Patrycja Prokopiuk. Zastosowanie rachunku prawdopodobieństwa w Pokerze Pięciokartowym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Patrycja Prokopiuk. Zastosowanie rachunku prawdopodobieństwa w Pokerze Pięciokartowym"

Transkrypt

1 Patrycja Prokopiuk Zastosowanie rachunku prawdopodobieństwa w Pokerze Pięciokartowym Wrocław 7 maja 04

2 Spis treści Wstęp Objaśnienie obliczeń Algorytmy Dobór karty Para Dwie pary Trójka Strit Kolor Full Kareta Poker Poker Królewski Dobór kart Para Dwie pary Trójka Strit Kolor Full Kareta Poker Poker Królewski Dobór kart Para Dwie pary Trójka Strit Kolor Full Kareta Poker Poker Królewski Dobór 4 kart Para Dwie pary Trójka Strit Kolor Full Kareta Poker Poker Królewski

3 Wstęp Tematem mojej krótkiej pracy jest zastosowanie podstaw rachunku prawdopodobieństwa w jednej z najpopularniejszych gier karcianych: pokerze. Skupimy się na pięciokartowej wersji ten gry. Motywem przewodnim będzie obliczanie prawdopodobieństwa otrzymania wybranego układu kart. Praca ta ma charakter matematyczny, dlatego zapoznanie się z zasadami gry w pokera pozostawiam czytelnikowi. Objaśnienie obliczeń Zanim zacznie się zabawa w wyliczanie kombinacji, pozwolę sobie przedstawić dość ważne założenie. W poniższych obliczeniach przyjmujemy, że dobieramy tyle kart, żeby łącznie było ich na stole pięć. Tzn, jeśli mamy na stole jedną, to dobieramy cztery. Proste, prawda? Przejdźmy więc do kolejnej istotnej sprawy. Co rozumiemy poprzez prawdopodobieństwo otrzymania wybranego układu kart? Oznacza to, że chcemy otrzymać tylko ten jeden układ kart. Weźmy sobie przykład: Jakie mamy prawdopodobieństwo otrzymania pary? Pierwsze co nam się nasuwa na myśl to prawdopodobieństwo równe 00%. Niestety jesteśmy w błędzie. Jeśli wylosujemy następującę karty: Otrzymamy układ: W ten sposób otrzymaliśmy układ, zwany trójką. Prawdopodobieństwo otrzymania tylko pary nie wynosi więc 00%. Skoro już wszystko jest jasne, możemy przejść do głównej części prezentacji: algorytmów :)

4 . Algorytmy Wszystkie zawarte w tekście algorytmy są wynikiem mojej ciężkiej oraz SAMODZIELNEJ pracy. W liczeniu prawdopodobieństwa najważniejsze nie są dobierane karty, tylko te, które leżą już na stole. To one są argumentami poniższych algorytmów. Potrzebne zmienne: Pr - prawdopodobieństwo Ω - ilość wszystkich kombinacji A - ilość otrzymanych kombinacji Oraz potrzebny nam wzór: P r = A Ω 00%.. Dobór karty Poniżej mamy algorytm, który zostaje wykonany w przypadku, gdy na stole mamy już 4 karty i dobieramy tylko jedną. Uwaga! To jest tylko przykład układu kart i nie ma on zastosowania w poniższych algorytmach! ( ) 48 Ω = = 48 Para if na stole ( )( jest tylko ) jedna para then 0 4 = 40 if na stole jest (trójka or pary or kareta) then ( )( ) 4 = eliminujemy przypadek otrzymania trójki i par

5 Dwie pary if na stole ( )( jest) tylko jedna para then = 6 if ( na stole )( ) są tylko pary then 4 = 44 Trójka if na stole ( ) jest tylko jedna para then = if ( na stole )( ) jest tylko trójka then 4 = 44 Strit if wszystkie karty na stole są wartościami obok siebie then if na stole ( ) jest or A then 4 poker pokerkrolewski ( ) 4 poker pokerkrolewski if karty są wartościami obok siebie a czwarta o jedną dalej or są( obok ) siebie x 4 then 4 poker pokerkrolewski Kolor if karty( na) stole są tego samego koloru then 9 poker pokerkrolewski eliminujemy przypadek otrzymania fula eliminujemy przypadek otrzymania karety i fula 4 a pomiędzy nimi jedno wolne miejsce, np.,,5,6 4

6 Full Kareta Poker if jest tylko ( ) trójka then = if ( są )( pary ) then = 4 if wszystkie karty na stole mają tą samą wartość then 0% if tylko karty na stole mają tą samą wartość then if wszystkie karty są tego samego koloru and nie ma A then if wszystkie karty na stole są wartościami obok siebie then if na stole jest or K then if karty są wartościami obok siebie a czwarta o jedną dalej or są obok siebie x then Poker Królewski if wszystkie karty są z przedziału 0-A w tym samym kolorze then 5

