Metody scoringowe w regresji logistycznej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody scoringowe w regresji logistycznej"

Transkrypt

1 Metody scoringowe w regresji logistycznej Andrzej Surma Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 19 listopada 2009 AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

2 Plan prezentacji 1 O klasyfikacji - Przypomnienie 2 Wprowadzenie do metody scoringowej 3 Wstępna analiza danych 4 Budowa modelu scoringowego 5 Ocena modelu 6 Implementacja w R 7 Bibliografia AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

3 Przypomnienie Reguła decyzyjna Reguła decyzyjna (reguła dyskryminacyjna lub klasyfikacyjna) d(x) : X G Zadanie klasyfikacji = zadanie predykcji Reguła klasyfikacyjna = klasyfikator Regresja logistyczna - przypadek dwóch klas y i {0, 1} niezależne y i ma rozkład bin(1, p(x i )) L(β) = n p(x i ) y i (1 p(x i )) 1 y i = i=1 n i=1 e y i x T i β 1 + e xt i β AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

4 Przypomnienie Przypadek K klas y i {1,..., K} niezależne o rozkładzie p(1 x i ),..., p(k x i ) p(j x i ) = e xt i β j 1+ K 1 m=1 ext i βm L(β 1,..., β K 1 ) = n p(1 x i ) 1(y i =1)... p(k x i ) 1(y i =K) i=1 log(l(β 1,..., β K 1 )) max β1,...,β K 1 Klasyfikator d(x) = argmax 1 j K p(j x) Regresja logistyczna zapewnia pozostawanie wartości estymatora p(k x) w przedziale [0, 1] AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

5 Wprowadzenie Podstawowy opis modelu Zbudowanie poprawnego modelu scoringowego wymaga dokładnie przemyślanego zaprojektowania całego przedsięwzięcia. Proces budowy analitycznych modeli jest tylko jednym z etapów tego procesu, w dużym stopniu uzależnionym od jakości i rzetelności zebranych danych. Trafność oceny zdolności kredytowej zależy zatem od tego, co zostało w taki model wbudowane. Wymagania stawiane narzędziom wspierającym procesy decyzyjne minimalizacja ryzyka błędnej decyzji szybkość działania (warunki konkurencji) możliwość uwzględniania różnych informacji jakościowych i ilościowych AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

6 Wstępna analiza danych wykorzystanie danych historycznych do ustalenia kształtu modelu odpowiedni dobór zmiennych możliwość uogólnienia danych zawartych w modelu zapewnienie wysokiej skuteczności predykcji AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

7 Ważne kwestie Jakość danych Budowa modelu odbywa się na zbiorze danych treningowych. Pożądane jest, aby dane były rzetelne i precyzyjne. To na ich podstawie później będziemy klasyfikować kredytobiorców do odpowiednich klas. Dane stanowią punkt wyjścia. Określenie charakteru oraz dekompozycja danych odpowiednia ilość obserwacji w celu zwiększenia własności predykcyjnych modelu względnie równy dobór obserwacji z różnych grup ryzyka poprawność i jednorodność danych sposób traktowania obserwacji brakujących i odstających AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

8 Ważne kwestie Metody przekształcania Normalizacja (przedział (0, 1)) Dyskretyzacja Segmentacja Stosowane techniki Statystyczno-matematyczne regresja liniowa regresja logistyczna analiza dyskryminacyjna drzewa decyzyjne Niestatystyczne programowanie (liniowe i całkowitoliczbowe) sieci neuronowe systemy eksperckie AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

9 Czynniki wpływające na stosowane techniki jakość dostępnych danych (w danych ze znaczną liczbą braków sugerowane są drzewa decyzyjne) typ zmiennej wyjaśnianej (ciągły, binarny, wielomianowy) rozmiar dostępnych prób możliwości implementacyjne interpretowalność wyników (sugerowana regresja logistyczna) AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

10 Credit scoring Ocena zdolności kredytowej łatwa dostępność informacji sprawne przetwarzanie informacji łatwa interpretowalność możliwość ustalenia jednoznacznej decyzji wyznaczenie na podstawie charakterystyk kredytobiorcy punktowej oceny służącej później do zaklasyfikowania kredytobiorcy do grupy o określonym poziomie ryzyka prognoza dla jakościowej zmiennej o rozkładzie dwumianowym z dwiema kategoriami przyznajemy kredyt (niewielkie ryzyko) nie przyznajemy kredytu AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

