Patrycja Prokopiuk. Zastosowanie rachunku prawdopodobieństwa w Pokerze Pięciokartowym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Patrycja Prokopiuk. Zastosowanie rachunku prawdopodobieństwa w Pokerze Pięciokartowym"

Transkrypt

1 Patrycja Prokopiuk Zastosowanie rachunku prawdopodobieństwa w Pokerze Pięciokartowym Wrocław 7 maja 04

2 Spis treści Wstęp Objaśnienie obliczeń Algorytmy Dobór karty Para Dwie pary Trójka Strit Kolor Full Kareta Poker Poker Królewski Dobór kart Para Dwie pary Trójka Strit Kolor Full Kareta Poker Poker Królewski Dobór kart Para Dwie pary Trójka Strit Kolor Full Kareta Poker Poker Królewski Dobór 4 kart Para Dwie pary Trójka Strit Kolor Full Kareta Poker Poker Królewski

3 Wstęp Tematem mojej krótkiej pracy jest zastosowanie podstaw rachunku prawdopodobieństwa w jednej z najpopularniejszych gier karcianych: pokerze. Skupimy się na pięciokartowej wersji ten gry. Motywem przewodnim będzie obliczanie prawdopodobieństwa otrzymania wybranego układu kart. Praca ta ma charakter matematyczny, dlatego zapoznanie się z zasadami gry w pokera pozostawiam czytelnikowi. Objaśnienie obliczeń Zanim zacznie się zabawa w wyliczanie kombinacji, pozwolę sobie przedstawić dość ważne założenie. W poniższych obliczeniach przyjmujemy, że dobieramy tyle kart, żeby łącznie było ich na stole pięć. Tzn, jeśli mamy na stole jedną, to dobieramy cztery. Proste, prawda? Przejdźmy więc do kolejnej istotnej sprawy. Co rozumiemy poprzez prawdopodobieństwo otrzymania wybranego układu kart? Oznacza to, że chcemy otrzymać tylko ten jeden układ kart. Weźmy sobie przykład: Jakie mamy prawdopodobieństwo otrzymania pary? Pierwsze co nam się nasuwa na myśl to prawdopodobieństwo równe 00%. Niestety jesteśmy w błędzie. Jeśli wylosujemy następującę karty: Otrzymamy układ: W ten sposób otrzymaliśmy układ, zwany trójką. Prawdopodobieństwo otrzymania tylko pary nie wynosi więc 00%. Skoro już wszystko jest jasne, możemy przejść do głównej części prezentacji: algorytmów :)

4 . Algorytmy Wszystkie zawarte w tekście algorytmy są wynikiem mojej ciężkiej oraz SAMODZIELNEJ pracy. W liczeniu prawdopodobieństwa najważniejsze nie są dobierane karty, tylko te, które leżą już na stole. To one są argumentami poniższych algorytmów. Potrzebne zmienne: Pr - prawdopodobieństwo Ω - ilość wszystkich kombinacji A - ilość otrzymanych kombinacji Oraz potrzebny nam wzór: P r = A Ω 00%.. Dobór karty Poniżej mamy algorytm, który zostaje wykonany w przypadku, gdy na stole mamy już 4 karty i dobieramy tylko jedną. Uwaga! To jest tylko przykład układu kart i nie ma on zastosowania w poniższych algorytmach! ( ) 48 Ω = = 48 Para if na stole ( )( jest tylko ) jedna para then 0 4 = 40 if na stole jest (trójka or pary or kareta) then ( )( ) 4 = eliminujemy przypadek otrzymania trójki i par

5 Dwie pary if na stole ( )( jest) tylko jedna para then = 6 if ( na stole )( ) są tylko pary then 4 = 44 Trójka if na stole ( ) jest tylko jedna para then = if ( na stole )( ) jest tylko trójka then 4 = 44 Strit if wszystkie karty na stole są wartościami obok siebie then if na stole ( ) jest or A then 4 poker pokerkrolewski ( ) 4 poker pokerkrolewski if karty są wartościami obok siebie a czwarta o jedną dalej or są( obok ) siebie x 4 then 4 poker pokerkrolewski Kolor if karty( na) stole są tego samego koloru then 9 poker pokerkrolewski eliminujemy przypadek otrzymania fula eliminujemy przypadek otrzymania karety i fula 4 a pomiędzy nimi jedno wolne miejsce, np.,,5,6 4

6 Full Kareta Poker if jest tylko ( ) trójka then = if ( są )( pary ) then = 4 if wszystkie karty na stole mają tą samą wartość then 0% if tylko karty na stole mają tą samą wartość then if wszystkie karty są tego samego koloru and nie ma A then if wszystkie karty na stole są wartościami obok siebie then if na stole jest or K then if karty są wartościami obok siebie a czwarta o jedną dalej or są obok siebie x then Poker Królewski if wszystkie karty są z przedziału 0-A w tym samym kolorze then 5

