Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner"

Transkrypt

1 Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Ocenę dopuszczającą otrzymuje uczeń, który: definiuje pojęcie potęgi o wykładniku naturalnym, zapisuje potęgę w postaci iloczynu, zapisuje iloczyn jednakowych czynników w postaci potęgi, oblicza potęgę o wykładniku naturalnym, mnoży i dzieli potęgi o tych samych podstawach, zapisuje w postaci jednej potęgi potęgę potęgi, potęguje potęgę, potęguje iloraz i iloczyn, definiuje pojęcie potęgi o wykładniku całkowitym ujemnym, definiuje pojęcie notacji wykładniczej, definiuje pojęcie pierwiastka arytmetycznego II stopnia z liczby nieujemnej i III stopnia z dowolnej liczby, definiuje pojęcie liczby niewymiernej i rzeczywistej, podaje wzór na obliczanie pierwiastka z iloczynu i ilorazu, podaje wzór na obliczanie pierwiastka II stopnia z kwadratu liczby nieujemnej i pierwiastka III stopnia z sześcianu dowolnej liczby, oblicza pierwiastek II stopnia z kwadratu liczby nieujemnej i pierwiastek III stopnia z sześcianu dowolnej liczby, mnoży i dzieli pierwiastki II stopnia oraz pierwiastki III stopnia, podaje wzór na obliczanie długości okręgu, podaje przybliżoną wartość liczby, oblicza długość okręgu znając jego promień lub średnicę, podaje wzór na obliczanie pola koła, oblicza pole koła, znając jego promień lub średnicę, definiuje pojęcie kąta środkowego, definiuje pojęcie łuku, definiuje pojęcie wycinka koła, rozpoznaje kąt środkowy, definiuje pojęcie wyrażenia algebraicznego, definiuje pojęcie jednomianu, definiuje pojęcie jednomianu uporządkowanego, definiuje pojęcie jednomianów podobnych, buduje proste wyrażenia algebraiczne, odczytuje wyrażenia algebraiczne, porządkuje jednomiany, podaje współczynnik liczbowy jednomianu, wskazuje jednomiany podobne, redukuje wyrazy podobne, mnoży i dzieli sumę algebraiczną przez liczbę wymierną, mnoży sumę algebraiczną przez jednomian, definiuje pojęcie układu równań, definiuje pojęcie rozwiązania układu równań, sprawdza, czy dana para liczb spełnia układ równań, rozwiązuje układ równań I stopnia z dwiema niewiadomymi metodą podstawiania i metodą przeciwnych współczynników, podaje twierdzenie Pitagorasa, oblicza długość przeciwprostokątnej na podstawie twierdzenia Pitagorasa, podaje twierdzenie odwrotne do twierdzenia Pitagorasa, sprawdza, czy trójkąt o danych bokach jest prostokątny, wskazuje trójkąt prostokątny w figurze, stosuje twierdzenie Pitagorasa w prostych zadaniach o trójkątach, prostokątach, trapezach, rombach, odczytuje odległość między dwoma punktami o równych odciętych lub rzędnych, podaje wzór na obliczanie długości przekątnej kwadratu i długości wysokości trójkąta równobocznego oblicza długość przekątnej kwadratu, znając jego bok, definiuje pojęcie okręgu opisanego na wielokącie, konstruuje okrąg opisany na trójkącie, rozpoznaje wzajemne położenie prostej i okręgu,

