który powoduje powstawanie periodycznej zmiany współczynnika załamania w rdzeniu światłowodu. Szczególne znaczenie ma w tym przypadku możliwość wytwarzania siatek apodyzowanych przy pomocy masek fazowych o zmiennej wydajności dyfrakcyjnej (apodyzowanych). O popularności metody decyduje przede wszystkim jej niezawodność i odporność na czynniki zewnętrzne (np. wibracje), dzięki czemu zapewniona jest duża powtarzalność parametrów wykonywanych siatek. Ponadto poprzez zaprojektowanie i wykonanie maski fazowej o odpowiednim profilu zmian stopnia fazowego możliwe jest uzyskanie złożonych struktur periodycznych i aperiodycznych we włóknie optycznym. Tak więc w tym przypadku rozwój metod nanoszenia siatek Bragga ściśle powiązany jest z opracowywaniem nowych oraz zaadoptowaniem i udoskonalaniem istniejących metod wytwarzania dyfrakcyjnych elementów optycznych (w szczególności apodyzowanych masek fazowych). Stosowane dotychczas techniki mimo swoich zalet posiadają również pewne wady, którymi zazwyczaj są duży koszt procesu wytwarzania i jego czasochłonność oraz znaczne ograniczenia w możliwościach generowania złożonych funkcji zmian stopnia fazowego w celu otrzymania odpowiedniej funkcji apodyzacji. Poza poprawą jakości i możliwości technologicznych związanych z wykonywaniem masek fazowych do nanoszenia siatek Bragga istotne jest również poznanie mechanizmów powstawa- 5

6 nia struktur braggowskich metodą maski fazowej. Dotychczas w literaturze nieco miejsca poświęcono modelowaniu masek jednorodnych, natomiast przypadek struktur ze zmienną wydajnością dyfrakcyjną nie został omówiony. Powyższe wnioski na temat technologii wytwarzania apodyzowanych masek fazowych do nanoszenia siatek Bragga oraz teoretycznej i numerycznej analizy procesów powstawania struktur posłużyły do sformułowania tez rozprawy doktorskiej Tomasza Osucha. Poniżej przedstawiono wyniki analizy numerycznej procesu powstawania apodyzowanej siatki Bragga metodą maski fazowej o zmiennej wydajności dyfrakcyjnej oraz wyniki pomiarów prototypowych apodyzowanych masek fazowych wykonanych przy pomocy nowatorskiej technologii z zastosowaniem szkieł HEBS. Wyniki te stanowią znaczący do rozprawy doktorskiej Analiza numeryczna procesu nanoszenia apodyzowanych siatek Bragga metoda maski fazowej o zmiennej wydajności dyfrakcyjnej Rozważmy przypadek, w którym światłowodowa siatka Bragga jest wytworzona za pomocą lasera argonowego o pracy ciągłej z kryształem nieliniowym, zapewniającym pracę na drugiej harmonicznej 244nm. W ten sposób powstaje w wyniku efektu fotoczułości siatka typu I, w której periodyczne zmiany współczynnika występują w całej objętości rdzenia. Apodyzowana maska fazowa wraz z umieszczonym światłowodem przesuwana jest prostopadle do padającej wiązki dając efekt skanowania (rysunek 2.1) [10]. Rys Schemat metody wytwarzania apodyzowanych siatek Bragga przy użyciu maski fazowej o zmiennej wydajności dyfrakcyjnej. Zazwyczaj rozmiar wiązki skanującej wynosi kilkadziesiąt kilkaset μm, a obszar skanowania, równy rozmiarowi maski fazowej to kilka kilkanaście mm. Z punktu widzenia nanoszenia siatki Bragga metodę skanowania maski fazowej można zatem potraktować jako oświetlenie całego obszaru skanowania maski falą, o stałym jednostkowym natężeniu wzdłuż osi x, i taki też model został przyjęty w przedstawionej poniżej analizie numerycznej. Rozkład natężenia pola dyfrakcyjnego w płaszczyznach równoległych do maski fazowej zmienia się w funkcji odległości propagacji (a więc i odległości maska fazowa światłowód), dlatego w przypadku analizy procesu powstawania apodyzowanej siatki Bragga zasadnym jest mówienie o średnim rozkładzie pola dyfrakcyjnego w obrębie rdzenia światłowodu [11]. Podejście to jest tym bardziej uzasadnione, że fala propagująca się w światłowodzie z naniesioną siatką Bragga typu I oddziałuje z nią w całym przekroju rdzenia [12]. Symulacje komputerowe przedstawione w niniejszej pracy przeprowadzono w oparciu o skalarną teorię dyfrakcji [13], oraz algorytm splotowy dla przypadku jednowymiarowego [14]. 6

7 Własności masek fazowych opisano korzystając z przybliżenia cienkiej transmitancji. Prawidłowy dobór metod modelowania znajduje potwierdzenie w dotychczasowych zarówno teoretycznych [15-18] jak i eksperymentalnych [19] dotyczących elementów optycznych o podobnych rozmiarach periodów. Obliczenia numeryczne wykonano w oparciu o model z rys. 2.2, zakładając następujące parametry układu: współczynnik załamania rdzenia światłowodu n CO =1,46, period maski fazowej Λ PM =1061nm, długość fali λ=244nm, d - średnica rdzenia włókna optycznego. W rzeczywistości różnica współczynników załamania rdzenia i płaszcza światłowodu jest na tyle mała, że można w symulacjach przyjąć n CL =n CO =n. Rys Model do numerycznej analizy średniego rozkładu pola dyfrakcyjnego w rdzeniu światłowodu. Idealny gaussowski profil zmian stopnia fazowego φ(x) przybliżono N=8 poziomową funkcją schodkową zaprojektowaną metodą jednakowych różnic stopnia fazowego. Oznacza to, że stopnie fazowe kolejnych sekcji wynoszą φ=kπ/8 gdzie k=1,,8. Period maski fazowej Λ PM =1,061μm jej długość L=8,692mm. Założono, że pole dyfrakcyjne biorące udział w powstawaniu siatki, można przedstawić w postaci średniej arytmetycznej natężeń I i (z) w dyskretnych płaszczyznach za maską fazową w obszarze obrębie rdzenia światłowodu. Zgodnie z efektem Talbota, rozkład pola dyfrakcyjnego za apodyzowaną maska fazową w kierunku prostopadłym do stopni maski ma charakter periodyczny z okresem równym z T =2 n Λ PM 2 /λ UV =13,47µm [11]. Wobec tego, do uzyskania kompletnej informacji na temat zależności średniego rozkładu natężenia pola dyfrakcyjnego w funkcji odległości maska fazowa włókno, wystarczy zbadać charakterystyki I AV =f(z) dla zakresu odległości maska fazowawłókno z F ;z F +z T. W celu wyznaczenia wpływu położenia włókna na średni rozkład natężenia pola w rdzeniu, I AV (z) zostało obliczone w M=101 płaszczyznach pomiędzy sąsiadującymi płaszczyznami samoobrazów w obszarze rdzenia światłowodu. Na podstawie rozkładów pola dyfrakcyjnego w obszarze rdzenia światłowodu umieszczonego w odległości z F =200μm za apodyzowaną maską fazową o prostokątnym profilu stopnia wyznaczono średnie rozkłady pola w rdzeniu włókna optycznego w funkcji odległości pomiędzy maską fazową, a światłowodem (rys.2.3) [20]. Poszczególne ilustracje składają się z ośmiu fragmentów o szerokości 5 Λ PM odpowiadających założonym stopniom fazowym maski apodyzowanej dla różnych średnic rdzenia włókna optycznego: a) d=5μm, b) 7μm oraz c) 9μm. Ponadto w symulacjach przyjęto standardową średnicę płaszcza włókien jednomodowych równą 125μm. 7