7 .. Dobór kart Poniżej mamy algorytm, który zostaje wykonany w przypadku, gdy na stole mamy karty i dobieramy do nich dwie. Uwaga! To jest tylko przykład układu kart i nie ma on zastosowania w poniższych algorytmach! ( ) 49 Ω = = 76 Para if na stole jest para 5 then ( )( ) 4 = 880 if na stole jest trójka then ( ) ( )( ) ( )( ) = 40 Dwie pary if na stole ( )( jest tylko )( ) jedna ( para )( then ) 4 4 = 98 if na stole jest trójka then ( )( ) = 7 Trójka if na stole jest trójka 6 then ( )( ) 4 = 056 if ( na)( stole)( jest ) tylko dwójka then 4 = 88 ( )( ) = 9 5 eliminujemy przypadek otrzymania trójki, par, karety i fula 6 eliminujemy przypadek otrzymania fula i karety 6

8 Strit if wszystkie karty na stole są wartościami obok siebie then if na stole jest ( or A) then ( ) 4 poker pokerkrolewski 7 if na stole nie ma ( or A), ale jest ( or K) then ( ) 4 poker pokerkrolewski ( ) 4 poker pokerkrolewski if karty są wartościami obok siebie (nie ) then if trzecia jest o wartości dalej then ( ) 4 poker pokerkrolewski if trzecia jest o wartość dalej then if na stole jest ( or A) then ( ) 4 poker pokerkrolewski ( ) 4 poker pokerkrolewski if Wszystkie są oddalone od siebie o wartość then ) poker pokerkrolewski ( 4 Kolor if karty( na) stole są tego samego koloru then 0 poker pokerkrolewski Full if jest trójka ( )( then ) 4 = 7 if ( jest ) tylko ( )( para) then = 9 7 odwołując się do funkcji poker i poker królewski eliminujemy przypadek otrzymania pokera lub pokera królewskiego 7

9 Kareta Poker if karty ( na )( stole ) mają tą samą wartość then 4 = 48 if tylko karty na stole mają tą samą wartość then if wszystkie karty są tego samego koloru and nie ma A then if wszystkie karty na stole są wartościami obok siebie then if na stole jest ( or K) then if na stole jest ( or Q), ale nie ma ( or K) then if karty są wartościami obok siebie (a nie ) then if trzecia jest o wartości dalej then if trzecia jest o wartość dalej then if na stole jest ( or K) then if wszystkie są oddalone o jedną wartość then Poker Królewski if wszystkie karty są z przedziału 0-A w tym samym kolorze then 8

10 .. Dobór kart Poniżej mamy algorytm, który zostaje wykonany w przypadku, gdy na stole mamy karty i dobieramy do nich trzy. Uwaga! To jest tylko przykład układu kart i nie ma on zastosowania w poniższych algorytmach! Ω = ( ) 50 = 9600 Para if na stole jest tylko jedna para 8 then ( )( ) 4 = 4080 ( )( )( ) ( )( 0 ) = 790 Dwie pary if na stole ( )( jest tylko )( jedna )( ) para then 4 4 = 440 ( ) ( )( ) ( )( )( )( )( ) = 86 Trójka if na stole jest trójka then ( )( ) ( ) 4 = ( )( )( )( ) 4 = 64 8 eliminujemy przypadek otrzymania trójki, par, czwórki i fula 9

11 Strit Kolor Full if wszystkie karty na stole są wartościami obok siebie then if na stole jest ( or A) then ( ) 4 poker pokerkrolewski if na stole nie ma ( or A), ale jest ( or K) then ( ) 4 poker pokerkrolewski if na stole nie ma (,,K,A), ale jest (4 or Q) then ( ) 4 poker pokerkrolewski ( ) 4 4 poker pokerkrolewski if są oddalone o wartość then if jest ( or A) then ( ) 4 poker pokerkrolewski if nie ma ( or A), ale jest ( or K) then ( ) 4 poker pokerkrolewski ( ) poker pokerkrolewski if są oddalone od siebie o wartości then if jest ( or A) then ( ) 4 poker pokerkrolewski ( ) 4 poker pokerkrolewski if są oddalone o wartości then ( ) 4 poker pokerkrolewski if karty( na) stole są tego samego koloru then poker pokerkrolewski if jest para ( )( then )( ) 4 ( )( ) = 9 ( ) = 9 0