2 definiuje pojęcie stycznej do okręgu, rozpoznaje styczną do okręgu, wie, że styczna do okręgu jest prostopadła do promienia poprowadzonego do punktu styczności, konstruuje styczną do okręgu, przechodzącą przez dany punkt na okręgu, definiuje pojęcie okręgu wpisanego w wielokąt, konstruuje okrąg wpisany w trójkąt, definiuje pojęcie wielokąta foremnego, oblicza długość promienia okręgu wpisanego w kwadrat o danym boku, definiuje pojęcie prostopadłościanu, definiuje pojęcia graniastosłupa prostego, graniastosłupa prawidłowego, omawia budowę graniastosłupa, nazywa graniastosłupy, wskazuje na modelu krawędzie i ściany prostopadłe i równoległe, określa liczbę wierzchołków, krawędzi i ścian graniastosłupa, rysuje graniastosłup prosty w rzucie równoległym, definiuje pojęcia siatki graniastosłupa, pola powierzchni graniastosłupa, podaje wzór na obliczanie pola powierzchni graniastosłupa, rozumie sposób obliczania pola powierzchni jako pola siatki, rozumie zasadę kreślenia siatki, rozpoznaje siatkę graniastosłupa, kreślić siatkę graniastosłupa o podstawie trójkąta lub czworokąta, podaje wzór na obliczanie objętości prostopadłościanu i sześcianu, podaje jednostki objętości, rozumie pojęcie objętości figury, oblicza objętość prostopadłościanu i sześcianu, podaje wzór na obliczanie objętości graniastosłupa, oblicza objętość graniastosłupa, definiuje pojęcia przekątnej ściany graniastosłupa, przekątnej graniastosłupa, wskazuje na modelu przekątną ściany bocznej oraz przekątną graniastosłupa, definiuje pojęcie ostrosłupa, ostrosłupa prawidłowego, czworościanu i czworościanu foremnego, omawia budowę ostrosłupa, nazywa ostrosłupy, definiuje pojęcie wysokości ostrosłupa, określa ilość wierzchołków, krawędzi i ścian ostrosłupa, definiuje pojęcie siatki ostrosłupa, pola powierzchni ostrosłupa, podaje wzór na obliczanie pola powierzchni ostrosłupa, rozumie pojęcie pola figury, sposób obliczania pola powierzchni jako pola siatki, zasadę kreślenia siatki, rozpoznaje siatkę ostrosłupa, oblicza pole ostrosłupa prawidłowego, podaje wzór na obliczanie objętości ostrosłupa, oblicza objętość ostrosłupa, wskazuje wysokość ściany bocznej, wskazuje trójkąt prostokątny, w którym występuje dany lub szukany odcinek, wskazuje diagram słupkowy i kołowy, odczytuje informacje z tabeli, wykresu, diagramu, tabeli łodygowo listkowej, układa pytania do prezentowanych danych, oblicza średnią, liczyć medianę, zbiera dane statystyczne, definiuje pojęcie zdarzenia losowego. Ocenę dostateczną otrzymuje uczeń który: zapisuje liczbę w postaci potęgi, zapisuje liczbę w postaci iloczynu potęg, porównuje potęgi o różnych wykładnikach naturalnych i takich samych podstawach oraz o takich samych wykładnikach naturalnych i różnych dodatnich podstawach, nie wykonując obliczeń umie określa znak potęgi, obliczyć wartość wyrażenia arytmetycznego zawierającego potęgi, zapisuje w postaci jednej potęgi iloczyny i ilorazy potęg o takich samych podstawach, przedstawia potęgę w postaci iloczynu i ilorazu potęg o tych samych podstawach, stosuje mnożenie i dzielenie potęg o tych samych podstawach do obliczania wartości liczbowej wyrażeń, przedstawia potęgę w postaci potęgowania potęgi, stosuje potęgowanie potęgi do obliczania wartości liczbowej wyrażeń, zapisuje w postaci jednej potęgi iloczyny i ilorazy potęg o takich samych wykładnikach, zapisuje iloraz i iloczyn potęg o tych samych wykładnikach w postaci jednej potęgi, doprowadza wyrażenie do prostszej postaci stosując działania na potęgach,