8 Rys.2.3. Średni rozkład pola dyfrakcyjnego I AV w funkcji położenia włókna za maską fazową z F dla różnych średnic rdzenia światłowodu: a) 5µm, b) 7µm, c) 9µm. Rysunki 2.4, 2.5 oraz 2.6 przedstawiają przekroje rozkładów średniego pola dyfrakcyjnego z rysunku 2.3. Na ilustracji 2.4 pokazano przekroje I AV dla każdej sekcji i trzech średnic rdzenia wzdłuż linii na rys. 2.3 oznaczonej cross z. Z kolei wykresy 2.5 i 2.6 przedstawiają zamiany I AV w kierunku równoległym do stopni maski dla przypadków odpowiednio: z 1 - gdy granica rdzeń-płaszcz światłowodu pokrywa się z płaszczyzną samoobrazu, z 2 - gdy środek rdzenia znajduje się w płaszczyźnie środkowej pomiędzy sąsiednimi płaszczyznami samoobrazu. Z uwagi na symetrię z przesunięciem o x=λ PM /2 rozkładów pola dyfrakcyjnego z zakresu v z T ;(v+1/2) z T względem (v+1/2) z T ;(v+1) z T, również i średnie natężenia I AV posiadają taką samą własność. Wobec tego przekrój I AV w przypadku, gdy środek rdzenia umieszczony jest w płaszczyźnie samoobrazu z 4 jest niemalże identyczny jak przypadek z 2. Z tych samych powodów jedyne, co różni od siebie średnie rozkłady w przypadku z 1 i z 3 to przesunięcie o x=λ PM /2. Warto dodać, że w przypadku stopnia fazowego równego π, przesunięcia te nie są dostrzegalne, gdyż fundamentalny period rozkładu wynosi Λ PM /2. 8

9 Rys Przekroje średniego natężenia pola dyfrakcyjnego I AV w płaszczyźnie zgodnej z kierunkiem propagacji (wzdłuż osi z). 9

10 Rys Przekroje średniego natężenia pola dyfrakcyjnego I AV w płaszczyźnie maski przypadek z 1 (wzdłuż osi x). 10

11 Rys Przekroje średniego natężenia pola dyfrakcyjnego I AV w płaszczyźnie maski przypadek z 2 (wzdłuż osi x). 11

12 Z przedstawionych powyżej wyników symulacji wynika, że w przypadku jednorodnej maski fazowej o skoku fazy φ=π, period średniego rozkładu natężenia pola dyfrakcyjnego w obrębie rdzenia jest zawsze równy połowie okresu maski fazowej i jest praktycznie niezależny od odległości włókno-maska (w zakresie zmian położenia, gdzie wpływ koherencji lasera można pominąć). Również obszar uśredniania wzoru interferencyjnego (średnica rdzenia światłowodu) równy odpowiednio 5, 7 oraz 9µm nie wpływa znacząco na średni rozkład natężenia pola w obrębie rdzenia włókna (rys ). Powodem niezmienności średniego wzoru w funkcji odległości maska-włókno jak również w funkcji średnicy włókna jest regularność rozkładu natężenia za maską o φ=π i podstawowym periodzie w kierunku propagacji światła równym z T /8 w porównaniu z okresem równym z T dla φ<π. Odmienna sytuacja występuje w przypadku apodyzowanych masek fazowych. Dla ϕ<π, średni rozkład natężenia pola dyfrakcyjnego w obrębie rdzenia jest zależny od położenia włóknomaska oraz średnicy rdzenia (obszaru uśrednienia). I tak, zgodnie z rys. 2.4, dla stopnia fazowego φ 2π/8; 7π/8 wpływ położenia włókna na I AV jest znaczący. Dla małych wartości stopnia fazowego zmienność I AV =f(z F ) wzdłuż osi z staje się niewielka z uwagi na fakt, że kontrast pomiędzy maksymalnymi i minimalnymi wartościami w rozkładzie pola jest nieznaczny (wartości I AV,MAX i I AV,MIN niewiele się od siebie różnią). Dla coraz mniejszych wartości wysokości stopnia fazowego obserwuje się zanik dwa razy mniejszej periodyczności rozkładu natężenia pola dyfrakcyjnego w porównaniu z okresem maski fazowej. W przekrojach z rys. 2.5 objawia się to zmniejszaniem co drugiego maksimum w charakterystykach I AV. Jest to spowodowane zwiększającym się (wraz ze zmniejszaniem się φ) wpływem zerowego rzędu ugięcia. Można również zaobserwować, że wpływ zerowego rzędu na średni rozkład jest tym większy im mniejszy jest współczynnik d/z T, określający jaka część periodycznego rozkładu natężenia pola dyfrakcyjnego wzdłuż kierunku z (rys. 2.5) zawiera się w obszarze uśredniania (w obszarze rdzenia włókna optycznego). Jednakże w pewnych charakterystycznych położeniach światłowodu względem maski fazowej (rys. 2.6), gdy oś włókna znajduje się w płaszczyźnie z=v z T lub z=(v+1/2) z T, v- liczba naturalna, w rozkładzie I AV zachowana jest zależność Λ =Λ PM /2, bez względu na średnicę rdzenia oraz wysokość stopnia fazowego sekcji maski. Zmiana wartości natężenia w zerowym rzędzie dyfrakcji wpływa jedynie na kontrast w periodycznym rozkładzie I AV dla wybranej odległości z F, co przekłada się na zmiany amplitudy współczynnika załamania rdzenia światłowodu w procesie nanoszenia siatki Bragga. Fakt, że dla stopni fazowych mniejszych od π, (poza szczególnymi płaszczyznami przedstawionymi powyżej) podstawowy period rozkładu średniego pola dyfrakcyjnego w rdzeniu (a zatem periodycznej zmiany współczynnika załamania) wynosi Λ =Λ PM nie oznacza, że siatka nie będzie odbijała promieniowania o długości fali określonej zależnością Bragga pierwszego rzędu, λ B =2 n eff Λ, przy czym Λ =Λ PM /2 [21], [22]. W rzeczywistości, zgodnie z przekrojami z rys. 8.9, powstała siatka Bragga składa się z prążków o niejednakowej amplitudzie, oddalonych od siebie o Λ PM /2. Wobec tego, fala propagująca się w światłowodzie napotyka naprzemiennie większe bądź mniejsze współczynniki załamania. Wówczas, to odbija od każdego prążka więcej lub mniej światła, które dodaje się konstruktywnie zgodnie z prawem Bragga. Jedynie na końcach siatki, odpowiadających sekcjom maski o φ=π/8, fala będzie napotyka zmiany współczynnika załamania dwa razy rzadziej. Jednak również w tym przypadku następuje konstruktywne dodawanie fal odbitych od kolejnych prążków siatki na skutek spełnienia warunku Bragga drugiego rzędu. Co więcej, wpływ podwojonej periodyczności końcowych sekcji nie jest znaczący z uwagi na małą amplitudę zmian współczynnika załamania i przekłada się na nieznaczną wartość mocy odbijanej od tych sekcji maski w porównaniu z obszarami o dużych zmianach współczynnika załamania światła. 12