7 .. Dobór kart Poniżej mamy algorytm, który zostaje wykonany w przypadku, gdy na stole mamy karty i dobieramy do nich dwie. Uwaga! To jest tylko przykład układu kart i nie ma on zastosowania w poniższych algorytmach! ( ) 49 Ω = = 76 Para if na stole jest para 5 then ( )( ) 4 = 880 if na stole jest trójka then ( ) ( )( ) ( )( ) = 40 Dwie pary if na stole ( )( jest tylko )( ) jedna ( para )( then ) 4 4 = 98 if na stole jest trójka then ( )( ) = 7 Trójka if na stole jest trójka 6 then ( )( ) 4 = 056 if ( na)( stole)( jest ) tylko dwójka then 4 = 88 ( )( ) = 9 5 eliminujemy przypadek otrzymania trójki, par, karety i fula 6 eliminujemy przypadek otrzymania fula i karety 6

8 Strit if wszystkie karty na stole są wartościami obok siebie then if na stole jest ( or A) then ( ) 4 poker pokerkrolewski 7 if na stole nie ma ( or A), ale jest ( or K) then ( ) 4 poker pokerkrolewski ( ) 4 poker pokerkrolewski if karty są wartościami obok siebie (nie ) then if trzecia jest o wartości dalej then ( ) 4 poker pokerkrolewski if trzecia jest o wartość dalej then if na stole jest ( or A) then ( ) 4 poker pokerkrolewski ( ) 4 poker pokerkrolewski if Wszystkie są oddalone od siebie o wartość then ) poker pokerkrolewski ( 4 Kolor if karty( na) stole są tego samego koloru then 0 poker pokerkrolewski Full if jest trójka ( )( then ) 4 = 7 if ( jest ) tylko ( )( para) then = 9 7 odwołując się do funkcji poker i poker królewski eliminujemy przypadek otrzymania pokera lub pokera królewskiego 7

9 Kareta Poker if karty ( na )( stole ) mają tą samą wartość then 4 = 48 if tylko karty na stole mają tą samą wartość then if wszystkie karty są tego samego koloru and nie ma A then if wszystkie karty na stole są wartościami obok siebie then if na stole jest ( or K) then if na stole jest ( or Q), ale nie ma ( or K) then if karty są wartościami obok siebie (a nie ) then if trzecia jest o wartości dalej then if trzecia jest o wartość dalej then if na stole jest ( or K) then if wszystkie są oddalone o jedną wartość then Poker Królewski if wszystkie karty są z przedziału 0-A w tym samym kolorze then 8

10 .. Dobór kart Poniżej mamy algorytm, który zostaje wykonany w przypadku, gdy na stole mamy karty i dobieramy do nich trzy. Uwaga! To jest tylko przykład układu kart i nie ma on zastosowania w poniższych algorytmach! Ω = ( ) 50 = 9600 Para if na stole jest tylko jedna para 8 then ( )( ) 4 = 4080 ( )( )( ) ( )( 0 ) = 790 Dwie pary if na stole ( )( jest tylko )( jedna )( ) para then 4 4 = 440 ( ) ( )( ) ( )( )( )( )( ) = 86 Trójka if na stole jest trójka then ( )( ) ( ) 4 = ( )( )( )( ) 4 = 64 8 eliminujemy przypadek otrzymania trójki, par, czwórki i fula 9

11 Strit Kolor Full if wszystkie karty na stole są wartościami obok siebie then if na stole jest ( or A) then ( ) 4 poker pokerkrolewski if na stole nie ma ( or A), ale jest ( or K) then ( ) 4 poker pokerkrolewski if na stole nie ma (,,K,A), ale jest (4 or Q) then ( ) 4 poker pokerkrolewski ( ) 4 4 poker pokerkrolewski if są oddalone o wartość then if jest ( or A) then ( ) 4 poker pokerkrolewski if nie ma ( or A), ale jest ( or K) then ( ) 4 poker pokerkrolewski ( ) poker pokerkrolewski if są oddalone od siebie o wartości then if jest ( or A) then ( ) 4 poker pokerkrolewski ( ) 4 poker pokerkrolewski if są oddalone o wartości then ( ) 4 poker pokerkrolewski if karty( na) stole są tego samego koloru then poker pokerkrolewski if jest para ( )( then )( ) 4 ( )( ) = 9 ( ) = 9 0