3 oblicza potęgę o wykładniku całkowitym ujemnym, zamienia potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych, zapisuje liczbę w notacji wykładniczej, oblicza pierwiastek arytmetyczny II stopnia z liczby nieujemnej i III stopnia z dowolnej liczby, szacuje wartość wyrażenia zawierającego pierwiastki, określa na podstawie rozwinięcia dziesiętnego, czy dana liczba jest wymierna, czy niewymierna, oblicza wartość wyrażenia arytmetycznego zawierającego pierwiastki, stosuje wzory na obliczanie pierwiastka z iloczynu i ilorazu do wyznaczania wartości liczbowej wyrażeń, wyznacza promień lub średnicę okręgu, znając jego długość, rozwiązuje zadanie tekstowe związane z porównywaniem obwodów figur, oblicza pole pierścienia kołowego, znając promienie lub średnice kół ograniczających pierścień, wyznacza promień lub średnicę koła, znając jego pole, rozwiązuje zadanie tekstowe związane porównywaniem pól figur, oblicza długość łuku jako określonej części okręgu, oblicz pole wycinka koła jako określonej części koła, oblicza długość łuku i pole wycinka koła, znając miarę kąta środkowego, oblicza długość figury złożonej z łuków i odcinków, oblicza pole figury złożonej z wielokątów i wycinków koła, opisuje za pomocą wyrażeń algebraicznych związki pomiędzy różnymi wielkościami, dodaje i odejmuje sumy algebraiczne, opuszczać nawiasy, doprowadza wyrażenie algebraiczne do prostszej postaci, oblicza wartość liczbową wyrażenia dla zmiennych wymiernych bez jego przekształcania, oblicza wartość liczbową wyrażenia dla zmiennych wymiernych po przekształceniu do postaci dogodnej do obliczeń, wyłącza wspólny czynnik przed nawias, oblicza wartość liczbową wyrażenia dla zmiennych wymiernych po przekształceniu do postaci dogodnej do obliczeń, wyraża pole figury w postaci wyrażenia algebraicznego, mnoży sumy algebraiczne, podaje przykładowe rozwiązanie równania I stopnia z dwiema niewiadomymi, zapisuje treść zadania w postaci układu równań, wyznacza niewiadomą z równania, rozwiązuje układ równań I stopnia z dwiema niewiadomymi metodą podstawiania, rozwiązuje zadanie tekstowe z zastosowaniem układu równań i metody podstawiania, rozwiązuje zadanie tekstowe z zastosowaniem układu równań i metody przeciwnych współczynników, definiuje pojęcia: układ oznaczony, nieoznaczony, sprzeczny, podaje przykłady par liczb spełniających podany układ nieoznaczony, rozwiązuje zadanie tekstowe z zastosowaniem układu równań i procentów, oblicza długości przyprostokątnych na podstawie twierdzenia Pitagorasa, wyznacza odległość między dwoma punktami, których współrzędne wyrażone są liczbami całkowitymi, podaje wzór na obliczanie pola trójkąta równobocznego, oblicza wysokość lub pole trójkąta równobocznego, znając jego bok, oblicza długość boku lub pole kwadratu, znając jego przekątną, rozwiązuje zadanie tekstowe związane z przekątną kwadratu i wysokością trójkąta równobocznego, podaje zależność między bokami i kątami trójkąta o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0, rozwiązuje trójkąt prostokątny o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0, określa położenie środka okręgu opisanego na trójkącie prostokątnym, ostrokątnym, rozwartokątnym, korzysta z twierdzenia o trójkącie prostokątnym wpisanym w okrąg, konstruuje okrąg przechodzący przez trzy dane punkty, konstruuje okrąg styczny do prostej w danym punkcie, rozwiązuje zadanie konstrukcyjne i rachunkowe związane ze styczną do okręgu, oblicza pole trójkąta znając jego boki i promień okręgu wpisanego w ten trójkąt, rozwiązuje zadanie konstrukcyjne i rachunkowe związane z okręgiem wpisanym w trójkąt, konstruuje sześciokąt i ośmiokąt foremny wpisany w okrąg o danym promieniu, oblicza miarę kąta wewnętrznego wielokąta foremnego, wskazuje wielokąty foremne środkowosymetryczne, podaje ilość osi symetrii wielokąta foremnego, oblicza długość promienia okręgu opisanego na kwadracie o danym boku, oblicza długość promienia, pole lub obwód koła opisanego i wpisanego w trójkąt równoboczny o danym boku, wpisuje i opisuje okrąg na wielokącie, rozwiązuje zadanie tekstowe związane z okręgami wpisanymi i opisanymi na wielokątach foremnych, definiuje pojęcie graniastosłupa pochyłego, wskazuje na rysunku krawędzie i ściany prostopadłe i równoległe,

4 oblicza sumę długości krawędzi graniastosłupa, kreśli siatkę graniastosłupa o podstawie dowolnego wielokąta, oblicza pole powierzchni graniastosłupa, rozwiązuje zadanie tekstowe związane z polem powierzchni graniastosłupa prostego, zamienia jednostki objętości, rozwiązuje zadanie tekstowe związane z objętością graniastosłupa, rysuje w rzucie równoległym przekątne ścian oraz przekątne graniastosłupa, oblicza długość przekątnej ściany graniastosłupa jako przekątnej prostokąta, rysuje ostrosłup w rzucie równoległym, oblicza sumę długości krawędzi ostrosłupa, kreśli siatkę ostrosłupa prawidłowego, rozwiązuje zadanie tekstowe związane z polem powierzchni ostrosłupa, rozwiązuje zadanie tekstowe związane z objętością ostrosłupa, stosuje twierdzenie Pitagorasa do wyznaczania długości odcinków, rozwiązuje zadanie tekstowe związane ze średnią, opracowuje dane statystyczne, prezentuje dane statystyczne, podaje zdarzenia losowe w doświadczeniu, oblicza prawdopodobieństwo zdarzenia, ocenia zdarzenia mniej/bardziej prawdopodobne, Oceną dobrą otrzymuje uczeń, który: zapisuje liczbę w postaci iloczynu potęg, oblicza wartość wyrażenia arytmetycznego zawierającego potęgi, stosuje mnożenie i dzielenie potęg o tych samych podstawach do obliczania wartości liczbowej wyrażeń, porównuje potęgi sprowadzając do tej samej podstawy, stosuje potęgowanie potęgi do obliczania wartości liczbowej wyrażeń, doprowadza wyrażenie do prostszej postaci stosując działania na potęgach, oblicza potęgę o wykładniku całkowitym ujemnym, rozumie potrzebę stosowania notacji wykładniczej w praktyce, zapisuje liczbę w notacji wykładniczej, szacuje wartość wyrażenia zawierającego pierwiastki, oblicza pierwiastek II stopnia z kwadratu liczby nieujemnej i pierwiastek III stopnia z sześcianu dowolnej liczby, wyłącza czynnik przed znak pierwiastka, włącza czynnik pod znak pierwiastka, wykonuje działania na liczbach niewymiernych, rozumie sposób wyznaczenia liczby, wyznacza promień lub średnicę koła, znając jego pole, oblicza pole koła, znając jego obwód i odwrotnie, oblicza długość figury złożonej z łuków i odcinków, oblicza pole figury złożonej z wielokątów i wycinków koła, oblicz promień okręgu, znając miarę kąta środkowego i długość łuku, na którym jest oparty, oblicza promień koła, znając miarę kąta środkowego i pole wycinka koła, doprowadza wyrażenie algebraiczne do prostszej postaci, buduje i odczytuje wyrażenia algebraiczne o konstrukcji wielodziałaniowej, oblicza wartość liczbową wyrażenia dla zmiennych wymiernych po przekształceniu do postaci dogodnej do obliczeń, wyłącza wspólny czynnik przed nawias, wyraża pole figury w postaci wyrażenia algebraicznego, mnoży sumy algebraiczne, doprowadza wyrażenie algebraiczne do prostszej postaci stosując mnożenie sum algebraicznych, wyznacza niewiadomą z równania, rozwiązuje układ równań I stopnia z dwiema niewiadomymi metodą podstawiania, rozwiązuje zadanie tekstowe z zastosowaniem układu równań i metody podstawiania, rozwiązuje układ równań I stopnia z dwiema niewiadomymi metodą przeciwnych współczynników, rozwiązuje zadanie tekstowe z zastosowaniem układu równań i metody przeciwnych współczynników, określa rodzaj układu równań, rozwiązuje zadanie tekstowe z zastosowaniem układu równań, wykorzystuje diagramy procentowe w zadaniach tekstowych, interpretuje geometrycznie iloczyn sum algebraicznych, konstruuje odcinek o długości wyrażonej liczbą niewymierną, sprawdza, czy trójkąt o danych bokach jest prostokątny, stosuje twierdzenie odwrotne do twierdzenia Pitagorasa w zadaniach tekstowych,