13 2.2. Weryfikacja eksperymentalna apodyzowanych masek fazowych wykonanych w technologii analogowej z użyciem szkieł HEBS Wykonanie apodyzowanych masek fazowych poprzedzone zostało sprawdzeniem możliwości zastosowania technologii szkieł HEBS do uzyskania apodyzowanych elementów optycznych o periodach dużo większych od okresów docelowych struktur. Zaprojektowano i wykonano następujące elementy: - fazową płytkę cylindryczną z profilem apodyzacji przebiegającym wzdłuż jej stopni, mającym na celu ograniczenie efektów powodowanych dyfrakcją na aperturze, a mianowicie oscylacji natężenia na krańcach odcinka ogniskowego tworzonego przez element, - aksikon liniowy, w którym funkcja apodyzacji (podobnie jak w apodyzowanej masce fazowej) przebiega prostopadle do stref i ma za zadanie wyrównanie natężenia wiązki wzdłuż odcinka ogniskowego. Weryfikacja eksperymentalna struktur testowych dała pozytywną odpowiedź dotyczącą możliwości wytwarzania elementów dyfrakcyjnych apodyzowanych w technice analogowej z zastosowaniem szkieł HEBS [23],[24]. Wobec powyższych w części eksperymentalnej niniejszej pracy zostały zaprojektowane i wykonane maski fazowe o 8-poziomowej charakterystyce zmian wysokości stopnia fazowego będącej zdyskretyzowaną funkcją gaussowską. Oznacza to, że ze względu na symetryczny charakter funkcji gaussowskiej liczba sekcji masek fazowych wynosiła 16. Pierwsza maska fazowa zaprojektowana została metodą jednakowych szerokości sekcji, toteż rozmiar każdej sekcji wynosił 0,5mm, period równy był 10μm, przez co na pojedynczą sekcję przypadało 50 okresów. Maska została celowo zaprojektowana dla długości fali λ=633nm, głównie ze względu na możliwości metrologiczne. A mianowicie, wybór takiej długości fali pozwolił na weryfikację eksperymentalną za pomocą pomiarów wydajności dyfrakcyjnej w kolejnych sekcjach maski przy pomocy lasera He-Ne i detektora krzemowego. Ponadto ze względu na ograniczoną kontrastowość procesu wytwarzania maski, trudniej uzyskać strukturę o maksymalnej wysokości stopnia fazowego zapewniającej uzyskanie opóźnienia fazowego równego π dla długości fali 633nm w porównaniu z 244nm. Powyższe założenie projektowe stanowiło więc dodatkowe wyzwanie technologiczne. Jednocześnie pomyślne wykonanie i ocena jakości maski fazowej pozwala sądzić, że możliwe jest uzyskanie struktury o nie gorszych parametrach dla λ=244nm. Apodyzowane maski fazowe o periodzie 2μm, docelowo projektowane były na długość fali lasera He-Ne (633nm), przy pomocy metody jednakowych szerokości sekcji. Jednakże wstępne eksperymenty wykazały, że ograniczona kontrastowość procesu technologicznego nie pozwala na uzyskanie struktur o tak dużej wysokości stopnia fazowego. Zatem spośród kilkunastu masek, wybrano do dalszej analizy tę, której wysokość stopnia fazowego przekracza 400nm. Wartość ta jest bowiem większa niż maksymalne wysokości stopnia fazowego masek projektowanych dla λ=244nm (do nanoszenia siatek na standardowe światłowody telekomunikacyjne) oraz na długości fali laserów He-Cd (325nm) oraz Nd:YAG o potrojonej częstotliwości (355nm) do wytwarzania siatek we włóknach polimerowych [25], [26]. Przy założeniu współczynnika załamania materiału maski (rezystu) n=1,5, maksymalne wysokości stopni fazowych poszczególnych masek (dla centralnych sekcji o stopniu fazowym φ=π) są równe przedstawionym powyżej długościom fali, dla których zostały zaprojektowane. Stąd też uzyskanie obiecujących wyników dla wyselekcjonowanej maski budzić może uzasadnione przekonanie, że proponowana w pracy technologia pozwala na produkcję masek fazowych (na długości fali laserów służących od nanoszenia siatek Bragga) o nie gorszych parametrach niż testowana struktura. Podobnie bowiem jak w przypadku maski o periodzie 10μm, wykonanie struktury o mniejszych wy- 13

14 sokościach stopnia fazowego jest łatwiejsze. Długość zaprojektowanej maski fazowej wynosiła w tym przypadku 11mm, a zatem rozmiar pojedynczej sekcji to 0,688mm. Trzecia maska, o periodzie 1,07μm, została zaprojektowana na długość fali λ=244nm i podobnie jak poprzednia, wybrana z szeregu kilkunastu struktur. Pomiary apodyzowanych masek fazowych przeprowadzona przy zastosowaniu trzech niezależnych technik pomiarowych. Pierwsza z nich polegała na wyznaczeniu wydajności dyfrakcyjnej dla każdej sekcji maski, co pozwoliło następnie na określenie stopni fazowych. Kolejne metody to profilometria oraz mikroskopia sił atomowych, które służą głównie do pomiaru kształtu i parametrów geometrycznych struktury. W przypadku masek fazowych daje to możliwość określenia podstawowych parametrów struktury takich jak: wysokość stopnia fazowego, period, współczynnik wypełnienia. Pomiary wydajności dyfrakcyjnej Podstawową i popularną metodą, która umożliwia ocenę jakości wykonanych masek fazowych, a w szczególności wartości stopni fazowych poszczególnych sekcji, jest pomiar wydajności dyfrakcyjnej. Polega on na wyznaczeniu stosunku mocy wiązki świetlnej kierowanej w dany rząd ugięcia do całkowitej mocy optycznej transmitowanej przez element dyfrakcyjny. Pomiar maski fazowej o periodzie 10μm wykonano przy użyciu lasera He-Ne o długości fali 632,8nm oraz miernika mocy promieniowania optycznego LaserPAD firmy Coherent z detektorem SILICON HD. Rezultaty pomiarów wydajności dyfrakcyjnej zilustrowano na rysunku 2.7. η [%] projekt -1 rząd ugięcia +1 rząd ugięcia Numer sekcji Rys Zmierzone wydajności dyfrakcyjne w ±1 rzędach ugięcia apodyzowanej maski fazowej o periodzie 10μm w odniesieniu do wartości idealnych (wynikających z parametrów projektowych). W charakterystyce z rys. 2.7 zauważyć można obniżenie wydajności dyfrakcyjnej dla sekcji centralnych (8 i 9) w porównaniu z sąsiednimi (odpowiednio 7 i 10). Wynika to z faktu, że rzeczywista wysokość stopnia fazowego jest nieco większa od oczekiwanej, co powoduje, że stopień fazowy przekracza wartość optymalną π. Wydajności dyfrakcyjne dla sekcji 1-6 oraz są wyższe od oczekiwanych, co podobnie jak w przypadku sekcji centralnych spowodowane jest nieco większymi wysokościami stopni w porównaniu z wartościami optymalnymi. Rozbieżności pomiędzy charakterystykami dla -1 i +1 rzędu dyfrakcji są nieznaczne i w zasa- 14

15 dzie mieszczą się w granicach dokładności pomiarowych metody. Powstałe różnice pomiędzy charakterystyką idealną i rzeczywistymi można zniwelować optymalizując technologię, w celu uzyskania struktury o nieco mniejszej wysokości stopnia fazowego. W przypadku masek fazowych o periodach 2μm i 1,07μm istnieje jedynie możliwość pomiaru wydajności dyfrakcyjnej z użyciem źródła laserowego o długości fali 632,8nm, gdyż w zakresie ultrafioletu zachodzi proces absorpcji promieniowania przez fotorezyst. Jednakże wstępne pomiary masek wykazały, że uzyskane wyniki wydajności dyfrakcyjnych miały zbyt małą wartość, nierzadko porównywalną z dokładnością pomiaru, i wobec tego nie mogły zostać uznane za wiarygodne. Powodem tak małych wydajności dyfrakcyjnych w ±1 rzędach były niewielkie wartości stopni fazowych dla długości fali 632,8nm. Zatem do oceny jakości elementów należy posłużyć się technikami pomiarowymi polegającymi na wyznaczeniu wysokości stopni fazowych struktury (względnie różnicy wysokości pomiędzy sąsiednimi sekcjami). Pomiary mikroskopem sił atomowych Dokładne pomiary maski wykonane mikroskopem sił atomowych (Dimension NanoScope IV firmy Veeco) potwierdziły przypuszczenia z poprzedniego paragrafu dotyczące większych od teoretycznych wysokości stopni fazowych h maski o periodzie 10μm. Zmierzone wartości wysokości stopni lewej strony maski (sekcje 1-8) przedstawiono na wykresie z rys. 2.8 w odniesieniu do wartości oczekiwanych. h [nm] projekt AFM Numer sekcji Rys Wykresy wysokości stopni fazowych (lewej strony) maski o periodzie 10μm wyniki pomiarów mikroskopem AFM w zestawieniu z wartościami oczekiwanymi (projektowymi). Wstępne próby pomiarów masek o periodach 2μm oraz 1,07μm wykazały, że zbyt duża średnica igły uniemożliwiła wyznaczenie wartości wysokości stopni fazowych. Jak widać na przykładzie kształtu profilu przedstawionego na rys w przypadku maski o okresie 10μm rozmiary geometryczne struktury nie przeszkodziły w poprawnym pomiarze wysokości stopni. Jednakże zaokrąglony kształt stopni maski może być spowodowany zbyt dużą średnicą igły mikroskopu w porównaniu z periodem badanego elementu. Określenie parametrów geometrycznych masek o okresach 2μm i 1,07μm okazało się możliwe jedynie w sposób pośredni poprzez wyznaczenie różnicy wysokości stopni fazowych sąsiadujących sekcji na podstawie wyników pomiarów profilometrem. Pomiary profilometryczne 15