12 Kareta Poker if na stole ( )( jest para ) then 4 = 48 ( ) = if na stole nie ma A 9 then if wszystkie karty na stole są wartościami obok siebie 0 then if na stole jest or K then if na stole nie ma ( or K), ale jest ( or Q) then if na stole nie ma (,,Q,K), ale jest (4 or J) then 4 if są oddalone o wartość then if jest ( or K) then if nie ma ( or K), ale jest ( or Q) then if są oddalone od siebie o wartości then if jest ( or K) then if są oddalone o wartości then Poker Królewski if wszystkie karty są z przedziału 0-A w tym samym kolorze then 0 eliminujemy przypadek otrzymania pokera królewskiego

13 .4. Dobór 4 kart Poniżej mamy algorytm, który zostaje wykonany w przypadku, gdy na stole mamy tylko kartę i dobieramy do niej cztery. Uwaga! To jest tylko przykład układu kart i nie ma on zastosowania w poniższych algorytmach! ( ) 5 Ω = = Para ( )( ) ( Dwie pary ( )( )( )( )( ) 4 4 Trójka Strit Kolor ( )( ) ( )( ( )( if na stole jest ( or A) then ( ) 4 4 poker pokerkrolewski if na stole jest ( or K) then ( ) 4 4 poker pokerkrolewski if na stole jest (4 or Q) then ( ) 4 4 poker pokerkrolewski if na stole jest (5 or J) then ( ) poker pokerkrolewski ( ) poker pokerkrolewski ( ) poker pokerkrolewski 4 ) = ) = 664 ) = 499 Full ( )( ) ( )( ) = 60

14 Kareta Poker ( ) ( ) = 60 if na stole nie ma A then if na stole jest ( or K) then if na stole jest ( or Q) then if na stole jest (4 or J) then if na stole jest (5 or 0) then 4 5 Poker Królewski if karta jest z przedziału 0-A then eliminujemy przypadek otrzymania pokera królewskiego

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 9A/14 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 10A/15 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi

Bardziej szczegółowo

Odmiany Gry. Rozpoczęcie gry

Odmiany Gry. Rozpoczęcie gry Odmiany Gry Limit: każda runda ma określony wcześniej limit podbicia, Pot-Limit: w każdej rundzie gracz nie może postawić więcej niż wartość puli znajdującej się na stole, No-Limit: w każdej chwili można

Bardziej szczegółowo

Rachunek prawdopodobieństwa w grach losowych.

Rachunek prawdopodobieństwa w grach losowych. Rachunek prawdopodobieństwa w grach losowych. Lista zawiera kilkadziesiąt zadań dotyczących różnych gier z użyciem kart i kości, w tym tych najbardziej popularnych jak brydż, tysiąc itp. Kolejne zadania

Bardziej szczegółowo

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w 02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,

Bardziej szczegółowo

J o h n n y B e t PORADNIK KASYNOWY

J o h n n y B e t PORADNIK KASYNOWY J o h n n y B e t PORADNIK KASYNOWY W tej części przewodnika przedstawię znane sposoby na zwiększenie szans wygranej w kasynie. Poradnik został podzielony na cztery sekcje, każda przedstawia nieco inną

Bardziej szczegółowo

Materiały: kartki papieru (5 x 5 kolorów), piłeczki pingpongowe (5 x 5 kolorów), worek (nieprzeźroczysty).

Materiały: kartki papieru (5 x 5 kolorów), piłeczki pingpongowe (5 x 5 kolorów), worek (nieprzeźroczysty). Pudełkowy komputer Materiały: kartki papieru (5 x 5 kolorów), piłeczki pingpongowe (5 x 5 kolorów), worek (nieprzeźroczysty). Budowa komputera: każdy uczeń składa proste pudełko metodą orgiami Zobacz:

Bardziej szczegółowo

Programowanie genetyczne, gra SNAKE

Programowanie genetyczne, gra SNAKE STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

Beskidzki Szlem czyli wystarczy nie robić błędów prostych

Beskidzki Szlem czyli wystarczy nie robić błędów prostych Beskidzki Szlem czyli wystarczy nie robić błędów prostych To prawda oczywista i po raz kolejny pokazało się jak bardzo bolesna. Równie oczywistą prawdą jest to, że nawet jeśli nie będziesz robił błędów

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia)

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) 1. Ile układów kart w pokerze to Dwie pary? Dwie pary to układ 5 kart

Bardziej szczegółowo

Prezydent wszystkich kombinacji czyli rzecz o filtrowaniu systemów Lotto

Prezydent wszystkich kombinacji czyli rzecz o filtrowaniu systemów Lotto Prezydent wszystkich kombinacji czyli rzecz o filtrowaniu systemów Lotto Czy zastanawiałeś się kiedyś nad tym, że prawdopodobieństwo wylosowania dwóch liczb w lotto o określonej sumie nie jest jednakowe?