12 Kareta Poker if na stole ( )( jest para ) then 4 = 48 ( ) = if na stole nie ma A 9 then if wszystkie karty na stole są wartościami obok siebie 0 then if na stole jest or K then if na stole nie ma ( or K), ale jest ( or Q) then if na stole nie ma (,,Q,K), ale jest (4 or J) then 4 if są oddalone o wartość then if jest ( or K) then if nie ma ( or K), ale jest ( or Q) then if są oddalone od siebie o wartości then if jest ( or K) then if są oddalone o wartości then Poker Królewski if wszystkie karty są z przedziału 0-A w tym samym kolorze then 0 eliminujemy przypadek otrzymania pokera królewskiego

13 .4. Dobór 4 kart Poniżej mamy algorytm, który zostaje wykonany w przypadku, gdy na stole mamy tylko kartę i dobieramy do niej cztery. Uwaga! To jest tylko przykład układu kart i nie ma on zastosowania w poniższych algorytmach! ( ) 5 Ω = = Para ( )( ) ( Dwie pary ( )( )( )( )( ) 4 4 Trójka Strit Kolor ( )( ) ( )( ( )( if na stole jest ( or A) then ( ) 4 4 poker pokerkrolewski if na stole jest ( or K) then ( ) 4 4 poker pokerkrolewski if na stole jest (4 or Q) then ( ) 4 4 poker pokerkrolewski if na stole jest (5 or J) then ( ) poker pokerkrolewski ( ) poker pokerkrolewski ( ) poker pokerkrolewski 4 ) = ) = 664 ) = 499 Full ( )( ) ( )( ) = 60

14 Kareta Poker ( ) ( ) = 60 if na stole nie ma A then if na stole jest ( or K) then if na stole jest ( or Q) then if na stole jest (4 or J) then if na stole jest (5 or 0) then 4 5 Poker Królewski if karta jest z przedziału 0-A then eliminujemy przypadek otrzymania pokera królewskiego

Odmiany Gry. Rozpoczęcie gry

Odmiany Gry. Rozpoczęcie gry Odmiany Gry Limit: każda runda ma określony wcześniej limit podbicia, Pot-Limit: w każdej rundzie gracz nie może postawić więcej niż wartość puli znajdującej się na stole, No-Limit: w każdej chwili można

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia)

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) 1. Ile układów kart w pokerze to Dwie pary? Dwie pary to układ 5 kart

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA ( ) PRAWDOPOD OBIEŃSTW O W A RUNKOWE PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B ( ) WIĘC CO OZNACZA, ŻE ZDARZENIE B NIE MA WPŁYWU

Bardziej szczegółowo

Programowanie genetyczne, gra SNAKE

Programowanie genetyczne, gra SNAKE STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

Beskidzki Szlem czyli wystarczy nie robić błędów prostych

Beskidzki Szlem czyli wystarczy nie robić błędów prostych Beskidzki Szlem czyli wystarczy nie robić błędów prostych To prawda oczywista i po raz kolejny pokazało się jak bardzo bolesna. Równie oczywistą prawdą jest to, że nawet jeśli nie będziesz robił błędów

Bardziej szczegółowo

ZASADY. Dopuszczalne kombinacje kart w Gang of Four: E POJEDYNCZEKARTY

ZASADY. Dopuszczalne kombinacje kart w Gang of Four: E POJEDYNCZEKARTY ZASADY Gang of Four to wywodząca się z serca orientu ekscytująca gra karciana, która oddaje pełne tajemnic i intryg realia starożytnych Chin. Będąc następca Choh Dai Di, najbardziej znanej gry hazardowej

Bardziej szczegółowo

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

ZASADY GRY NAJCZĘSCIEJ GRYWANA GRA LICZBOWA NA ŚWIECIE DLA CAŁEJ RODZINY

ZASADY GRY NAJCZĘSCIEJ GRYWANA GRA LICZBOWA NA ŚWIECIE DLA CAŁEJ RODZINY 12355541 Rummikub ZASADY GRY NAJCZĘSCIEJ GRYWANA GRA LICZBOWA NA ŚWIECIE DLA CAŁEJ RODZINY Dla 2 4 graczy w wieku od 7 lat Zawartość opakowania: 104 kostki do gry, ponumerowane od 1 do 13, w czterech kolorach

Bardziej szczegółowo

Sterowanie z wykorzystaniem logiki rozmytej

Sterowanie z wykorzystaniem logiki rozmytej Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie

Bardziej szczegółowo

LICZBY PIERWSZE. Jan Ciurej Radosław Żak

LICZBY PIERWSZE. Jan Ciurej Radosław Żak LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna

Bardziej szczegółowo

9. Podstawowe narzędzia matematyczne analiz przestrzennych

9. Podstawowe narzędzia matematyczne analiz przestrzennych Waldemar Izdebski - Wykłady z przedmiotu SIT 75 9. odstawowe narzędzia matematyczne analiz przestrzennych Niniejszy rozdział służy ogólnemu przedstawieniu metod matematycznych wykorzystywanych w zagadnieniu

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

KRYPTOGRAFIA I OCHRONA DANYCH PROJEKT

KRYPTOGRAFIA I OCHRONA DANYCH PROJEKT KRYPTOGRAFIA I OCHRONA DANYCH PROJEKT Temat: Zaimplementować system kryptografii wizualnej http://www.cacr.math.uwaterloo.ca/~dstinson/visual.html Autor: Tomasz Mitręga NSMW Grupa 1 Sekcja 2 1. Temat projektu

Bardziej szczegółowo

Ćwiczenia z wyliczania wartości funkcji

Ćwiczenia z wyliczania wartości funkcji Ćwiczenia z wyliczania wartości funkcji 4 października 2011 1 Wprowadzenie Wyliczanie wartości wyrażenia nie jest sprawą oczywistą, szczególnie jeżeli chodzi o aplikację funkcji. Poniższy tekst nie jest

Bardziej szczegółowo

Program na zaliczenie: Odejmowanie widm

Program na zaliczenie: Odejmowanie widm Piotr Chojnacki: MATLAB Program na zaliczenie: Odejmowanie widm {Poniższy program ma za zadanie odjęcie dwóch widm od siebie. Do poprawnego działania programu potrzebne są trzy funkcje: odejmowaniewidm.m

Bardziej szczegółowo

GRA DLA 2-4 GRACZY W WIEKU 6-106 LAT AUTORZY GRY: VALERY FOURCADE I JEAN-PHILIPPE MARS

GRA DLA 2-4 GRACZY W WIEKU 6-106 LAT AUTORZY GRY: VALERY FOURCADE I JEAN-PHILIPPE MARS GRA DLA 2-4 GRACZY W WIEKU 6-106 LAT AUTORZY GRY: VALERY FOURCADE I JEAN-PHILIPPE MARS Jak przewieźć statkiem wilka, kozę i kapustę? To nie takie proste, ponieważ wilk ma apetyt na kozę, a koza bardzo

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

Obliczanie procentu danej liczby i liczby na podstawie jej. procentu jako umiejętności kluczowe w pracy doradcy. inwestycyjnego.

Obliczanie procentu danej liczby i liczby na podstawie jej. procentu jako umiejętności kluczowe w pracy doradcy. inwestycyjnego. 1 Obliczanie procentu danej liczby i liczby na podstawie jej procentu jako umiejętności kluczowe w pracy doradcy inwestycyjnego. Czas trwania zajęć: ok. 40 minut Kontekst w jakim wprowadzono doświadczenie:

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum. Obliczanie prawdopodobieństwa za pomocą metody drzew Jeżeli doświadczenie losowe składa się z więcej niż jednego etapu, takich jak serie rzutów kostką lub monetą, zastosowanie klasycznej definicji prawdopodobieństwa

Bardziej szczegółowo

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule.

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. Jeśli obie wylosowane kule są tego samego koloru to zwycięża G

Bardziej szczegółowo

Podręcznik programu Kiriki. Albert Astals Cid Eugene Trounev Polskie tłumaczenie: Krzysztof Woźniak

Podręcznik programu Kiriki. Albert Astals Cid Eugene Trounev Polskie tłumaczenie: Krzysztof Woźniak Albert Astals Cid Eugene Trounev Polskie tłumaczenie: Krzysztof Woźniak 2 Spis treści 1 Wprowadzenie 5 2 Jak grać 6 3 Zasady gry, strategia gry i sztuczki 8 3.1 Zasady gry..........................................

Bardziej szczegółowo

Komentarz technik poligraf 311[28]-01 Czerwiec 2009

Komentarz technik poligraf 311[28]-01 Czerwiec 2009 Strona 1 z 11 Strona 2 z 11 Rozwiązanie zadania egzaminacyjnego podlegało ocenie w zakresie następujących elementów pracy: I. Tytuł pracy egzaminacyjnej. II. Założenia do opracowania projektu wynikające

Bardziej szczegółowo

Dopasowanie prostej do wyników pomiarów.