5 stosuje twierdzenie Pitagorasa w zadaniach o trójkątach, prostokątach, trapezach, rombach, stosować twierdzenie Pitagorasa w zadaniach rachunkowych i konstrukcyjnych, oblicza długości boków wielokąta leżącego w układzie współrzędnych, sprawdza, czy trójkąt leżący w układzie współrzędnych jest prostokątny, sprawdza, czy punkty leżą na okręgu lub w kole umieszczonym w układzie współrzędnych, oblicza wysokość lub pole trójkąta równobocznego, znając jego bok, oblicza długość boku lub pole kwadratu, znając jego przekątną, oblicza długość boku lub pole trójkąta równobocznego, znając jego wysokość, rozwiązuje zadanie tekstowe związane z przekątną kwadratu i wysokością trójkąta równobocznego, rozwiązuje trójkąt prostokątny o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0, rozwiązuje zadanie tekstowe z wykorzystaniem zależności między bokami i kątami trójkąta o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 podaje twierdzenie o równości długości odcinków na ramionach kąta wyznaczonych przez wierzchołek kąta i punkty styczności, konstruuje okrąg styczny w danym punkcie do ramion kąta ostrego, oblicza długość promienia, pole lub obwód koła opisanego i wpisanego w trójkąt równoboczny o danym boku, oblicza sumę długości krawędzi graniastosłupa, kreśli siatkę graniastosłupa o podstawie dowolnego wielokąta, rozpoznaje siatkę graniastosłupa, oblicza pole powierzchni graniastosłupa, zamienia jednostki objętości, rozwiązuje zadanie tekstowe związane z objętością prostopadłościanu, oblicza objętość graniastosłupa, rozwiązuje zadanie tekstowe związane z objętością graniastosłupa, oblicza długość przekątnej dowolnej ściany i przekątnej graniastosłupa, oblicza sumę długości krawędzi ostrosłupa, kreśli siatkę ostrosłupa, rozpoznaje siatkę ostrosłupa, oblicza pole powierzchni ostrosłupa, rozwiązuje zadanie tekstowe związane z polem powierzchni ostrosłupa, oblicza objętość ostrosłupa, rozwiązuje zadanie tekstowe związane z objętością ostrosłupa, stosuje twierdzenie Pitagorasa do wyznaczania długości odcinków, interpretuje prezentowane informacje, oblicza średnią, oblicz medianę, opracowuje dane statystyczne, prezentuje dane statystyczne, podaje zdarzenia losowe w doświadczeniu, ocenia zdarzenia mniej i bardziej prawdopodobne, zdarzenia pewne i zdarzenia niemożliwe, Ocenę bardzo dobrą otrzymuje uczeń, który: stosuje potęgowanie iloczynu i ilorazu w zadaniach tekstowych, doprowadza wyrażenie do prostszej postaci stosując działania na potęgach, stosuje działania na potęgach w zadaniach tekstowych, wykonuje porównanie ilorazowe potęg o wykładnikach ujemnych, wykonuje działania na potęgach o wykładnikach całkowitych, oblicza wartość wyrażenia arytmetycznego zawierającego potęgi o wykładnikach całkowitych, wykonuje porównywanie ilorazowe dla liczb podanych w notacji wykładniczej, oblicza wartość wyrażenia arytmetycznego zawierającego pierwiastki, szacuje liczbę niewymierną, oblicza pierwiastek II stopnia z kwadratu liczby nieujemnej i pierwiastek III stopnia z sześcianu dowolnej liczby, stosuje wzór na obliczanie pierwiastka z iloczynu i ilorazu do obliczania wartości liczbowej wyrażeń, usuwa niewymierność z mianownika korzystając z własności pierwiastków, doprowadza wyrażenie algebraiczne zawierające potęgi i pierwiastki do prostszej postaci, rozwiązuje zadanie tekstowe związane z długością okręgu, rozwiązuje zadanie tekstowe związane porównywaniem obwodów figur, oblicza pole nietypowej figury wykorzystując wzór na pole koła, rozwiązuje zadanie tekstowe związane z porównywaniem pól figur, stosuje dodawanie i odejmowanie sum algebraicznych w zadaniach tekstowych, zapisuje treść zadania w postaci układu równań, tworzy układ równań o danym rozwiązaniu, dobiera współczynniki układu równań, aby otrzymać żądany rodzaj układu,