Bardziej szczegółowo

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30. Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne

Bardziej szczegółowo

POZNAJEMY LITERY INSTRUKCJA. pomoc i gra edukacyjna - od 4-6 lat

POZNAJEMY LITERY INSTRUKCJA. pomoc i gra edukacyjna - od 4-6 lat INSTRUKCJA POZNAJEMY LITERY pomoc i gra edukacyjna - od 4-6 lat Puzzle z obrazkami i pierwszymi literkami nazw tych obrazków są prostą i atrakcyjną formą zabawy dla najmłodszych dzieci, rozpoczynających

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA ( ) PRAWDOPOD OBIEŃSTW O W A RUNKOWE PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B ( ) WIĘC CO OZNACZA, ŻE ZDARZENIE B NIE MA WPŁYWU

Bardziej szczegółowo

Wprowadzenie do grafiki maszynowej. Wprowadzenie do algorytmów obcinania i okienkowania

Wprowadzenie do grafiki maszynowej. Wprowadzenie do algorytmów obcinania i okienkowania Wprowadzenie do grafiki maszynowej. Wprowadzenie do algorytmów obcinania i okienkowania Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 22 Wprowadzenie

Bardziej szczegółowo

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( ) Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe

Bardziej szczegółowo

DOMINO MATEMATYCZNE PRZEZNACZENIE dla dzieci na zajęcia pozalekcyjne indywidualne i grupowe 1. DOMI dopełnianie do klocków, 56 zadań

DOMINO MATEMATYCZNE PRZEZNACZENIE dla dzieci na zajęcia pozalekcyjne indywidualne i grupowe 1. DOMI dopełnianie do klocków, 56 zadań DOMINO MATEMATYCZNE PRZEZNACZENIE dla dzieci na zajęcia pozalekcyjne indywidualne i grupowe 1. DOMI dopełnianie do 30 28 klocków, 56 zadań Prosta, powszechnienie znana, a jednocześnie atrakcyjna forma

Bardziej szczegółowo

Programowanie Funkcyjne. Marcin Kubica Świder,

Programowanie Funkcyjne. Marcin Kubica Świder, Programowanie Funkcyjne Marcin Kubica Świder, 28-04-2015 Czym jest programowanie funkcyjne? Obliczalne pojęcia matematyczne. Definicje stałych i funkcji i relacji. Wszystkie definicje są konstruktywne,

Bardziej szczegółowo

ZASADY GRY NAJCZĘSCIEJ GRYWANA GRA LICZBOWA NA ŚWIECIE DLA CAŁEJ RODZINY

ZASADY GRY NAJCZĘSCIEJ GRYWANA GRA LICZBOWA NA ŚWIECIE DLA CAŁEJ RODZINY 12355541 Rummikub ZASADY GRY NAJCZĘSCIEJ GRYWANA GRA LICZBOWA NA ŚWIECIE DLA CAŁEJ RODZINY Dla 2 4 graczy w wieku od 7 lat Zawartość opakowania: 104 kostki do gry, ponumerowane od 1 do 13, w czterech kolorach

Bardziej szczegółowo

PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO

PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO ZADANIA OPRACOWANE PRZEZ Agnieszkę Sumicką Katarzynę Hejmanowską

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko

Bardziej szczegółowo

ELEMENTY GRY CEL GRY. 56 kart akcji (po 2 karty o wartości 1-7 w każdym kolorze) 50 kart zadań

ELEMENTY GRY CEL GRY. 56 kart akcji (po 2 karty o wartości 1-7 w każdym kolorze) 50 kart zadań 08 NAGRODA RODZICÓW USA Wszystko albo nic ELEMENTY GRY kart akcji (po karty o wartości - w każdym kolorze) 0 kart zadań CEL GRY Wszystko albo nic to gra kooperacyjna, czyli oparta na współpracy. Macie

Bardziej szczegółowo

KONSPEKT FUNKCJE cz. 1.

KONSPEKT FUNKCJE cz. 1. KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy

Bardziej szczegółowo

ZASADY GRY. Jeśli jako pierwszy pozbędziesz się wszystkich kart, które masz w ręce to jesteś zwycięzcą.