16 Niniejszy paragraf zawiera wyniki pomiarów przy użyciu profilometru Dektak 6M firmy Veeco masek fazowych o okresach 10μm, 2μm oraz 1,07μm. Z uwagi na zbyt dużą średnicę igły profilometru w porównaniu z rozmiarami periodów mierzonych masek, nie sięgała ona dna struktury (pomiędzy stopniami maski), przez co nie było możliwe uzyskanie bezpośrednio wartości wysokości stopni fazowych w poszczególnych sekcjach. Jednakże otrzymane wyniki pozwoliły na odwzorowanie obwiedni struktury, dzięki czemu istniała możliwość wyznaczenia różnic wysokości stopnia fazowego sąsiadujących sekcji Δh. Na rysunkach 2.9, 2.10 oraz 2.11 przedstawiono wyniki pomiarów różnic wysokości stopni fazowych Δh wyznaczone na podstawie danych z profilometru dla apodyzowanych masek fazowych o periodach odpowiednio 10μm, 2μm i 1,07μm projekt profilometr Δh [nm] Sekcje maski fazowej Rys Wykresy różnic wysokości stopni fazowych maski o periodzie 10μm wyniki pomiarów profilometrycznych w zestawieniu z wartościami oczekiwanymi (projektowymi) projekt profilometr Δh [nm] Sekcje maski fazowej Rys Wykresy różnic wysokości stopni fazowych maski o periodzie 2μm wyniki pomiarów profilometrycznych w zestawieniu z wartościami oczekiwanymi (projektowymi). 16

17 Δh [nm] projekt profilometr Sekcje maski fazowej Rys Wykresy różnic wysokości stopni fazowych maski o periodzie 1,07μm wyniki pomiarów profilometrycznych w zestawieniu z wartościami oczekiwanymi (projektowymi). W przypadku maski fazowej o periodzie 10μm, dla większości sekcji różnice wysokości stopni fazowych Δh wykonanej maski fazowej są nieco większe od wartości zaprojektowanych. Nasuwa się wobec tego wniosek, że wysokości stopni h badanego elementu w danej sekcji są większe od wartości oczekiwanych, co jest zgodne z wynikami uzyskanymi metodą pomiaru wydajności dyfrakcyjnych oraz mikroskopem sił atomowych. Ponadto nieduże, nie przekraczające 10nm, różnice Δh pomiędzy odpowiednimi sekcjami prawej i lewej strony maski w stosunku do części centralnej, świadczą o prawidłowej implementacji profilu zmian wysokości stopnia fazowego w procesie technologicznym. W przypadku maski fazowej o periodzie 2μm, znaczne zróżnicowanie Δh pomiędzy wynikami pomiarów, a wartościami oczekiwanymi wynika z ograniczeń technologicznych związanych z niewielką kontrastowością procesu wytwarzania maski. Mimo to, suma różnic pomiędzy wysokościami stopni fazowych od 1 do 8 oraz od 9 do 16 wskazuje, że możliwe jest wykonanie struktur o wysokości stopnia centralnego ok. 400nm. To z kolei z pewnym nadmiarem spełnia wymagania na uzyskanie masek fazowych do naświetlania siatek Bragga stosowanymi powszechnie w tym celu laserami. Podobnie jak w przypadku maski o periodzie 10μm, różnice pomiędzy odpowiednimi Δh lewej i prawej strony elementu nie przekraczają 10nm. Ponadto odchylenia (a zarazem błąd względny) zmierzonych wartości różnic wysokości stopni fazowych w odniesieniu do wartości teoretycznych, są największe na krańcach maski i maleją ku jej części środkowej. Warto dodać, że dokładność pomiaru różnic wysokości stopnia fazowego na krańcach maski, tam gdzie wysokości stopni są niewielkie (kilkanaście/kilkadziesiąt nm), jest najmniejsza z uwagi na wpływ wibracji i drgań pochodzących z otoczenia, które nakładają się na kształt zmierzonego profilu zmian wysokości stopnia fazowego uniemożliwiając precyzyjne określenie Δh. Wyniki pomiarów apodyzowanej maski fazowej o okresie 1,07μm różnią się od wartości teoretycznych o nie więcej niż 23nm. Powodami powstałych rozbieżności są głównie ograniczona dokładność proponowanej technologii oraz wpływ warunków otoczenia na dokładność pomiaru profilometrem (szczególnie dla małych wartości h). W wyniku zsumowania Δh dla lewej (sekcje 1-8) i prawej (sekcje 9-16) strony maski uzyskano wysokości stopni centralnych 8 i 9 sekcji równe odpowiednio 211nm i 222nm. Są one mniejsze od wartości optymalnej (244nm) o 13,5% oraz 9%. Rozbieżność pomiędzy tymi wartościami wynika głównie z mniejszej dokładności oszacowania różnicy wysokości stopni fazowych pomiędzy sekcją 1 i podłożem oraz 16 i pod- 17

18 łożem, niż w przypadku sekcji o większych wysokościach stopni. Należy dodać, że maska wyselekcjonowana została do pomiarów w sposób niemalże losowy (bez uprzednich pomiarów wstępnych, jedynie kierowano się w wyborze pośrednią wartością dawki umownej LME). A zatem istnieje uzasadnione przekonanie, że możliwe jest wykonanie maski o wysokości stopni środkowej sekcji równych wartości optymalnej, poprzez dobranie optymalnych warunków i parametrów procesu technologicznego (między innymi LME). W podsumowaniu rozdziału można stwierdzić, że zaproponowana w niniejszej pracy technologia oparta na wykorzystaniu szkieł HEBS pozwala wykonywać dobrej jakości maski fazowe o zróżnicowanej wydajności dyfrakcyjnej do nanoszenia apodyzowanych światłowodowych siatek Bragga przy użyciu powszechnie stosowanych do tego celu laserów. Pewne rozbieżności pomiędzy wartościami oczekiwanymi, a otrzymanymi w wyniku pomiarów wykonanych struktur są następstwem głównie ograniczeń procesów technologicznych wynikających przeważnie z możliwości posiadanej aparatury. Po pierwsze, używana kamera powielająca, pracowała na granicy, a w przypadku masek o periodzie 1,07μm nieco poniżej znamionowej rozdzielczości (min. szerokość linii 0,8μm), co mogło wpłynąć na obniżenie kontrastowości procesu na skutek rozmywania obrazu przenoszonego w rezyst. Po drugie, samo podłoże HEBS charakteryzuje się niewielką kontrastowością. Źródłem błędów jest również ograniczona ilość dawek ekspozycji elektronolitografu. W konsekwencji można spodziewać się, że wpływ wymienionych powyżej czynników spowoduje, że im mniejszy period maski, tym bardziej zanikają ostre krawędzi prostokątnych stopni maski powodując przechodzenie profilu w kształt sinusoidalny. Ponadto dodatkowa przyczyna obserwowanych różnic pomiędzy wymaganymi, a rzeczywistymi parametrami masek wynika z niedoskonałości procesów trawienia i wywoływania rezystu oraz ich kontroli. Nie można również zapomnieć o czynniku pochodzącym od ograniczonych dokładności aparatury pomiarowej użytej do weryfikacji wytworzonych struktur oraz, od wielkości wpływających na rezultaty pomiarów (np. drgania, wibracje). Z drugiej strony na dowód poprawności przyjętych metod pomiarowych oraz technik wyznaczania parametrów masek, na rysunkach 2.12 oraz 2.13 przedstawiono zestawienie wyników uzyskanych profilometrem oraz mikroskopem AFM dla maski o periodzie 10μm. Δh [nm] projekt AFM profilometr Numer sekcji Rys Porównanie różnic wysokości stopni fazowych maski o periodzie 10μm (lewa strona) zmierzonych metodą profilometryczną oraz wyznaczonych na podstawie danych uzyskanych techniką AFM. 18