11 Dyskretyzacja zmiennych Metoda WOE pozwala ocenić dobroć podziału i siłę predykcyjną każdego z atrybutów badanej cechy, natomiast IV bada siłę predykcyjną całej zmiennej. W modelu staramy się uwzględnić zmienne o wysokim współczynniku IV, pamiętając jednocześnie o tym, aby ten współczynnik nie był zbyt wysoki, bo taka zmienna może zdominować model i niesie ryzyko spadku stabilności modelu. Wykres WOE powinien układać się w logiczny trend. Kategoryzacja powinna dać wystarczajęce udziały procentowe dla każdego przedziału. AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

12 WOE i IV Weight of evidence WOE jest miarą różnicy pomiędzy proporcją dobrych i złych klientów w każdym atrybucie. Dla j-tego atrybutu mamy woe j = ln( distr jgood distr j bad ) 100 Information Value Dla całej zmiennej (składającej się z kilku atrybutów) definiujemy Information Value k IV = [(distr j good distr j bad) ln( distr jgood distr j=1 j bad )] AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

13 Score Scoring można określić jako system automatycznej i obiektywnej oceny obiektu, wprowadzony w rezultacie doświadczenia, uzasadniony przykładami i statystykami. Ocena punktowa opiera się nie tylko na zmiennych dotyczących klienta bezpośrednio, ale również takich, które dotyczą jego otoczenia. Wygodnie jest przyjąć przedział punktowy od 0 do 100. Można wówczas nadać mu interpretację procentową. Scoring wychodzi z założenia, że przyszłość jest odzwierciedleniem przeszłości. Score = Offset + Factor ln(odds) W celu znalezienia wszystkich stałych we wzorze definiujemy pdo (points to double the odds) Score + pdo = Offset + Factor ln(2 odds) AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

14 Wartość cut off Punkt odcięcia - wartość reprezentująca próg ryzyka. Powinien być ustalony tak, aby: zminimalizować udział bads zapewnić pożądany poziom akceptowalności wniosków maksymalizować zyski AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

15 Ocena modelu scoringowego IV Statystyka Kołmogorowa-Smirnova (K-S) Wskaźnik Giniego Krzywa ROC Wykres odds ratio - wyraża stosunek ilości dobrych klientów do złych klientów Wskaźnik bad rate - oznacza stosunek ilości złych klientów do ilości wszystkich klientów Badanie stabilności modelu - postępowanie przyszłościowe AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

16 Zalety i wady scoringu Zalety scoringu Prostota stosowania Szerokie zastosowanie Ograniczenie kosztów analizy Skrócenie czasu weryfikacji Automatyzacja i obektywizm oceny Możliwość wtórnego wykorzystania danych Jednolitość procesu oceny Zmniejszenie liczby złych decyzji (kontrola i przewidywanie) Zwiększenie wydajności pracy AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

17 Wady scoringu Szybka dezaktualizacja systemu Mała elastyczność Kosztowne wdrażanie Błędy w danych Brak analizy jakościowej Dyskryminacja niektórych grup społecznych Problem z doborem kryteriów ocen Zbytnia ogólnikowość Ograniczenia ze strony prawa Problemy ze spełnieniem założeń funkcji statystycznych AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

18 Zastosowanie metody scoringowej scoring bankowy scoring ubezpieczeniowy scoring marketingowy zastosowanie w medycynie kwestia podatkowa zastosowanie w przemyśle okrętowym (ryzyko bezpieczeństwa ludzi i środowiska naturalnego) AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

19 Implementacja w R Składnia glm(formula,family,data,weights,subset,na.action,method,...) summary() step() predict() AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

20 Obiekt klasy glm $coefficient - oceny współczynników $fitted.values - oceny prawdopodobieństw p $linear.predictors - wartości dopasowane równe ln p 1 p $family - funkcja wiążąca $aic - wartość kryterium Akaike AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