6 rozwiązuje zadanie tekstowe z zastosowaniem układu równań i procentów, rozwiązuje zadanie tekstowe związane z wielokątami foremnymi, rozumie warunek wpisywania i opisywania okręgu na czworokącie, rozwiązuje zadanie konstrukcyjne i rachunkowe związane z okręgiem opisanym na trójkącie, rozwiązuje zadanie konstrukcyjne i rachunkowe związane ze styczną do okręgu, rozwiązuje zadanie konstrukcyjne i rachunkowe związane z okręgiem wpisanym w trójkąt, rozwiązuje zadanie tekstowe związane z okręgami wpisanymi i opisanymi na wielokątach foremnych, rozwiązuje zadanie tekstowe związane z sumą długości krawędzi, rozwiązuje zadanie tekstowe związane z polem powierzchni graniastosłupa prostego, rozwiązuje zadanie tekstowe związane z długościami przekątnych, polem i objętością graniastosłupa, rozwiązuje zadanie tekstowe związane z polem powierzchni ostrosłupa, rozwiązuje zadanie tekstowe związane z objętością ostrosłupa i graniastosłupa, rozwiązuje zadanie tekstowe związane z długością odcinków, polem powierzchni i objętością ostrosłupa, prezentuje dane w korzystnej formie, rozwiązuje zadanie tekstowe związane ze średnią i medianą, oblicza prawdopodobieństwo zdarzenia, Ocenę celującą otrzymuje uczeń, który: zapisuje liczbę w systemach niedziesiątkowych i odwrotnie, )porównuje potęgi korzystając z potęgowania potęgi, rozwiązuje nietypowe zadanie tekstowe związane z potęgami, przekształca wyrażenie arytmetyczne zawierające potęgi, porównuje pierwiastki podnosząc do odpowiedniej potęgi, rozwiązuje zadanie tekstowe związane z obwodami i polami figur, rozwiązać zadanie tekstowe związane z obwodami i polami figur, stosuje mnożenie jednomianów przez sumy algebraiczne w zadaniach tekstowych, wykorzystuje wyrażenia algebraiczne do rozwiązywania zadań związanych z podzielnością i dzieleniem z resztą, stosuje mnożenie sum algebraicznych w zadaniach tekstowych, rozwiązuje układ równań z większą ilością niewiadomych, konstruuje kwadraty o polu równym sumie pól danych kwadratów, uzasadnia twierdzenie Pitagorasa, rozwiązuje nietypowe zadanie związane z rzutem graniastosłupa, określa rodzaj trójkąta znając jego boki,

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI zna pojęcie potęgi o wykładniku naturalnym i oblicza jej wartość zapisuje potęgę w postaci iloczynu zapisuje iloczyn jednakowych czynników w postaci potęgi porównuje potęgi o różnych wykładnikach naturalnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 Dział Na ocenę dopuszczającą Na ocenę dostateczną Na ocenę dobrą POTĘGI PIERWIASTKI Uczeń: zna i rozumie pojęcie o

Bardziej szczegółowo

KLASA II POTĘGI. 20) umie zapisywać liczby w notacji wykładniczej,

KLASA II POTĘGI. 20) umie zapisywać liczby w notacji wykładniczej, KLASA II POTĘGI 1) zna i rozumie pojęcie potęgi o wykładniku naturalnym, 2) umie zapisać potęgę w postaci iloczynów, 3) umie zapisać iloczyny jednakowych czynników w postaci potęgi, 4) umie obliczyć potęgi

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II POTĘGI zna pojęcie potęgi o wykładniku naturalnym rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych

Bardziej szczegółowo

DZIAŁ II: PIERWIASTKI

DZIAŁ II: PIERWIASTKI Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w II klasie gimnazjum w roku szkolnym 2016/2017 Wymagania edukacyjne dostosowane do obowiązującej