19 h [nm] projekt AFM profilometr Numer sekcji Rys Porównanie wysokości stopni fazowych maski o periodzie 10μm (lewa strona) zmierzonych techniką AFM oraz wyznaczonych na podstawie danych uzyskanych metodą profilometryczną. Niewielkie różnice Δh (maksymalnie 17nm rys. 2.12) oraz maksymalny błąd względny pomiaru h (9% - rys. 2.13) wynikają głównie z błędów zastosowanych technik pomiarowych (szczególnie w przypadku krańcowych sekcji). Jednakże wyniki te są na tyle spójne, że w zupełności zapewniają prawidłową weryfikację otrzymanych struktur Najnowsze wyniki badań Jedną z metod wytwarzania apodyzowanych masek fazowych do produkcji siatek Bragga jest technika elektronolitograficzna. W standardowej postaci wytworzenie elementu o 2 N poziomach fazowych wymaga N-krotnego powtórzenia procesu generacji wzoru, jego wywołanie i trawienie podłoża. Pomimo niebywałej zalety metody polegającej na bardzo dobrej kontroli profilu maski, posiada ona również wadę związaną z ograniczona dokładnością centrowania wzorów w kolejnych powtórzeniach z uwagi na ograniczoną dokładność okresu struktury (ZBA µm). Wspomniana wada stała się motywacją do stworzenia nowej, zmodyfikowanej metody Binarnej, nazwanej metodą wielokrotnego maskowania. Technologia ta okazuje się być bardzo efektywna przy wykonywaniu profili binarnych o zmiennej wysokości stopni fazowych. W porównaniu ze standardową metodą binarną jej główne zalety to: a) wyeliminowanie błędów związanych z centrowaniem wzorów w kolejnych etapach technologicznych b) tylko w pierwszym procesie generowany jest wzór o submikronowych elementach, w pozostałych procesach wykonuje się jedynie okna" o dużych wymiarach (w naszym przypadku około 0.5x3 mm), co jest znacznie prostsze w realizacji. Centrowanie okien nie jest krytyczne - nawet jeżeli okno przesunie się o jedną linię, nie będzie to wpływało na działanie wykonanej siatki braggowskiej (nie jest istotne, czy sekcja obejmuje 500 czy 501 linii). W przypadku metody binarnej błędy centrowania powodowałyby znaczne zniekształcenia charakterystyki spektralnej siatki Bragga. Na rys przedstawiono fotografię SEM wykonanej fragmentu wykonanej struktury. Z kolei wykres z rys ilustruje wyniki pomiarów wydajności dyfrakcyjnej wykonanej maski w porównaniu z wartościami teoretycznymi. 19

20 Rys Fotografia SEM fragmentu apodyzowanej maski fazowej wykonanej w technologii analogowej z wielokrotnym maskowaniem. Wydajność dyfrakcyjna [%] 45,0 40,0 35,0 30,0 25,0 20,0 15,0 10,0 5,0 0,0 ch-ka wyznaczona ch-ka teoretyczna Sekcja Rys Wyniki pomiarów wydajności dyfrakcyjnych apodyzowanej maski fazowej wykonanej w technologii analogowej z wielokrotnym maskowaniem Podsumowanie i wnioski Wyniki prac związanych z maskami fazowymi wytworzonymi w techniką analogową z użyciem szkieł HEBS stanowiły materiał do doktoratu do trzech publikacji wysłanych do redakcji wysoko punktowanych czasopism z listy filadelfijskiej. Jedna z nich ukazała się w Optics Communications [20]. Pozostałe wysłane zostały do edytora [23],[24]. Wyniki analizy numerycznej położenia włókna w procesie nanoszenia siatek Bragga będą mogły znaleźć praktyczne zastosowanie w laboratorium siatek na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej. Pozwolą na optymalizację i zwiększenie powtarzalności technologii wytwarzania struktur braggowskich, co ma istotne znaczenie w przypadku stosowania siatek jako filtrów w sieciach optycznych (np. WDM) oraz w systemach czujnikowych. Kolejnym, planowanym etapem prac będzie badanie parametrów apodyzowanych siatek Bragga wykonanych (we współpracy z Politechniką Warszawską) przy pomocy maski fazowej o zmiennej wydajności dyfrakcyjnej. Na postawie wyników pomiarów parametrów wy- 20

21 konanych siatek możliwa będzie optymalizacji profilu maski, pod kątem konkretnych zastosowań (przede wszystkim telekomunikacyjnych) Bibliografia [1] R. Kashyap, S. V. Chernikov, P.F. McKee, and J.R. Taylor, 30ps chromatic dispersion compensation of 400fs pulses at 100Gbits/s in optical fibers using an all fiber photoinduced chirped reflection grating, Electron. Lett. 30, 13, (1994) [2] F. Bilodeau, D.C. Johnson, S. Thériault, B. Malo, J. Albert, and K.O. Hill, An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings, Photonics Technol. Lett. 7, 4, (1995). [3] J. Capmany, D. Pastor, and J. Martí, EDFA gain equalizer employing linearly chirped apodized fiber gratings, Microwave and Optic. Technol. Lett. 12, 33, (1996). [4] G.A. Ball and W.H. Glenn, Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors, J. Lightwave Technol. 10, 10, , (1992). [5] S.M. Lord, G.W. Switzer, and M.A. Krainak, Using fiber gratings to stabilise laser diode wavelength under modulation for atmospheric lidar transmitters, Electron. Lett. 32, 6, , (1996). [6] J.-F. Huang and D.-Z. Hsu, Fiber-Grating-Based Optical CDMA Spectral Coding with Nearly Orthogonal M-Sequence Codes, Photonics Technol. Lett. 12, 9, (2000). [35] [7] H. Fathallah and L.A. Rusch, Code-division multiplexing for in-service out-of-band monitoring of live FTTH-PONs, J. Opt. Netw. 6, 7, (2007). [8] A.D. Kersey, A review of recent developments in fiber optic sensor technology, Optic. Fiber Technol. 2, 3, (1996). [9] J.L. Cruz, B. Ortega, M.V. Andres, B. Gimeno, D. Pastor, J. Capmany and L. Dong, Chirped fiber Bragg gratings for phased-array antennas, Electron. Lett. 33, 7, (1997). [10] T. Osuch, Z. Jaroszewicz, Siatki Bragga selektywne filtry optyczne, Nowa Elektrotechnika 1, 41, (2008). [11] T. Osuch and Z. Jaroszewicz, Analysis of the Talbot effect in apodized diffractive optical elements, Phot. Lett. Poland 1, (2009). [12] J.D. Prohaska, E. Snitzer and J. Winthrop, Theoretical description of fiber Bragg reflectors prepared by Fresnel diffraction images, Appl. Opt. 33, 18, (1994). [13] J.W. Goodman, Introduction to Fourier optics. McGraw-Hill, New York, [14] M. Sypek, Modelowanie zjawiska skalarnej propagacji światła w optyce dyfrakcyjnej, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, [15] D.W. Pommet, M.G. Moharam and E.B. Grann, Limits of scalar diffraction theory for diffractive phase elements, J. Opt. Soc. Am. A 11, 6, (1994). [16] S.D. Mellin and G.P. Nordin, Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design, Opt. Expr. 6, 13, (2001). [17] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House Inc., Norwood [18] E. Noponen, J. Turunen and A. Vasara, Parametric optimization of multilevel diffractive optical elements by electromagnetic theory, Appl. Opt. 31, (1992). [19] A. Kowalik, A. Kołodziejczyk, and Z. Jaroszewicz: Experimental results on extended scalar diffraction model, in European Optical Society Topical Meeting on Diffractive Optics Proceedings, , 21 November November 2007, Barcelona, Spain. [20] T. Osuch, Z. Jaroszewicz, Numerical analysis of apodized fiber Bragg grating formation using phase mask with variable diffraction efficiency, Opt. Commun. 284, (2010). 21