21 Bibliografia 1 Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scoring N.Siddiqi 2 Scoring kredytowy a modele data mining G.Migut, J.Wątroba 3 Budowa modelu scoringowego do e-pożyczki z wykorzystaniem narzędzi Statistica K.Karnowska, K.Cioch 4 Podstawy statystyczne i uniwersalna funkcjonalność scoringu L.Boguszewski, B.Gelińska AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

Scoring kredytowy w pigułce

Scoring kredytowy w pigułce Analiza danych Data mining Sterowanie jakością Analityka przez Internet Scoring kredytowy w pigułce Mariola Kapla Biuro Informacji Kredytowej S.A. StatSoft Polska Sp. z o.o. ul. Kraszewskiego 36 30-110

Bardziej szczegółowo

BUDOWA MODELU SCORINGOWEGO DO E-POŻYCZKI Z WYKORZYSTANIEM NARZĘDZI STATISTICA

BUDOWA MODELU SCORINGOWEGO DO E-POŻYCZKI Z WYKORZYSTANIEM NARZĘDZI STATISTICA BUDOWA MODELU SCORINGOWEGO DO E-POŻYCZKI Z WYKORZYSTANIEM NARZĘDZI STATISTICA Kamila Karnowska i Katarzyna Cioch, SKOK im. Franciszka Stefczyka Wykorzystanie metod scoringowych do oceny punktowej klientów

Bardziej szczegółowo

Wykorzystanie i monitorowanie scoringu

Wykorzystanie i monitorowanie scoringu Analiza danych Data mining Sterowanie jakością Analityka przez Internet Wykorzystanie i monitorowanie scoringu Tomasz Sudakowski Biuro Informacji Kredytowej S.A. StatSoft Polska Sp. z o.o. ul. Kraszewskiego

Bardziej szczegółowo

Wskaźnik kondycji finansowej kredytobiorcy. Aspekty metodologiczne.

Wskaźnik kondycji finansowej kredytobiorcy. Aspekty metodologiczne. Wskaźnik kondycji finansowej kredytobiorcy. Aspekty metodologiczne. dr Anna Nowak-Czarnocka Zastosowania statystyki i data mining w badaniach naukowych Warszawa, 12 października 2016 Pole badawcze Ryzyko

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład II bogumil.konopka@pwr.edu.pl 2017/2018 Określenie rzeczywistej dokładności modelu Zbiór treningowym vs zbiór testowy Zbiór treningowy

Bardziej szczegółowo

StatSoft profesjonalny partner w zakresie analizy danych

StatSoft profesjonalny partner w zakresie analizy danych Analiza danych Data mining Sterowanie jakością Analityka przez Internet StatSoft profesjonalny partner w zakresie analizy danych StatSoft Polska Sp. z o.o. StatSoft Polska Sp. z o.o. ul. Kraszewskiego

Bardziej szczegółowo

SKORING JAKO NARZĘDZIE WSPIERAJĄCE SPÓŁDZIELCZE KASY OSZCZĘDNOŚCIOWO-KREDYTOWE W SPEŁNIENIU NOWYCH WYMAGAŃ NADZORCZYCH

SKORING JAKO NARZĘDZIE WSPIERAJĄCE SPÓŁDZIELCZE KASY OSZCZĘDNOŚCIOWO-KREDYTOWE W SPEŁNIENIU NOWYCH WYMAGAŃ NADZORCZYCH SKORING JAKO NARZĘDZIE WSPIERAJĄCE SPÓŁDZIELCZE KASY OSZCZĘDNOŚCIOWO-KREDYTOWE W SPEŁNIENIU NOWYCH WYMAGAŃ NADZORCZYCH Katarzyna Cioch, Towarzystwo Zarządzające SKOK Sp. z o.o. SKA Spółdzielcze kasy oszczędnościowo

Bardziej szczegółowo

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe

Bardziej szczegółowo

Statystyka I. Regresja dla zmiennej jakościowej - wykład dodatkowy (nieobowiązkowy)