ZASADY GRY. Jeśli jako pierwszy pozbędziesz się wszystkich kart, które masz w ręce to jesteś zwycięzcą. ZASADY GRY Witaj w świecie Figurek!!! Jeśli jako pierwszy pozbędziesz się wszystkich kart, które masz w ręce to jesteś zwycięzcą. Zapraszam Cię do świata figur płaskich, ich pól i obwodów. Jeśli jest Was

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest

Bardziej szczegółowo

Problemy matematyczne ułatwiające tworzenie zaawansowanych algorytmów w klasach IV VIII szkoły podstawowej

Problemy matematyczne ułatwiające tworzenie zaawansowanych algorytmów w klasach IV VIII szkoły podstawowej Zestaw 7 Zeszyt 4 Jacek Stańdo Monika Spławska-Murmyło Problemy matematyczne ułatwiające tworzenie zaawansowanych algorytmów w klasach IV VIII szkoły podstawowej Działania na zbiorach Zasada wielokrotności

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL

(12) OPIS PATENTOWY (19) PL RZECZPO SPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (21) Numer zgłoszenia: 319732 (22) Data zgłoszenia: 16.10.1995 (86) Data i numer zgłoszenia międzynarodowego:

Bardziej szczegółowo

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n

Bardziej szczegółowo

9. Podstawowe narzędzia matematyczne analiz przestrzennych

9. Podstawowe narzędzia matematyczne analiz przestrzennych Waldemar Izdebski - Wykłady z przedmiotu SIT 75 9. odstawowe narzędzia matematyczne analiz przestrzennych Niniejszy rozdział służy ogólnemu przedstawieniu metod matematycznych wykorzystywanych w zagadnieniu

Bardziej szczegółowo

Podział sieci na podsieci wytłumaczenie

Podział sieci na podsieci wytłumaczenie Podział sieci na podsieci wytłumaczenie Witam wszystkich z mojej grupy pozdrawiam wszystkich z drugiej grupy. Tematem tego postu jest podział sieci na daną ilość podsieci oraz wyznaczenie zakresów IP tychże

Bardziej szczegółowo

Informatyka 1. Wyrażenia i instrukcje, złożoność obliczeniowa

Informatyka 1. Wyrażenia i instrukcje, złożoność obliczeniowa Informatyka 1 Wykład III Wyrażenia i instrukcje, złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: składnia wyrażeń, drzewa rozbioru gramatycznego i wyliczenia wartości wyrażeń, operatory

Bardziej szczegółowo

LICZBY PIERWSZE. Jan Ciurej Radosław Żak

LICZBY PIERWSZE. Jan Ciurej Radosław Żak LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 2

Rachunek prawdopodobieństwa- wykład 2 Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

PageRank. Bartosz Makuracki. 28 listopada B. Makuracki PageRank

PageRank. Bartosz Makuracki. 28 listopada B. Makuracki PageRank PageRank Bartosz Makuracki 28 listopada 2013 Definicja Definicja PageRank jest algorytmem używanym przez wyszukiwarkę Google do ustalania kolejności stron pojawiających się w wynikach wyszukiwania. Definicja

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 7/10 Generowanie podzbiorów Weźmy n-elementowy zbiór X={x 1, x 2 x n }. Każdemu podzbiorowi YX przyporządkujemy ciąg binarny b 0 b

Bardziej szczegółowo

Brydż zasady gry. Autor prezentacji: Piotr Beling

Brydż zasady gry. Autor prezentacji: Piotr Beling Brydż zasady gry Autor prezentacji: Piotr Beling Wstęp Brydż to gra w karty dla czterech osób (dwóch( drużyn dwuosobowych) Partnerzy (z jednej drużyny) siedzą naprzeciwko siebie Wstęp 52 karty z tali zostają

Bardziej szczegółowo

ZASADY. Dopuszczalne kombinacje kart w Gang of Four: E POJEDYNCZEKARTY

ZASADY. Dopuszczalne kombinacje kart w Gang of Four: E POJEDYNCZEKARTY ZASADY Gang of Four to wywodząca się z serca orientu ekscytująca gra karciana, która oddaje pełne tajemnic i intryg realia starożytnych Chin. Będąc następca Choh Dai Di, najbardziej znanej gry hazardowej

Bardziej szczegółowo

Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji?

Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Porada niniejsza traktuje o tzw. elementach kombinatoryki. Często zdarza się, że rozwiązujący zadania z tej dziedziny mają problemy

Bardziej szczegółowo

Zestaw scenariuszy. Scenariusz integralnej jednostki tematycznej klasa III

Zestaw scenariuszy. Scenariusz integralnej jednostki tematycznej klasa III Scenariusz integralnej jednostki tematycznej klasa III Temat bloku: Kolejny w planie wynikowym zależy od realizowanej edukacji matematycznej Temat dnia: Kolejny w planie wynikowym zależy od realizowanej

Bardziej szczegółowo

Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń

Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń Prawdopodobieństwo Warunkowe Prawdopodobieństwo Całkowite Niezależność Stochastyczna Zdarzeń Zadanie 1 Po potasowaniu sześciu kart: asa, dwójki, trójki, czwórki, piątki i szóstki wyłożono na stół w rzędzie