Dopasowanie prostej do wyników pomiarów. Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 3a średnia klasy: 22.52 pkt średnia szkoły: 21.93 pkt średnia ogólnopolska: 14.11 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bardziej szczegółowo

FERIE Z ROBOTAMI - PÓŁKOLONIE

FERIE Z ROBOTAMI - PÓŁKOLONIE s FERIE Z ROBOTAMI - PÓŁKOLONIE RoboNET Wspólnie zmieniamy edukację w Polsce! PÓŁKOLONIE ROBOCAMP Półkolonie RoboCAMP to 5 dniowe zajęcia kreatywne w okresie ferii zimowych, prowadzone w formie warsztatów,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJĄCY IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). Ewentualny

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 3 Generacja realizacji zmiennych losowych Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia: Generowanie

Bardziej szczegółowo

PHASE 10 LICZBA GRACZY: 2-6

PHASE 10 LICZBA GRACZY: 2-6 PHASE 10 LICZBA GRACZY: 2-6 CEL GRY: Być pierwszym graczem, który ukończy wszystkie 10 faz. W przypadku remisu gracz z mniejszym wynikiem zostaje zwycięzcą. ZAWARTOŚĆ: Karty ściągi (opisujące 10 faz) oraz

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

SAMOGŁOSKI I SPÓŁGŁOSKI

SAMOGŁOSKI I SPÓŁGŁOSKI INSTRUKCJA SAMOGŁOSKI I SPÓŁGŁOSKI gra edukacyjna w 2 wariantach Gra I dla 2 4 graczy rekwizyty: 1) tabliczki z samogłoskami - 36 szt. 2) tabliczki ze spółgłoskami - 70 szt. 3) tabliczki Joker - 2 szt.

Bardziej szczegółowo

Scenariusz lekcji Ozobot w klasie: Tabliczka mnożenia

Scenariusz lekcji Ozobot w klasie: Tabliczka mnożenia Scenariusz lekcji Ozobot w klasie: Tabliczka mnożenia Opracowanie scenariusza: Richard Born Adaptacja scenariusza na język polski: mgr Piotr Szlagor Tematyka: Informatyka, matematyka, obliczenia, algorytm

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Projektowanie rozwiązania prostych problemów w języku C++ obliczanie pola trójkąta

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Projektowanie rozwiązania prostych problemów w języku C++ obliczanie pola trójkąta SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Scenariusz zajęć do programu kształcenia Myślę działam - idę w świat

Scenariusz zajęć do programu kształcenia Myślę działam - idę w świat Scenariusz zajęć do programu kształcenia Myślę działam - idę w świat Autor: Beata Sochacka Klasa II Edukacja: matematyczna, społeczna, plastyczna, polonistyczna (elementy). Cele zajęć: Rozwijanie umiejętności

Bardziej szczegółowo

6. Klasyczny algorytm genetyczny. 1

6. Klasyczny algorytm genetyczny. 1 6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu

Bardziej szczegółowo

XXII Konferencja SNM. Porozmawiajmy o walorach dydaktycznych SET Game

XXII Konferencja SNM. Porozmawiajmy o walorach dydaktycznych SET Game 1 XXII Konferencja SNM AKTYWNOŚCI MATEMATYCZNE Katarzyna Sikora, (Chorzów) ksikora35@gmail.com Porozmawiajmy o walorach dydaktycznych SET Game Streszczenie. Podczas warsztatów uczestnicy poznali historię

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych

Bardziej szczegółowo

Język skryptowy: Laboratorium 1. Wprowadzenie do języka Python

Język skryptowy: Laboratorium 1. Wprowadzenie do języka Python Język skryptowy: Laboratorium 1. Wprowadzenie do języka Python Język PYTHON Podstawowe informacje Python to język skryptowy, interpretowany - co oznacza, że piszemy skrypt, a następnie wykonujemy go za

Bardziej szczegółowo

Tytuł. Autor. Dział. Innowacyjne cele edukacyjne. Czas. Przebieg. Etap 1 - wprowadzenie. Etap 2 - algorytm 3. Sztuka szybkiego liczenia Cz.

Tytuł. Autor. Dział. Innowacyjne cele edukacyjne. Czas. Przebieg. Etap 1 - wprowadzenie. Etap 2 - algorytm 3. Sztuka szybkiego liczenia Cz. Tytuł Sztuka szybkiego liczenia Cz. II Autor Dariusz Kulma Dział Liczby wymierne Innowacyjne cele edukacyjne Zapoznanie uczniów z technikami szybkiego liczenia w pamięci niestosowanymi na lekcjach matematyki:

Bardziej szczegółowo

2 3 graczy: 20 kart 4 5 graczy: 16 kart 6 7 graczy: 12 kart 8 graczy: 10 kart

2 3 graczy: 20 kart 4 5 graczy: 16 kart 6 7 graczy: 12 kart 8 graczy: 10 kart Elementy gry 160 kart: 14 zestawów po 10 kart (numery 1-10) 20 kart nożyczek (joker) Instrukcja Przygotowanie Wszystkie karty tasuje się, tworząc jeden stos do dobierania. Każdemu z graczy rozdaje się