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca

Bardziej szczegółowo

DZIAŁ 1. POTĘGI. stopień

DZIAŁ 1. POTĘGI. stopień DZIAŁ 1. POTĘGI zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna i rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci

Bardziej szczegółowo

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I:

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: DZIAŁ 1. POTĘGI zna podręcznik i zeszyt ćwiczeń, z których będzie

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą Szczegółowe wymagania edukacyjne z matematyki Klasa II na ocenę dopuszczającą UCZEŃ zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki; W zakresie

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie II gimnazjum

Kryteria ocen z matematyki w klasie II gimnazjum Kryteria ocen z matematyki w klasie II gimnazjum Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna i rozumie pojęcie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017 WYMAGANIA EDUKACYJNE Z MAYKI W KLASIE DRUGIEJ GIMNAZJUM rok szkolny 2016/2017 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2) P podstawowy - ocena dostateczna (3) R rozszerzający -

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY II GIMNAZJUM ROK SZKOLNY 2010/2011

WYMAGANIA EDUKACYJNE DLA KLASY II GIMNAZJUM ROK SZKOLNY 2010/2011 WYMAGANIA EDUKACYJNE DLA KLASY II GIMNAZJUM ROK SZKOLNY 2010/2011 Uczeń chcąc uzyskać daną ocenę musi spełnić również wymagania na oceny niższe. Uczeń na ocenę: DOPUSZCZAJĄCY: zna i rozumie pojęcie potęgi

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA DZIAŁ I: POTĘGI I PIERWIASTKI zna i rozumie pojęcie potęgi o wykładniku naturalnym (2) umie zapisać potęgę w postaci iloczynu (2)

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

Semestr Pierwszy Potęgi

Semestr Pierwszy Potęgi MATEMATYKA KL. II 1 Semestr Pierwszy Potęgi zna i rozumie pojęcie potęgi o wykładniku naturalnym, umie zapisać potęgę w postaci iloczynu, umie zapisać iloczyn jednakowych czynników w postaci potęgi, umie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo

Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu.

Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu. Klasa II: DZIAŁ 1. POTĘGI Lekcja organizacyjna. Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu. Działania na potęgach.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum

Wymagania edukacyjne z matematyki dla klasy II gimnazjum Wymagania edukacyjne z matematyki dla klasy II gimnazjum Opracowano na podstawie programu Matematyka z plusem Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w

Bardziej szczegółowo

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii Matematyka klasa II kryteria oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych opracowano na podstawie programu MATEMATYKA Z PLUSEM DZIAŁ 1. POTĘGI zna i rozumie pojęcie potęgi o wykładniku

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II 1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II POTĘGI umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych czynników w postaci potęgi umie obliczyć potęgę o wykładniku

Bardziej szczegółowo

ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM

ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM Ocena dopuszczająca: Uczeń: Zna pojęcie potęgi o wykładniku naturalnym Rozumie pojęcie potęgi o wykładniku naturalnym Umie zapisać potęgi w postaci iloczynów

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopuszczająca (2); (3) - ocena dostateczna (3); (4) - ocena dobra (4); (5) - ocena bardzo dobra (5); (6)

Bardziej szczegółowo

DZIAŁ 1. POTĘGI (14 h)

DZIAŁ 1. POTĘGI (14 h) DZIAŁ 1. POTĘGI (14 h) TEMAT ZAJĘĆ 1. Lekcja organizacyjna. 2-3. Potęga o wykładniku naturalnym. 4-5. Iloczyn i iloraz potęg o jednakowych podstawach. 6. Potęgowanie potęgi. 7-8. Potęgowanie iloczynu i

Bardziej szczegółowo

Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum

Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum W POTĘGI zna i rozumie pojęcie potęgi o wykładniku naturalnym umie obliczyć potęgę o

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM I. POTĘGI. 1. Zna i rozumie pojęcie potęgi o wykładniku naturalnym. 2. Umie zapisać potęgę w postaci iloczynu. 3. Umie zapisać iloczyn jednakowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE klasa II

WYMAGANIA EDUKACYJNE klasa II Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE klasa II POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4)

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM OCENA DOPUSZCZAJĄCA -pojęcie potęgi o wykładniku naturalnym, -wzór na mnożenie i dzielenie potęg o tych samych podstawach, -wzór na potęgowanie iloczynu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM 4 GODZ. TYGODNIOWO 125 GODZ. W CIĄGU

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM Wydawnictwo GWO 4 GODZ. TYGODNIOWO

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem POTĘGI POZIOM KONIECZNY ocena dopuszczająca zapisać potęgę w postaci iloczynu zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/2/2010 POZIOMY WYMAGAŃ

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM DZIAŁ 1. POTĘGI

KRYTERIA OCENY Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM DZIAŁ 1. POTĘGI KRYTERIA OCENY Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra (4);

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNEJ OCENY KLASYFIKACYJNEJ W KLASIE II