22 [21] A. Othonos and K. Kalli, Fiber Bragg Gratings. Fundamentals and Applications in Telecommunications and Sensing, Artech House Optoelectronics Library, [22] R. Kashyap, Fiber Bragg Gratings, Academic Press, [23] G. Adamkiewicz, A. Kołodziejczyk, T. Osuch and Z. Jaroszewicz, Apodized diffractive optical elements obtained with the help of HEBS glasses, Appl. Opt. wysłane do recencji. [24] T. Osuch, A. Kowalik, A. Kołodziejczyk, and Z. Jaroszewicz, Apodized linear axicons with constant axial intensity, Opt. Eng. wysłane do recencji. [25] H.Y. Liu, G.D. Peng and P.L. Chu, Thermal stability of gratings in PMMA and CYTOP polymer fibers, Opt. Commun. 204, (2002). [26] K. Kalli, H.L. Dobb, D.J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.-D. Peng, Q. Fang and I.W. Boyd, Development of an electrically tuneable Bragg grating filter in polymer optical fibre operating at 1.55 μm, Meas. Sci. Technol. 18, (2007). 22

23 3. Zadanie 2. Prace badawcze nad modelami teoretycznymi (analityczne i numeryczne) źródeł promieniowania optycznego z ośrodkiem aktywnym o strukturze kryształu fotonicznego 3.1. Lasery z ośrodkiem aktywnym w postaci jednowymiarowego kryształu fotonicznego Jednowymiarowy model lasera z kryształem fotonicznym przedstawiony na rysunku iφ1 iφ2 składa się ze zwierciadeł o współczynnikach r = R e, r = R e oraz ośrodka aktywnego Rys Jednowymiarowy laser z kryształem fotonicznym (r 1, r 2 zespolone współczynniki odbicia zwierciadeł, n 1, n 2 współczynniki załamania). Ośrodkiem aktywnym jest w tym przypadku jednowymiarowy kryształ fotonicznym, czyli naprzemienne warstwy o odpowiednio dobranych parametrach geometrycznych oraz współczynnikach załamania. Współczynniki te oraz szerokość warstw, a także ich ilość determinują szerokość, położenie przerwy fotonicznej oraz minimów pomiędzy wstęgami bocznymi w charakterystyce reflektancji (rys ). Ośrodek aktywny z obu stron ograniczony jest zwierciadłami, których współczynniki odbicia można zapisać w postaci następujących liczb zespolonych r iφ1 iφ2 1 = R1e oraz r 2 = R2e. W ramach niniejszej pracy zbadano własności generacyjne lasera z kryształem fotonicznym składającym się z warstw krzemu (Si) n 2 =3,48 raz powietrza n 1 =1. Period (L=500nm) oraz szerokości warstw kryształu (a=l/2, b=l/2) dobrano tak, aby krótkofalowa granica przerwy fotonicznej przypadała na długość fali 1550nm (rys ). Ilość okresów kryształu wynosiła N=50. Rys Charakterystyka spektralna reflektancji ośrodka aktywnego Si/powietrze. 23

24 Model pracy na progu i ponad progiem generacji Propagację fali elektromagnetycznej w laserze z jednowymiarowym kryształem fotonicznym, a zatem i generację promieniowania można analizować przy pomocy macierzy przejścia. Macierz opisująca przejście fali przez granicę ośrodków przedstawia się w następujący sposób = / 1, r r t D TE l l, (1) przy czym i oznacza numer warstwy kryształu. Współczynniki t oraz r wyrażają się następującymi zależnościami 1 1, = l l l TE l l k k k t, (2) 1 1 1, = l l l l TE l l k k k k r, (3) , = l l l l l l l TM l l n n k n n k k t, (4) l l l l l l l l l l l l TE l l n n k n n k n n k n n k r , =. (5) gdzie k 1 określa się następującą zależnością 2 2, 0 l m l l n c k β ω α ω =, (6) α=1,2 i oznacza warstwę kryształu, β l jest stałą propagacji. Wartość tego współczynnika określona jest następującym wzorem [7]: i l l c n φ ω β sin 0 = (7) α=1,2 jest numerem warstwy kryształu fotonicznego, φ i kąt padania wiązki na strukturę kryształu. Z kolei n ω m, α jest współczynnikiem załamania warstwy α dla częstotliwości ω m. W ogólności współczynnik załamania jest wielkością zespoloną określoną następującą zależnością n ω m, α = n ω m, α,r -i n ω m, α,im (8) przy czym n ω m, α,r oraz n ω m, α,im są odpowiednio częścią rzeczywistą i urojoną współczynnika załamania. Macierz przejścia przez warstwę wyrażona jest poniższą zależnością = ) exp( 0 0 ) exp( l l l l l d ik d ik P, (9)

25 przy czym d l oznacza szerokość l-tej warstwy, w omawianym przypadku d=a lub d=b. Macierz przejścia opisująca przejście fali od krańca lewego struktury (od zwierciadła r 1 ) do zwierciadła r 2 opisana jest następującym równaniem macierzowym, a1 = b1 a b A C B a D b N N N ( P D P D ) P = N N. (10) przy czym z uwagi na periodyczność struktury (naprzemienne warstwy Si i powietrza), indeksom l oraz l+1 ze wzoru (1) przypisano wartości odpowiadające warstwom, tj, l=1, l+1=2. Natomiast N oznacza liczbę periodów kryształu. Wiążąc współczynniki odbicia zwierciadeł z amplitudami pola na krańcach lasera otrzymujemy a1 r 1 =, (11) b1 bn r =. (12) 2 a N Stosując (11) i (12) otrzymujemy warunek generacji progowej w strukturze jednowymiarowego kryształu fotonicznego z uwzględnieniem silnej pompy w postaci r A + B r 2 1 =. (13) C + D r2 Rozwiązaniami powyższego równania są pary (λ m,thr, g m,,thr ), czyli częstotliwości poszczególnych modów m lasera oraz odpowiadające im wartości wzmocnienia progowego. W przypadku pracy nad progiem generacji, do wyznaczenia (λ m,thr, g m,,thr ) stosuje się mechanizm samouzgodnienia pola przedstawiony schematycznie na rys P out = a out (14) (12) a N b N (10) a 1 b 1 (11) a 1 Jeżeli: a 1 =a 1 Parametry generacji (g, λ) a 1 a 1 Powtarzamy obliczenia dla innych g, λ Rys Schemat algorytmu samouzgodnienia. Algorytm obliczania parametrów generacji progowej i nadprogowej przebiega według następującego schematu: - wybór poziomu mocy wyjściowej P out = a out 2 - obliczenie amplitudy a N na podstawie równania a N = aout /( 1 r2 ), (14) 25

26 - obliczenie i b N na postawie równania macierzowego (12) - wyznaczenie zespolonych amplitud pola w pierwszej a 1, b 1 warstwie kryształu tuż przy zwierciadle r 1 przekształcając równanie (10), - obliczenie wartości amplitudy a 1 korzystając z zależności (11) - jeśli a 1 jest równe a 1 to długość fali oraz wzmocnienie, dla których wykonano obliczenia są parą spełniającą warunki generacji i odpowiadają długości fali modu oraz wzmocnieniu niezbędnemu do uzyskania założonego poziomu mocy wyjściowej lasera I out. W przypadku, gdy założymy bardzo małą wartość I out, powyższa metoda samouzgodnienia umożliwia wyznaczenie parametrów generacji progowej (g th, λ th ). Prace skoncentrowały się na opracowaniu modelu i algorytmów do analizy progowej oraz ponadprogowej pracy lasera z ośrodkiem aktywnym w postaci jednowymiarowego kryształu fotonicznego. Należy tutaj podkreślić uniwersalność procedur numerycznych, które prócz struktur periodycznych dają możliwość analizy laserów z ośrodkiem aperiodycznym (supersieci Fibonacciego, Thue-Morse a, itp.) a także kryształów z defektami. Ponadto model a algorytmy pozwalają na analizę struktury z silnym oraz słabnącym pompowaniem Wyniki obliczeń Analizie poddano laser, którego ośrodek aktywny składa się z warstw krzemu Si oraz powietrza o współczynnikach załamania odpowiednio n 2 =3,48 oraz n 1 =1. Period kryształu L=500nm, oraz szerokości warstw krzemu a=l/2 oraz odległości między nimi b=l/2 zostały tak dobrane, aby krótkofalowa granica przerwy fotonicznej, gdzie spodziewamy się najmniejszego wzmocnienia progowego przypadała na długość fali w zakresie 1550nm. Wszystkie obliczenia przedstawione w niniejszym punkcie dotyczą analizy fali padającej prostopadle do zwierciadeł, co oznacza, że stała propagacji β l =0, a wyniki są identyczne dla modów TE i TM. W pierwszej kolejności dokonano analizy generacji promieniowania laserowego dla przypadku nadprogowego. Na rys przedstawiono rodzinę charakterystyk wzmocnienia progowego w funkcji współczynników dobicia zwierciadeł lasera, gdzie parametrem jest wartość mocy wyjściowej P out przy założeniu niesłabnącej pompy. Rys Charakterystyki wzmocnienia progowego w funkcji współczynników załamania zwierciadeł lasera dla różnych wartości poziomu mocy wyjściowej P out - praca ponad progiem przypadek silnej pompy. 26