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

INSTRUKCJA. Gra dla 2 graczy w wieku 8-108 lat

INSTRUKCJA. Gra dla 2 graczy w wieku 8-108 lat INSTRUKCJA Gra dla 2 graczy w wieku 8-108 lat ELEMENTY GRY Sakiewka z 45 klejnotami (3 zielone, 6 fioletowych, 9 żółtych, 12 czerwonych, 15 niebieskich) 49 kart: 24 karty postaci (po 12 dla każdego gracza)

Bardziej szczegółowo

Zadania rachunkowe z termokinetyki w programie Maxima

Zadania rachunkowe z termokinetyki w programie Maxima Zadania rachunkowe z termokinetyki w programie Maxima pliku, polecenia do wpisywania w programie Maxima zapisane są czcionką typu: zmienna_w_maximie: 10; inny przykład f(x):=x+2*x+5; Problem 1 komorze

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

BIZNES PO POLSKU - karty

BIZNES PO POLSKU - karty INSTRUKCJA BIZNES PO POLSKU - karty gra dla 2 6 osób od 8 lat Rekwizyty: 1. Karty Firma (23 szt.) - w 9 grupach kolorystycznych 2. Karty Zawód (5 szt.) 3. Karty Pensja (5 szt.) 4. Karta Zasiłek (1 szt.)

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

... (środowisko) ... ... 60 minut

... (środowisko) ... ... 60 minut EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ARKUSZ I PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A2) WYBRANE:... (środowisko)... (kompilator)...

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Chcieliśmy podziękować Zasad Tichu nie można wytłumaczyć! Dwóch partnerów

Chcieliśmy podziękować Zasad Tichu nie można wytłumaczyć! Dwóch partnerów Chcieliśmy podziękować panu Chuang, przewodnikowi po niemieckojęzycznym departamencie Nanjing, za wszystko co dla nas uczynił. Polecamy tego wspaniałego przewodnika, ponieważ zna się na wszystkim: jest

Bardziej szczegółowo

Programowanie genetyczne - gra SNAKE

Programowanie genetyczne - gra SNAKE PRACOWNIA Z ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne - gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

PRZEPISY I ZASADY GRY W MINI SIATKÓWCE W POLSCE SPIS TREŚCI

PRZEPISY I ZASADY GRY W MINI SIATKÓWCE W POLSCE SPIS TREŚCI PRZEPISY I ZASADY GRY W MINI SIATKÓWCE W POLSCE SPIS TREŚCI Charakterystyka gry w mini siatkówkę. 1. Boisko do gry. 2. Wymiary boisk: a. dwójki (2x2); b. trójki (3x3); c. czwórki (4x4). 3. Wysokość siatki:

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

TECHNIKI ALGORYTMICZNE ROZWIĄZYWANIA GIER NA PRZYKŁADZIE GRY W KOŚCI YAHTZEE

TECHNIKI ALGORYTMICZNE ROZWIĄZYWANIA GIER NA PRZYKŁADZIE GRY W KOŚCI YAHTZEE UNIWERSYTET WARSZAWSKI Wydział Matematyki, Informatyki i Mechaniki Jakub Pawlewicz TECHNIKI ALGORYTMICZNE ROZWIĄZYWANIA GIER NA PRZYKŁADZIE GRY W KOŚCI YAHTZEE Rozprawa Doktorska Promotor rozprawy prof.

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie.

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie. Zadania z Rachunku Prawdopodobieństwa I - 1 1. Grupę n dzieci ustawiono w sposón losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją

Bardziej szczegółowo

SAMOGŁOSKI I SPÓŁGŁOSKI

SAMOGŁOSKI I SPÓŁGŁOSKI INSTRUKCJ SMGŁSKI I SPÓŁGŁSKI (MXI) gra edukacyjna w 2 wariantach - od 6 lat Gra I dla 2 4 graczy rekwizyty: 1) tabliczki z samogłoskami - 36 szt. 2) tabliczki ze spółgłoskami - 70 szt. 3) tabliczki Joker

Bardziej szczegółowo

Kurs z NetLogo - część 4.