WYMAGANIA EDUKACYJNE Z MATEMATYKI NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNEJ OCENY KLASYFIKACYJNEJ W KLASIE II WYMAGANIA EDUKACYJNE Z MATEMATYKI NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNEJ OCENY KLASYFIKACYJNEJ W KLASIE II Uwaga: na ocenę wyższą uczeń musi spełniać wszystkie wymagania na oceny niższe. DZIAŁ 1. POTĘGI Dopuszczający

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Stopień celujący może otrzymać uczeń, który spełnia kryteria na stopień bardzo dobry oraz: posiada wiadomości i umiejętności znacznie wykraczające

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z POZIOMEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z POZIOMEM WYMAGAŃ EDUKACYJNYCH Matematyka z plusem dla gimnazjum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z POZIOMEM WYMAGAŃ EDUKACYJNYCH POZIOMY WYMAGAŃ EDUKACYJNYCH: ocena dopuszczająca (2)

Bardziej szczegółowo

Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną.

Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną. Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017 SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017 Ocenę dopuszczającą otrzymuje uczeń, który: (Symetrie) zna pojęcie punktów symetrycznych względem prostej, umie rozpoznawać figury

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2015/2016 DZIAŁ 1. POTĘGI

KRYTERIA OCEN Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2015/2016 DZIAŁ 1. POTĘGI POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D dopełniający ocena bardzo dobra (5) W - wykraczający ocena celująca

Bardziej szczegółowo

PLAN NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY PODRĘCZNIK GWO Matematyka 2. Podręcznik

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (dp.) P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

Matematyka klasa II Dział programowy: 1. Potęgi (14 h)

Matematyka klasa II Dział programowy: 1. Potęgi (14 h) Matematyka klasa II Dział programowy: 1. Potęgi (14 h) Wymagania podstawowe na ocenę: 14 1. Lekcja organizacyjna. 2-3. Potęga o wykładniku naturalnym. 4-5. Iloczyn i iloraz potęg o jednakowych podstawach.

Bardziej szczegółowo

KLASA II WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA. Wymagania edukacyjne. dostosowane są do programu MATEMATYKA Z PLUSEM DZIAŁ I

KLASA II WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA. Wymagania edukacyjne. dostosowane są do programu MATEMATYKA Z PLUSEM DZIAŁ I WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA Wymagania edukacyjne dostosowane są do programu MATEMATYKA Z PLUSEM KLASA II DZIAŁ I POTĘGI I PIERWIASTKI Poziomy wymagań edukacyjnych: K - konieczny

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM Opracowano na podstawie programu Matematyka z plusem dla III etapu edukacyjnego (klasy I III) dopuszczonego przez MEN do użytku szkolnego i

Bardziej szczegółowo

ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM Ocenę dopuszczający otrzymuje uczeń, który potrafi: Ocenę dostateczną otrzymuje uczeń, który potrafi: Ocenę dobrą otrzymuje uczeń, który potrafi:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP.168/2/2010 POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016 Litery w nawiasach oznaczają kolejno: K - ocena dopuszczająca P - ocena dostateczna

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE DLA KLASY II GIMNAZJUM

WYMAGANIA PROGRAMOWE DLA KLASY II GIMNAZJUM WYMAGANIA PROGRAMOWE DLA KLASY II GIMNAZJUM Wymagania podstawowe(k- ocena dopuszczająca, P ocena dostateczna), wymagania ponadpodstawowe( R ocena dobra, D ocena bardzo dobra, W ocena celująca) DZIAŁ 1:

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM POZIOMY WYMAGAŃ EDUKACYJNYCH: K

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM 4 GODZ. TYGODNIOWO 125 GODZ. W CIĄGU

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

Kryteria wymagań na poszczególne stopnie szkolne z matematyki klasa II gimnazjum. DZIAŁ I: POTĘGI I PIERWIASTKI

Kryteria wymagań na poszczególne stopnie szkolne z matematyki klasa II gimnazjum. DZIAŁ I: POTĘGI I PIERWIASTKI Kryteria wymagań na poszczególne stopnie szkolne z matematyki klasa II gimnazjum. POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający

Bardziej szczegółowo

Matematyka z plusem dla gimnazjum

Matematyka z plusem dla gimnazjum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ A,B,C,D,F WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Realizowany przez : mgr Emilię Wójcicką, mgr Małgorzatę Maniecką, mgr IzabellęKomperdę,

Bardziej szczegółowo

DZIAŁ 1. POTĘGI (14 h)

DZIAŁ 1. POTĘGI (14 h) Wymagania przedmiotowe z matematyki w klasie II gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum opracowane na podstawie programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum opracowane na podstawie programu Matematyka z plusem mgr Mariola Jurkowska mgr Barbara Pierzchała Gimnazjum Zgromadzenia Sióstr Najświętszej Rodziny z Nazaretu W Krakowie Wymagania edukacyjne z matematyki dla klasy II gimnazjum opracowane na podstawie programu