27 Symulacje dały spodziewane rezultaty pokazujące, że w przypadku pracy ponadprogowej do osiągnięcia większej mocy wyjściowej niezbędne jest zapewnienie odpowiednio większej wartości wzmocnienia w strukturze (np. poprzez zapewnienie wystarczającej mocy pompującej). Prezentowany powyżej model pozwala również na analizę wpływu słabnącej pompy na wzmocnienie niezbędne do uzyskania poziomu mocy wyjściowej lasera I out. Na rysunku przedstawiono wyniki takiej analizy dla struktury laserowej zapewniającej P out =1. Na osi odciętych P P (L C )/P P (0) oznacza stosunek mocy optycznej na końcu struktury do mocy na jej początku, czyli określa współczynnik słabnięcia pompy. Wartości P P (L C )/P P (0) = 1 odpowiadając przypadkowi silnej (niesłabnącej) pompy. W opracowanym modelu, absorpcję sygnału pompującego w strukturze realizuje się poprzez modyfikację współczynnika wzmocnienia, zakładając liniową zależność pomiędzy wzmocnieniem g oraz poziomem sygnału pompującego P P. Z kolei wartość poziomu mocy pompy zmienia się wraz z długością struktury w następujący sposób P P () z P () z exp( α ) =. (15) 0 z Wartość parametru α odpowiadająca za tłumienie/absorpcję pompy została tak dobrana, aby P P (L C )/P P (0) = 1 zmieniało się w granicach 0,36 1. Rys Charakterystyki wzmocnienia ponadprogowego dla przypadku słabnącej pompy (P out =1, R 1 =R 2 parametry, L C długość kryształu). Rys ilustruje wyniki obliczeń wzmocnienia progowego struktury dla przypadku słabnącej pompy w laserze o współczynnikach odbicia zwierciadeł r 1 =r 2 =0,5exp(iπ). Parametrem w tym przypadku jest poziom mocy wyjściowej lasera P out. Z wykresu wynika, że wpływ słabnącej pompy jest największy i dla przypadku P out =100. W istocie tak jest, jednakże okazuje się, że względne zmiany wzmocnienia ponad progiem generacji w funkcji natężenia pompy kształtują się na podobnym poziomie dla każdej z analizowanych wartości mocy wyjściowej lasera. 27

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Uniwersytet Warszawski Wydział Fizyki. Światłowody Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

Źródło światła λ = 850 nm λ = 1300 nm. Miernik. mocy optycznej. Badany odcinek światłowodu MM lub SM

Źródło światła λ = 850 nm λ = 1300 nm. Miernik. mocy optycznej. Badany odcinek światłowodu MM lub SM Sieci i instalacje z tworzyw sztucznych 2005 Wojciech BŁAŻEJEWSKI*, Paweł GĄSIOR*, Anna SANKOWSKA** *Instytut Materiałoznawstwa i Mechaniki Technicznej, Politechnika Wrocławska **Wydział Elektroniki, Fotoniki

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Lasery światłowodowe Źródło: www.jakubduba.pl Światłowód płaszcz n 2 n 1 > n 2 rdzeń n 1 zjawisko całkowitego wewnętrznego odbicia Źródło:

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

POMIAR APERTURY NUMERYCZNEJ

POMIAR APERTURY NUMERYCZNEJ ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

Pomiar tłumienności światłowodów włóknistych

Pomiar tłumienności światłowodów włóknistych LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 4 Pomiar tłumienności światłowodów włóknistych Cel ćwiczenia: Zapoznanie studentów z parametrem tłumienności światłowodów oraz ze sposobem jego pomiaru Badane elementy:

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

Rys. 1 Schemat układu obrazującego 2f-2f

Rys. 1 Schemat układu obrazującego 2f-2f Ćwiczenie 15 Obrazowanie. Celem ćwiczenia jest zbudowanie układów obrazujących w świetle monochromatycznym oraz zaobserwowanie różnic w przypadku obrazowania za pomocą różnych elementów optycznych, zwracając

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 )

2007-10-27. NA = sin Θ = (n rdzenia2 - n płaszcza2 ) 1/2. L[dB] = 10 log 10 (NA 1 /NA 2 ) dr inż. Krzysztof Hodyr Technika Światłowodowa Część 2 Tłumienie i straty w światłowodach Pojęcie dyspersji światłowodów Technika zwielokrotnienia WDM Źródła strat tłumieniowych sprzężenia światłowodu

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P. Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.

Bardziej szczegółowo

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Badania światłowodowych siatek Bragga nanoszonych metodą skanowania maski fazowej

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Badania światłowodowych siatek Bragga nanoszonych metodą skanowania maski fazowej Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Badania światłowodowych siatek Bragga nanoszonych metodą skanowania maski fazowej Praca nr 12300065, 14300035, 09300065 Warszawa, grudzień 2005 Badania

Bardziej szczegółowo

ĆWICZENIE 6. Hologram gruby

ĆWICZENIE 6. Hologram gruby ĆWICZENIE 6 Hologram gruby 1. Wprowadzenie Na jednym z poprzednich ćwiczeń zapoznaliśmy się z cienkim (powierzchniowo zapisanym) hologramem Fresnela, który daje nam możliwość zapisu obiektu przestrzennego.

Bardziej szczegółowo

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia

Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia Dr inż. Tomasz Kozacki Prof. dr hab.inż. Romuald Jóźwicki Zakład Techniki Optycznej Instytut Mikromechaniki i Fotoniki pokój 513a ogłoszenia na tablicach V-tego piętra kurs magisterski grupa R41 semestr

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 8 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ. Wykaz przyrządów Transmisyjne siatki dyfrakcyjne (S) : typ A -0 linii na milimetr oraz typ B ; Laser lub inne źródło światła

Bardziej szczegółowo

Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera

Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera ĆWICZENIE 2 Koherentne korelatory optyczne i hologram Fouriera 1. Wprowadzenie Historycznie jednym z ważniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW.

3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW. 3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW. Przy rozchodzeniu się fal dźwiękowych może dochodzić do częściowego lub całkowitego odbicia oraz przenikania fali przez granice ośrodków. Przeszkody napotykane

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa

Bardziej szczegółowo

Zastosowanie deflektometrii do pomiarów kształtu 3D. Katarzyna Goplańska

Zastosowanie deflektometrii do pomiarów kształtu 3D. Katarzyna Goplańska Zastosowanie deflektometrii do pomiarów kształtu 3D Plan prezentacji Metody pomiaru kształtu Deflektometria Zasada działania Stereo-deflektometria Kalibracja Zalety Zastosowania Przykład Podsumowanie Metody

Bardziej szczegółowo

ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH

ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH 1. ODBICIE I ZAŁAMANIE ŚWIATŁA 1.1. PRAWO ODBICIE I ZAŁAMANIA ŚWIATŁA Gdy promień światła pada na granicę pomiędzy dwiema różnymi

Bardziej szczegółowo

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie.

Ćwiczenie 3. Badanie wpływu makrozagięć światłowodów na ich tłumienie. LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 3 Badanie wpływu makrozagięć światłowodów na ich tłumienie. Cel ćwiczenia: Zapoznanie studentów z wpływem mikro- i makrozgięć światłowodów włóknistych na ich tłumienność.