Kurs z NetLogo - część 4. Kurs z NetLogo - część 4. Mateusz Zawisza Zakład Wspomagania i Analizy Decyzji Instytut Ekonometrii Szkoła Główna Handlowa Seminarium Wieloagentowe Warszawa, 10.01.2011 Agenda spotkań z NetLogo 15. listopada

Bardziej szczegółowo

BOOKSHOP KAFE GALLERY / WYDAWNICTWO 25.01.2013

BOOKSHOP KAFE GALLERY / WYDAWNICTWO 25.01.2013 BOOKSHOP KAFE GALLERY / WYDAWNICTWO 25.01.2013 WROCŁAW UL.WŁODKOWICA 11//PROJEKT I REALIZACJA: 2010//POW. 72m2+45M2 Lokal znajduje się w centrum Wrocławia w Dzielnicy Czterech Świątyń, w zabytkowej kamienicy

Bardziej szczegółowo

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański

Bardziej szczegółowo

W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012

W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012 Jerzy Matwijko Okręgowa Komisja Egzaminacyjna w Krakowie W jakim stopniu uczniowie opanowali umiejętność Wykorzystywania wiedzy w praktyce? Analiza zadań otwartych z arkusza Sprawdzian 2012 W Pracowni

Bardziej szczegółowo

Kto jeszcze gra w domino?

Kto jeszcze gra w domino? Mirosław Dąbrowski Kto jeszcze gra w domino? Domino, choć wciąż jeszcze można jego zestawy kupić w sklepach z zabawkami, nie należy już chyba do bardzo popularnych dziecięcych rozrywek. Szkoda, bo gra

Bardziej szczegółowo

ATOLL. Wykonali: Aleksandra Kuchta, Łukasz Wójcik, Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania,

ATOLL. Wykonali: Aleksandra Kuchta, Łukasz Wójcik, Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania, Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania, Politechnika Poznańska ATOLL Wykonali: Aleksandra Kuchta, WFT, PP, nr 76690, rok IV Łukasz Wójcik, WIiZ,

Bardziej szczegółowo

QUIZ O ŚWIECIE INSTRUKCJA WARIANT I

QUIZ O ŚWIECIE INSTRUKCJA WARIANT I INSTRUKCJA QUIZ O ŚWIECIE WARIANT I rekwizyty: 1) karty pytań i odpowiedzi - 97 szt. 2) karty liter a, b, c - 4 x 3 szt. 3) karta z nazwami działów - 1 szt. 4) pionki do gry - 4 szt. 5) kostka do gry 6)

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r Statystyka matematyczna Test χ 2 Wrocław, 18.03.2016r Zakres stosowalności Testowanie zgodności Testowanie niezależności Test McNemara Test ilorazu szans Copyright 2014, Joanna Szyda ZAKRES STOSOWALNOŚCI

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami technik elektroniki medycznej 322 [18]

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami technik elektroniki medycznej 322 [18] Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami technik elektroniki medycznej 322 [18] W etapie praktycznym zadanie egzaminacyjne sprawdzało umiejętności praktyczne z zakresu tematu

Bardziej szczegółowo

SCENARIUSZ ZA JĘĆ KLASA: III BLOK TEMATYCZNY: TEMAT: PODSTAWA PROGRAMOWA:

SCENARIUSZ ZA JĘĆ KLASA: III BLOK TEMATYCZNY: TEMAT: PODSTAWA PROGRAMOWA: SCENARIUSZ ZA JĘĆ KLASA: III BLOK TEMATYCZNY: W jesiennej szacie TEMAT: Mnożenie w zakresie 100. Utrwalanie. PODSTAWA PROGRAMOWA: Edukacja matematyczna: - (7.6) mnożny i dzieli liczby w zakresie tabliczki

Bardziej szczegółowo

Grafika PHP dla początkujących

Grafika PHP dla początkujących Instrukcja numer 03 Grafika PHP dla początkujących Zaawansowane techniki tworzenie stron WWW Dynamiczne tworzenie obrazków w PHP zadanie_10.php

Bardziej szczegółowo

Ilustracje: Mariusz Gandzel ELEMENTY GRY 54 karty akcji 1 karta Ostatnia prosta 1 kostka

Ilustracje: Mariusz Gandzel ELEMENTY GRY 54 karty akcji 1 karta Ostatnia prosta 1 kostka Gra dla 2-6 osób w wieku 8-108 lat Autor: Reiner Knizia Ilustracje: Mariusz Gandzel ELEMENTY GRY 54 karty akcji 1 karta Ostatnia prosta 1 kostka 5-częściowa trybuna z boksami na bolidy 12 bolidów 6 płytek

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami technik poligraf 311[28]

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami technik poligraf 311[28] Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami technik poligraf 311[28] 1 2 3 4 5 Załącznik 4 Rozwiązanie zadania egzaminacyjnego podlegało ocenie w zakresie następujących elementów

Bardziej szczegółowo

AKADEMIA ŁAMANIA GŁOWY Część IV POKROPEK

AKADEMIA ŁAMANIA GŁOWY Część IV POKROPEK AKADEMIA ŁAMANIA GŁOWY Część IV POKROPEK Pokropek został wymyślony w japońskim wydawnictwie Nikoli, specjalizującym się w łamigłówkach. Po raz pierwszy opublikowano go w czerwcu 1989 r. w jednym z czasopism

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Zadanie (matura z informatyki, 2009) Dane: dodatnia liczba całkowita R.