Bardziej szczegółowo

umiejętności artystyczne: rozpoznawanie, nazywanie i dopasowywanie kolorów

umiejętności artystyczne: rozpoznawanie, nazywanie i dopasowywanie kolorów 22740 Read My Mind Zawartość: a) 40 kart z obrazkami (z obrazkami w ramkach) do umieszczania na stole b) 40 kart z obrazkami do "czytania w myślach" Cele rozwojowe: umiejętności językowe: formułowanie

Bardziej szczegółowo

Prawdy i nieprawdy. Liczba graczy od 2 do 6 osób. Rekwizyty talia 50 kart (plus 4 do wariantu 2) Zasady gry. klasa II GRANIASTOSŁUPY

Prawdy i nieprawdy. Liczba graczy od 2 do 6 osób. Rekwizyty talia 50 kart (plus 4 do wariantu 2) Zasady gry. klasa II GRANIASTOSŁUPY Prawdy i nieprawdy klasa II GRANIASTOSŁUPY Liczba graczy od 2 do 6 osób Rekwizyty talia 50 kart (plus 4 do wariantu 2) Zasady gry Wariant 1. Gracze układają karty w stos zdaniami do góry. W trakcie rozgrywki

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

DOBÓR PRÓBY. Czyli kogo badać?

DOBÓR PRÓBY. Czyli kogo badać? DOBÓR PRÓBY Czyli kogo badać? DZISIAJ METODĄ PRACY Z TEKSTEM I INNYMI Po co dobieramy próbę? Czym różni się próba od populacji? Na czym polega reprezentatywność statystyczna? Podstawowe zasady doboru próby

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 10/15 WARIACJE Liczba wariacji, czyli różnych ciągów k-elementowych o wyrazach ze zbioru n-elementowego, wynosi n k. Ciąg k-elementowy,

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2

Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2 Algorytmy i struktury danych Wykład 6 Tablice rozproszone cz. 2 Na poprzednim wykładzie Wiele problemów wymaga dynamicznych zbiorów danych, na których można wykonywać operacje: wstawiania (Insert) szukania

Bardziej szczegółowo

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum. Obliczanie prawdopodobieństwa za pomocą metody drzew Jeżeli doświadczenie losowe składa się z więcej niż jednego etapu, takich jak serie rzutów kostką lub monetą, zastosowanie klasycznej definicji prawdopodobieństwa

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z

Bardziej szczegółowo

Zestaw do gry w pokera

Zestaw do gry w pokera Zestaw do gry w pokera Zasady Podstawy Taktyka Wprowadzenie do gry Tchibo GmbH D-22290 Hamburg 71872AB6X6III Zasady gry w pokera Talia kart Talia składa się z 52 kart. Występują 4 kolory po 13 kart. Do

Bardziej szczegółowo

Podsumowanie wiadomości o wielokątach. (klasa III gimnazjum)

Podsumowanie wiadomości o wielokątach. (klasa III gimnazjum) Scenariusz lekcji Podsumowanie wiadomości o wielokątach. (klasa III gimnazjum) Czas trwania: 2 godziny lekcyjne Cele lekcji Uczeń : - rozpoznaje, nazywa i wymienia własności poznanych wielokątów - wyodrębnia

Bardziej szczegółowo

Materiały dla finalistów

Materiały dla finalistów Materiały dla finalistów Malachoviacus Informaticus 2016 11 kwietnia 2016 Wprowadzenie Poniższy dokument zawiera opisy zagadnień, które będą niezbędne do rozwiązania zadań w drugim etapie konkursu. Polecamy

Bardziej szczegółowo

Kto jeszcze gra w domino?

Kto jeszcze gra w domino? Mirosław Dąbrowski Kto jeszcze gra w domino? Domino, choć wciąż jeszcze można jego zestawy kupić w sklepach z zabawkami, nie należy już chyba do bardzo popularnych dziecięcych rozrywek. Szkoda, bo gra

Bardziej szczegółowo

Joanna Kluczenko 1. Spotkania z matematyka

Joanna Kluczenko 1. Spotkania z matematyka Do czego moga się przydać reszty z dzielenia? Joanna Kluczenko 1 Spotkania z matematyka Outline 1 Co to sa 2 3 moje urodziny? 4 5 Jak tworzona jest liczba kontrolna w kodach towarów w sklepie? 6 7 TWIERDZENIE

Bardziej szczegółowo

Załącznik nr 1 do Regulaminu turnieju Tysiąca Studnia 2018

Załącznik nr 1 do Regulaminu turnieju Tysiąca Studnia 2018 Załącznik nr 1 do Regulaminu turnieju Tysiąca Studnia 2018 Zasady gry Tysiąc Gra karciana na 3 bądź 4 osób. Zwycięzcą zostaje gracz, który dzięki sumie punktów zdobytych w poszczególnych rozdaniach jako

Bardziej szczegółowo

Gra polega na dopasowaniu puzzli w pary zgodnie z załączonymi przykładami.