Bardziej szczegółowo

Optotelekomunikacja. dr inż. Piotr Stępczak 1

Optotelekomunikacja. dr inż. Piotr Stępczak 1 Optotelekomunikacja dr inż. Piotr Stępczak 1 dr inż. Piotr Stępczak Falowa natura światła () ( ) () ( ) z t j jm z z z t j jm z z e e r H H e e r E E β ω β ω Θ ± Θ ± 1 0 0 1 0 1 1 zatem 0 n n n n gr λ

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

MIKROFALOWEJ I OPTOFALOWEJ

MIKROFALOWEJ I OPTOFALOWEJ E-LAB: LABORATORIUM TECHNIKI MIKROFALOWEJ I OPTOFALOWEJ Krzysztof MADZIAR Grzegorz KĘDZIERSKI, Jerzy PIOTROWSKI, Jerzy SKULSKI, Agnieszka SZYMAŃSKA, Piotr WITOŃSKI, Bogdan GALWAS Instytut Mikroelektroniki

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi

Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi Mikro optyka MO Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi Systemy bazujące na mikrooptyce Zalety systemów MO duże macierze wysoka dokładność pozycjonowania

Bardziej szczegółowo

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008 Detektor Fazowy Marcin Polkowski marcin@polkowski.eu 23 stycznia 2008 Streszczenie Raport z ćwiczenia, którego celem było zapoznanie się z działaniem detektora fazowego umożliwiającego pomiar słabych i

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 5 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku w powietrzu

Wyznaczanie prędkości dźwięku w powietrzu Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona

Laboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Laboratorium techniki laserowej Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Katedra Optoelektroniki i Systemów Elektronicznych, WET, Politechnika Gdaoska Gdańsk 006 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Jakub Orłowski 6 listopada 2012 Streszczenie W doświadczeniu dokonano pomiaru krzywizny soczewki płasko-wypukłej z wykorzystaniem

Bardziej szczegółowo

Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk

Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego

Bardziej szczegółowo

BŁĘDY W POMIARACH BEZPOŚREDNICH

BŁĘDY W POMIARACH BEZPOŚREDNICH Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

MICRON3D skaner do zastosowań specjalnych. MICRON3D scanner for special applications

MICRON3D skaner do zastosowań specjalnych. MICRON3D scanner for special applications Mgr inż. Dariusz Jasiński dj@smarttech3d.com SMARTTECH Sp. z o.o. MICRON3D skaner do zastosowań specjalnych W niniejszym artykule zaprezentowany został nowy skaner 3D firmy Smarttech, w którym do pomiaru

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

interferencja, dyspersja, dyfrakcja, okna transmisyjne Interferencja

interferencja, dyspersja, dyfrakcja, okna transmisyjne Interferencja interferencja, dyspersja, dyfrakcja, okna transmisyjne PiOS Interferencja Interferencja to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja

Bardziej szczegółowo

Ćwiczenie 1. Parametry statyczne diod LED

Ćwiczenie 1. Parametry statyczne diod LED Ćwiczenie. Parametry statyczne diod LED. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi właściwościami i charakterystykami diod LED. Poznanie ograniczeń i sposobu zasilania tego typu

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów

Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych. Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Pomiary parametrów telekomunikacyjnych światłowodów jednomodowych Na poprzednim wykładzie przedstawiono podstawowe parametry światłowodów Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

Nowoczesne sieci komputerowe

Nowoczesne sieci komputerowe WYŻSZA SZKOŁA BIZNESU W DĄBROWIE GÓRNICZEJ WYDZIAŁ ZARZĄDZANIA INFORMATYKI I NAUK SPOŁECZNYCH Instrukcja do laboratorium z przedmiotu: Nowoczesne sieci komputerowe Instrukcja nr 1 Dąbrowa Górnicza, 2010

Bardziej szczegółowo

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki?

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? 1 Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? Sprawozdania należny oddać na kolejnych zajęciach laboratoryjnych. Każde opóźnienie powoduje obniżenie oceny za sprawozdanie o 0,

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

Wielomodowe, grubordzeniowe

Wielomodowe, grubordzeniowe Wielomodowe, grubordzeniowe i z plastykowym pokryciem włókna. Przewężki i mikroelementy Multimode, Large-Core, and Plastic Clad Fibers. Tapered Fibers and Specialty Fiber Microcomponents Wprowadzenie Włókna

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Fotonika. Plan: Wykład 2: Elementy refrakcyjne i dyfrakcyjne

Fotonika. Plan: Wykład 2: Elementy refrakcyjne i dyfrakcyjne Fotonika Wykład 2: Elementy refrakcyjne i dyfrakcyjne Plan: Siatka dyfrakcyjna: amplitudowa, fazowa Siatka Dammana Soczewka: refrakcyjna, dyfrakcyjna, macierz mikrosoczewek Łączenie refrakcji z dyfrakcją

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Opracowanie bloku scalania światła do dyskretnego pseudomonochromatora wzbudzającego

Opracowanie bloku scalania światła do dyskretnego pseudomonochromatora wzbudzającego Przemysław CEYNOWA Wydział Elektroniki i Informatyki, Politechnika Koszalińska E-mail: przemysław.ceynowa@gmail.com Opracowanie bloku scalania światła do dyskretnego pseudomonochromatora wzbudzającego

Bardziej szczegółowo

Problematyka budowy skanera 3D doświadczenia własne

Problematyka budowy skanera 3D doświadczenia własne Problematyka budowy skanera 3D doświadczenia własne dr inż. Ireneusz Wróbel ATH Bielsko-Biała, Evatronix S.A. iwrobel@ath.bielsko.pl mgr inż. Paweł Harężlak mgr inż. Michał Bogusz Evatronix S.A. Plan wykładu

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr 4 do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Światłowody Nazwa w języku angielskim Optical fibers Kierunek studiów (jeśli dotyczy): Fizyka Techniczna Specjalność (jeśli dotyczy):

Bardziej szczegółowo

XLIII OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne

XLIII OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne XLIII OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Nazwa zadania: Współczynnik załamania cieczy wyznaczany domową metodą Masz do dyspozycji: - cienkościenne, przezroczyste naczynie szklane

Bardziej szczegółowo

Pomiar dyspersji materiałów za pomocą spektrometru

Pomiar dyspersji materiałów za pomocą spektrometru Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia

Bardziej szczegółowo

Przestrzenne układy oporników

Przestrzenne układy oporników Przestrzenne układy oporników Bartosz Marchlewicz Tomasz Sokołowski Mateusz Zych Pod opieką prof. dr. hab. Janusza Kempy Liceum Ogólnokształcące im. marsz. S. Małachowskiego w Płocku 2 Wstęp Do podjęcia

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Fizyka Laserów wykład 6. Czesław Radzewicz

Fizyka Laserów wykład 6. Czesław Radzewicz Fizyka Laserów wykład 6 Czesław Radzewicz wzmacniacz laserowy (długie impulsy) - przypomnienie 2 bilans obsadzeń: σ 21 N 2 F s σ 21 N 2 F ħω 12 dn 2 dt = σ 21N 1 F σ 21 N 2 F + σ 21 N 1 F 1 dn 1 dt = F

Bardziej szczegółowo

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia

Bardziej szczegółowo

Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej

Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej Paweł GÓRSKI 1), Emil KOZŁOWSKI 1), Gracjan SZCZĘCH 2) 1) Centralny Instytut Ochrony Pracy Państwowy Instytut Badawczy

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie

Bardziej szczegółowo

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 dr inż. ALEKSANDER LISOWIEC dr hab. inż. ANDRZEJ NOWAKOWSKI Instytut Tele- i Radiotechniczny Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 W artykule przedstawiono

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

Prof. Eugeniusz RATAJCZYK. Makrogemetria Pomiary odchyłek kształtu i połoŝenia

Prof. Eugeniusz RATAJCZYK. Makrogemetria Pomiary odchyłek kształtu i połoŝenia Prof. Eugeniusz RATAJCZYK Makrogemetria Pomiary odchyłek kształtu i połoŝenia Rodzaje odchyłek - symbole Odchyłki kształtu okrągłości prostoliniowości walcowości płaskości przekroju wzdłuŝnego Odchyłki

Bardziej szczegółowo