Bardziej szczegółowo

Zastosowanie Excela w obliczeniach inżynierskich.

Zastosowanie Excela w obliczeniach inżynierskich. Zastosowanie Excela w obliczeniach inżynierskich. Część I Różniczkowanie numeryczne. Cel ćwiczenia: Zapoznanie się z ilorazami różnicowymi do obliczania wartości pochodnych. Pochodna jest miarą szybkości

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Regulamin GRAND PRIX WOJEWÓDZTWA EKPOL 2015

Regulamin GRAND PRIX WOJEWÓDZTWA EKPOL 2015 Regulamin GRAND PRIX WOJEWÓDZTWA EKPOL 2015 1. Osoby uprawnione do zdobywania punktów w GPW oraz kwestie ogólne A. W GPW 2015 klasyfikowani będą tylko zawodnicy, będący aktualnie (czyli w dniu rozgrywania

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Wykonawca: PIOTR DOMALEWSKI. Termin oddania sprawozdania: 30.08

Wykonawca: PIOTR DOMALEWSKI. Termin oddania sprawozdania: 30.08 SPRAWOZDANIE Z LABORATORIUM Przedmiot: KOMUNIKACJA CZŁOWIEK KOMPUTER Temat ćwiczenia: ZNACZENIE BARWY W PROJEKTOWANIU INTERFEJSU UŻYTKOWNIKA Kierunek: Informatyka Tryb / semestr: Zaoczne / VI Termin wykonania

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: oblicza wartości liczbowe wyrażeń algebraicznych mnoży jednomiany.

SCENARIUSZ LEKCJI. Podstawa programowa: oblicza wartości liczbowe wyrażeń algebraicznych mnoży jednomiany. SCENARIUSZ LEKCJI. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 04.03.03 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka. Program nauczania: Matematyka

Bardziej szczegółowo

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki

Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Elżbieta Kula - wprowadzenie do Turbo Pascala i algorytmiki Turbo Pascal jest językiem wysokiego poziomu, czyli nie jest rozumiany bezpośrednio dla komputera, ale jednocześnie jest wygodny dla programisty,

Bardziej szczegółowo

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona Akademia Górniczo-Hutnicza im. Stanisªawa Staszica w Krakowie Wydziaª Fizyki i Informatyki Stosowanej Krzysztof Grz dziel kierunek studiów: informatyka stosowana Caªkowanie numeryczne - porównanie skuteczno±ci

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Język ludzki kod maszynowy

Język ludzki kod maszynowy Język ludzki kod maszynowy poziom wysoki Język ludzki (mowa) Język programowania wysokiego poziomu Jeśli liczba punktów jest większa niż 50, test zostaje zaliczony; w przeciwnym razie testu nie zalicza

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r. mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

Fixed LImit - Strategia Kompletny przewodnik dla początkujących

Fixed LImit - Strategia Kompletny przewodnik dla początkujących Początkujący Fixed LImit - Strategia Kompletny przewodnik dla początkujących 1 PokerStrategy Szkoła Pokera Co www.pokerstrategy.com może dla mnie zrobić? Uczysz się skutecznej, tzn. strategicznej gry w

Bardziej szczegółowo

Klasa I Część wspólna Klasa II Kształtowane dyspozycja Temat tygodniowy Temat dnia W bibliotece W bibliotece Zagadnienia z podstawy programowej

Klasa I Część wspólna Klasa II Kształtowane dyspozycja Temat tygodniowy Temat dnia W bibliotece W bibliotece Zagadnienia z podstawy programowej SCENARIUSZ ZAJĘĆ W KLASACH ŁĄCZONYCH I i II Klasa I Część wspólna Klasa II Kształtowane dyspozycja Temat Dzieci lubią bajki. Dzieci lubią czytać. tygodniowy Temat dnia W bibliotece W bibliotece Zagadnienia

Bardziej szczegółowo

Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne

Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne dr inż. Marcin Szlenk Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych m.szlenk@elka.pw.edu.pl Paradygmaty

Bardziej szczegółowo

QUIZ PRZYRODA I GEOGRAFIA POLSKI

QUIZ PRZYRODA I GEOGRAFIA POLSKI INSTRUKCJA QUIZ PRZYRODA I GEOGRAFIA POLSKI WARIANT I rekwizyty: 1) karty pytań i odpowiedzi - 98 szt. 2) karty liter a, b - 4 x 2 szt. 3) karty ze znakiem? - 4 szt. 4) pionki do gry - 4 szt. 5) kostka

Bardziej szczegółowo