Gra polega na dopasowaniu puzzli w pary zgodnie z załączonymi przykładami. INSTRUKCJA Liczby gra edukacyjna w formie puzzli Liczby to gra, w której dzieci mają za zadanie odnaleźć jak najwięcej pasujących do siebie par puzzli, ucząc się liczyć. Jest to ciekawa i atrakcyjna forma

Bardziej szczegółowo

Priorytetyzacja przypadków testowych za pomocą macierzy

Priorytetyzacja przypadków testowych za pomocą macierzy Priorytetyzacja przypadków testowych za pomocą macierzy W niniejszym artykule przedstawiony został problem przyporządkowania priorytetów do przypadków testowych przed rozpoczęciem testów oprogramowania.

Bardziej szczegółowo

O pewnych problemach analizy wartości brzegowych

O pewnych problemach analizy wartości brzegowych O pewnych problemach analizy wartości brzegowych 1. Wstęp Klasa równoważności w testowaniu jest to zbiór danych o podobnym sposobie przetwarzania w oprogramowaniu dla konkretnej funkcjonalności, używanych

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n

Bardziej szczegółowo

PRAWDOPODOBIEOSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B

PRAWDOPODOBIEOSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA P A = A Ω PRAWDOPOD OBIEŃSTW O W A RUNKOWE P(A B) P A B =, P B 0 PRAWDOPODOBIEOSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B P A B = P A B = P

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Projektowanie rozwiązania prostych problemów w języku C++ obliczanie pola trójkąta

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Projektowanie rozwiązania prostych problemów w języku C++ obliczanie pola trójkąta SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule.

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. Jeśli obie wylosowane kule są tego samego koloru to zwycięża G

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.

Bardziej szczegółowo

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa

Bardziej szczegółowo

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

Ekonometria, lista zadań nr 6 Zadanie 5 H X 1, X 2, X 3

Ekonometria, lista zadań nr 6 Zadanie 5 H X 1, X 2, X 3 Ekonometria, lista zadań nr 6 Zadanie 5 Poniższy diagram przedstawia porządek między rozważanymi modelami oparty na relacji zawierania pomiędzy podzbiorami zbioru zmiennych objaśniających: H, X 2, X 3

Bardziej szczegółowo

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 4 czerwca 2019

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

DODAWANIE I ODEJMOWANIE

DODAWANIE I ODEJMOWANIE DODAWANIE I ODEJMOWANIE gra edukacyjna w 2 wariantach liczba graczy: 2-4 rekomendowany wiek: od lat 6 Zawartość pudełka: 1) 28 kamieni 2) instrukcja Po rozpakowaniu należy sprawdzić zawartość z listą zawartości

Bardziej szczegółowo

Elementy Skarbnicy odkrywców dla klas 1-3

Elementy Skarbnicy odkrywców dla klas 1-3 Elementy Skarbnicy odkrywców dla klas 1-3 Pomoce Gra matematyczna Mistrz mnożenia i dzielenia Do czego mogą być przydatne? Doskonalenie mnożenia i dzielenia w zakresie 30 Gra matematyczna Poszukiwacze

Bardziej szczegółowo

Instrukcja. Piraci i spółka. Copyright - Spiele Bad Rodach 2017

Instrukcja. Piraci i spółka. Copyright - Spiele Bad Rodach 2017 Instrukcja Piraci i spółka 303294 Piraci i spółka Copyright - Spiele Bad Rodach 2017 Piraci i spółka Klasyczna gra karciana Makao dla 2-4 małych piratów od 4 do 99 roku życia. Ilustracje: Czas gry: Christine

Bardziej szczegółowo

Kody blokowe Wykład 2, 10 III 2011

Kody blokowe Wykład 2, 10 III 2011 Kody blokowe Wykład 2, 10 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding

Bardziej szczegółowo

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach.