Bardziej szczegółowo

DOROTA BANIAK Zabierzów, Klasa 2c, 2e

DOROTA BANIAK Zabierzów, Klasa 2c, 2e DOROTA BANIAK Zabierzów, 1.09.2016 Klasa 2c, 2e PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Rok szkolny 2017/18

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Rok szkolny 2017/18 PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Rok szkolny 2017/18 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY

Bardziej szczegółowo

DZIAŁ 1. POTĘGI WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM CELE PONADPODSTAWOWE CELE PODSTAWOWE TEMAT ZAJĘĆ

DZIAŁ 1. POTĘGI WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM CELE PONADPODSTAWOWE CELE PODSTAWOWE TEMAT ZAJĘĆ Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW WYDANYCH PRZEZ GWO

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/2/2010

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era POTĘGI I PIERWIASTKI POTĘGI Na ocenę dopuszczającą uczeń: zna i rozumie pojęcie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA DOPUSZCZAJĄCY I DZIAŁ: POTĘGI zna pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Wymagania na poszczególne stopnie szkolne

Wymagania na poszczególne stopnie szkolne Wymagania na poszczególne stopnie szkolne Dział, temat Wymagania na ocenę dopuszczającą (K) Wymagania na ocenę dostateczną (P) Wymagania na ocenę dobrą (R) Wymagania na ocenę bardzo dobrą (D) Wymagania

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018

Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018 Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018 I Okres POTĘGI zapisać potęgę w postaci iloczynu liczb, zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DPN /08 NUMER DOPUSZCZENIA PODRĘCZNIKA 168/2/2009

OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DPN /08 NUMER DOPUSZCZENIA PODRĘCZNIKA 168/2/2009 PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH, ŚCIEŻEK EDUKACYJNYCH I STANDARDÓW WYMAGAŃ EGZAMINACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DPN-5002-17/08 OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW WYDANYCH PRZEZ GWO Matematyka

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w klasie 2ab w roku szkolnym 2011/2012

Wymagania na poszczególne oceny z matematyki w klasie 2ab w roku szkolnym 2011/2012 Wymagania na poszczególne oceny z matematyki w klasie 2ab w roku szkolnym 2011/2012 POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

ROK SZKOLNY 2012/2013

ROK SZKOLNY 2012/2013 PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH, ROK SZKOLNY 2012/2013 OPRACOWAŁY NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DPN-5002-17/08

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

1 Dokument pochodzi ze strony

1 Dokument pochodzi ze strony PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH klasy: 2a, 2b, 2r, rok szkolny 2013/2014 nauczyciele: Małgorzata Koba, Agata Midor OPRACOWANO

Bardziej szczegółowo

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

Wymagania przedmiotowe z matematyki do klasy II gimnazjum Tytuł: MATEMATYKA Z PLUSEM

Wymagania przedmiotowe z matematyki do klasy II gimnazjum Tytuł: MATEMATYKA Z PLUSEM Wymagania przedmiotowe z matematyki do klasy II gimnazjum Tytuł: MATEMATYKA Z PLUSEM Autor programu: M. Jucewicz, M. Karpiński, J. Lech Autor podręcznika: praca zbiorowa pod red. M. Dobrowolskiej nr w

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy drugiej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. POTĘGI

Kryteria oceniania z zakresu klasy drugiej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. POTĘGI Kryteria oceniania z zakresu klasy drugiej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. POTĘGI HASŁO PROGRAMOWE Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryterialnych wymagań na ocenę dopuszczającą.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryterialnych wymagań na ocenę dopuszczającą. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryterialnych wymagań na ocenę dopuszczającą. Aby otrzymać ocenę wyższą uczeń musi opanować wymagania

Bardziej szczegółowo

MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi

MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wymagań na wszystkie oceny niższe.) DZIAŁ Potęgi DOPUSZCZAJĄCY

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI w klasie 2a w roku szkolnym 2017/18. realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo

KRYTERIA OCENIANIA Z MATEMATYKI w klasie 2a w roku szkolnym 2017/18. realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo RYTERIA OCENIANIA Z MATEMATYI w klasie 2a w roku szkolnym 2017/18 realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo wymagania konieczne (ocena 2); P wymagania podstawowe (ocena

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa II Potęgi zna i rozumie pojęcie potęgi o wykładniku naturalnym, umie zapisać potęgę w postaci iloczynu, umie zapisać iloczyn jednakowych czynników

Bardziej szczegółowo

DZIAŁ 1. POTĘGI dopuszczaj ący

DZIAŁ 1. POTĘGI dopuszczaj ący W Y MA GANIA NA POSZCZEG ÓLNE O CENY-MATEMATYKA KLASA 2 DZIAŁ 1. POTĘGI dopuszczaj ący dostateczny dobry bardzo dobry celuj ący 1 1+2 1+2+3 1+2+3+4 1+2+3+4+5 zna pojęcie potęgi o wykładniku umie stosować

Bardziej szczegółowo