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach. Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t)

Bardziej szczegółowo

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej: Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie

Bardziej szczegółowo

WZORY, KOLORY, MEMORY

WZORY, KOLORY, MEMORY gra edukacyjna w 2 wariantach - od 5 lat Gra I dla 2 4 graczy rekwizyty: 1) plastikowe elementy (żetony) - 48 szt. 2) karty wzorów - 55 szt. 3) podkłady - 2 4 szt. INSTRUKCJA WZORY, KOLORY, MEMORY Cel

Bardziej szczegółowo

Metoda Karnaugh. B A BC A

Metoda Karnaugh. B A BC A Metoda Karnaugh. Powszechnie uważa się, iż układ o mniejszej liczbie elementów jest tańszy i bardziej niezawodny, a spośród dwóch układów o takiej samej liczbie elementów logicznych lepszy jest ten, który

Bardziej szczegółowo

SPRAWDŹ SWÓJ REFLEKS! DLA OD 2 DO 5 GRACZY OD 4 LAT

SPRAWDŹ SWÓJ REFLEKS! DLA OD 2 DO 5 GRACZY OD 4 LAT SPRAWDŹ SWÓJ REFLEKS! DLA OD 2 DO 5 GRACZY OD 4 LAT ZASADY GRY Dobble Kids co to jest? Gra Dobble Kids zawiera 30 kart, na których znajduje się ponad 30 wizerunków zwierząt po 6 zwierząt na karcie i tylko

Bardziej szczegółowo

Ćwiczenia z wyliczania wartości funkcji

Ćwiczenia z wyliczania wartości funkcji Ćwiczenia z wyliczania wartości funkcji 4 października 2011 1 Wprowadzenie Wyliczanie wartości wyrażenia nie jest sprawą oczywistą, szczególnie jeżeli chodzi o aplikację funkcji. Poniższy tekst nie jest

Bardziej szczegółowo

Konspekt. do lekcji matematyki w kl. I gimnazjalnej dział Figury na płaszczyźnie

Konspekt. do lekcji matematyki w kl. I gimnazjalnej dział Figury na płaszczyźnie Konspekt do lekcji matematyki w kl. I gimnazjalnej dział Figury na płaszczyźnie Temat: Rodzaje i własności czworokątów. Cel ogólny: - rozwijanie umiejętności uczniów w zakresie rozumienia tekstów sformułowanych

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Sprawozdanie z realizacji programu Kodowanie z klasą dla uczniów klasy II i IV Szkoły Podstawowej nr 7

Sprawozdanie z realizacji programu Kodowanie z klasą dla uczniów klasy II i IV Szkoły Podstawowej nr 7 Sprawozdanie z realizacji programu Kodowanie z klasą dla uczniów klasy II i IV Szkoły Podstawowej nr 7 Program skierowany był do uczniów klasy II i IV zainteresowanych nauką programowania w języku Scratch.

Bardziej szczegółowo

WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY

WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY WYBUCHAJĄCE KROPKI ROZDZIAŁ 1 MASZYNY Witaj w podróży. Jest to podróż matematyczna oparta na historii mojej, Jamesa, która jednak nie wydarzyła się naprawdę. Kiedy byłem dzieckiem, wynalazłem maszynę -

Bardziej szczegółowo

25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I

25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I 124 25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I Mirosław Dąbrowski 25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I Cele ogólne w szkole podstawowej: zdobycie

Bardziej szczegółowo

Omahaha dla każdego (2/4)

Omahaha dla każdego (2/4) Omahaha dla każdego (2/4) Prezentacja: 1. Siła rąk preflop 2. Siła rąk na flopie 3. Ciekawe sytuacje Rozgrywka: Gra: PLO SH Blinds: 0.10/0.25 Sieć: Full Tilt Poker Liczba stołów: 2 Stoły: 100bb Siła rąk

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator

Bardziej szczegółowo

KRYPTOGRAFIA I OCHRONA DANYCH PROJEKT

KRYPTOGRAFIA I OCHRONA DANYCH PROJEKT KRYPTOGRAFIA I OCHRONA DANYCH PROJEKT Temat: Zaimplementować system kryptografii wizualnej http://www.cacr.math.uwaterloo.ca/~dstinson/visual.html Autor: Tomasz Mitręga NSMW Grupa 1 Sekcja 2 1. Temat projektu

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH

UKŁADY RÓWNAŃ LINIOWYCH Projekt dofinansowała Fundacja mbanku UKŁADY RÓWNAŃ LINIOWYCH CZĘŚĆ I Układ równań to przynajmniej dwa równania spięte z lewej strony klamrą, np.: x + 0 Każde z równań musi zawierać przynajmniej jedną

Bardziej szczegółowo

Program na zaliczenie: Odejmowanie widm

Program na zaliczenie: Odejmowanie widm Piotr Chojnacki: MATLAB Program na zaliczenie: Odejmowanie widm {Poniższy program ma za zadanie odjęcie dwóch widm od siebie. Do poprawnego działania programu potrzebne są trzy funkcje: odejmowaniewidm.m

Bardziej szczegółowo