Statystyka I. Regresja dla zmiennej jakościowej - wykład dodatkowy (nieobowiązkowy) Statystyka I Regresja dla zmiennej jakościowej - wykład dodatkowy (nieobowiązkowy) 1 Zmienne jakościowe qzmienne jakościowe niemierzalne kategorie: np. pracujący / bezrobotny qzmienna binarna Y=0,1 qczasami

Bardziej szczegółowo

SKORING KREDYTOWY A MODELE DATA MINING

SKORING KREDYTOWY A MODELE DATA MINING SKORING KREDYTOWY A MODELE DATA MINING Janusz Wątroba StatSoft Polska Sp. z o.o. Przedmiotem rozważań w niniejszym artykule jest problematyka oceny ryzyka kredytowego oraz wybrane zagadnienia związane

Bardziej szczegółowo

PRAKTYCZNY SKORING - NIE TYLKO KREDYTOWY

PRAKTYCZNY SKORING - NIE TYLKO KREDYTOWY PRAKTYCZNY SKORING - NIE TYLKO KREDYTOWY Piotr Wójtowicz, Grzegorz Migut StatSoft Polska Jakie są różnice pomiędzy osobami prawidłowo regulującymi swoje zobowiązania a niechętnie spłacającymi swoje długi,

Bardziej szczegółowo

Wojciech Skwirz

Wojciech Skwirz 1 Regularyzacja jako metoda doboru zmiennych objaśniających do modelu statystycznego. 2 Plan prezentacji 1. Wstęp 2. Część teoretyczna - Algorytm podziału i ograniczeń - Regularyzacja 3. Opis wyników badania

Bardziej szczegółowo

Scoring kredytowy a modele data mining

Scoring kredytowy a modele data mining Grzegorz Migut, Janusz Wątroba Scoring kredytowy a modele data mining Wprowadzenie Jedną z najbardziej charakterystycznych cech otaczającej nas rzeczywistości jest niepewność. Dotyczy to zarówno zjawisk

Bardziej szczegółowo

Quick Launch Manual:

Quick Launch Manual: egresja Odds atio Quick Launch Manual: regresja logistyczna i odds ratio Uniwesytet Warszawski, Matematyka 28.10.2009 Plan prezentacji egresja Odds atio 1 2 egresja egresja logistyczna 3 Odds atio 4 5

Bardziej szczegółowo

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18 Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Algorytmy metaheurystyczne Wykład 11. Piotr Syga Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,

Bardziej szczegółowo

DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE:

DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: DATAMINING 1 S t r o n a WSTĘP Czyli jak zastąpić wróżenie z fusów i przysłowiowego nosa, statystyką i modelami ekonometrycznymi. Niniejszy dokument,

Bardziej szczegółowo

Uogólniony model liniowy

Uogólniony model liniowy Uogólniony model liniowy Ogólny model liniowy y = Xb + e Każda obserwacja ma rozkład normalny Każda obserwacja ma tą samą wariancję Dane nienormalne Rozkład binomialny np. liczba chorych krów w stadzie

Bardziej szczegółowo

Indukowane Reguły Decyzyjne I. Wykład 8

Indukowane Reguły Decyzyjne I. Wykład 8 Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne

Bardziej szczegółowo

OCENA MODELI SCORINGOWYCH W SKOK STEFCZYKA

OCENA MODELI SCORINGOWYCH W SKOK STEFCZYKA OCENA MODELI SCORINGOWYCH W SKOK STEFCZYKA Katarzyna Cioch Specjalista ds. Ryzyka, SKOK Stefczyka Kamila Karnowska Specjalista ds. Ryzyka, SKOK Stefczyka Scoring SKOK Stefczyka Scoring kredytowy w Spółdzielczej

Bardziej szczegółowo

Konstrukcja miernika szans na bankructwo firmy

Konstrukcja miernika szans na bankructwo firmy Natalia Nehrebecka / Departament Statystyki Konstrukcja miernika szans na bankructwo firmy Statystyka Wiedza Rozwój, 17-18 października 2013 r. w Łodzi Konstrukcja miernika szans na bankructwo firmy 2

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Widzenie komputerowe (computer vision)

Widzenie komputerowe (computer vision) Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja

Bardziej szczegółowo

Analiza danych ilościowych i jakościowych

Analiza danych ilościowych i jakościowych Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 8 kwietnia 2010 Plan prezentacji 1 Zbiory danych do analiz 2 3 4 5 6 Implementacja w R Badanie depresji Depression trial data Porównanie

Bardziej szczegółowo

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006

SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006 SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu

Bardziej szczegółowo

OPIS PRZEDMIOTU ZAMÓWIENIA. Część nr 8 OPROGRAMOWANIE DO ANALIZ MARKETINGOWYCH (pom. nr 1.21)

OPIS PRZEDMIOTU ZAMÓWIENIA. Część nr 8 OPROGRAMOWANIE DO ANALIZ MARKETINGOWYCH (pom. nr 1.21) Zamówienie publiczne współfinansowane przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Regionalnego Programu Operacyjnego Województwa Mazowieckiego 2007-2013 w związku

Bardziej szczegółowo

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:

Bardziej szczegółowo

Metody selekcji cech

Metody selekcji cech Metody selekcji cech A po co to Często mamy do dyspozycji dane w postaci zbioru cech lecz nie wiemy które z tych cech będą dla nas istotne. W zbiorze cech mogą wystąpić cechy redundantne niosące identyczną

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Szkolenie Regresja liniowa

Szkolenie Regresja liniowa Szkolenie Regresja liniowa program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Regresja liniowa Co to jest regresja liniowa? Regresja liniowa jest podstawową metodą

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Drzewa Decyzyjne, cz.2

Drzewa Decyzyjne, cz.2 Drzewa Decyzyjne, cz.2 Inteligentne Systemy Decyzyjne Katedra Systemów Multimedialnych WETI, PG Opracowanie: dr inŝ. Piotr Szczuko Podsumowanie poprzedniego wykładu Cel: przewidywanie wyniku (określania

Bardziej szczegółowo

Odzyskać pożyczone. Przyjrzyjmy się praktycznym aspektom modelowania ryzyka kredytowego. Grzegorz Migut StatSoft Polska sp. z o.o., Dział Konsultingu

Odzyskać pożyczone. Przyjrzyjmy się praktycznym aspektom modelowania ryzyka kredytowego. Grzegorz Migut StatSoft Polska sp. z o.o., Dział Konsultingu Autorzy Jadwiga Żarna Can-Pack SA, Dział Zarządzania Ryzykiem Grzegorz Migut StatSoft Polska sp. z o.o., Dział Konsultingu Ilustracja Maciej Grzesiak 53 Odzyskać pożyczone Przyjrzyjmy się praktycznym aspektom

Bardziej szczegółowo

Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw

Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw dr Karolina Borowiec-Mihilewicz Uniwersytet Ekonomiczny we Wrocławiu Zastosowania

Bardziej szczegółowo

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 9 Anna Skowrońska-Szmer lato 2016/2017 Ekonometria (Gładysz B., Mercik J., Modelowanie ekonometryczne. Studium przypadku, Wydawnictwo PWr., Wrocław 2004.) 2

Bardziej szczegółowo

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. II seminarium konsultacyjne.

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. II seminarium konsultacyjne. Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego II seminarium konsultacyjne w ramach projektu Analiza czynników wpływających na zwiększenie ryzyka długookresowego

Bardziej szczegółowo

Regresja logistyczna. Regresja logistyczna. Wymagania. Przykłady DV

Regresja logistyczna. Regresja logistyczna. Wymagania. Przykłady DV Regresja logistyczna analiza relacji między zbiorem zmiennych niezależnych (ilościowych i dychotomicznych) a dychotomiczną zmienną zależną wyniki wyrażone są w prawdopodobieństwie przynależności do danej

Bardziej szczegółowo

Mail: Pokój 214, II piętro

Mail: Pokój 214, II piętro Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU)

SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU) SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU) 1. Opis problemu - ocena końcowa projektu Projekt jako nowe, nietypowe przedsięwzięcie wymaga właściwego zarządzania. Podjęcie się realizacji

Bardziej szczegółowo

L.p Nazwa przedmiotu Kod przedmiotu Osoba(y) prowadząca(e) WDP PDP WIR DAW BDZ

L.p Nazwa przedmiotu Kod przedmiotu Osoba(y) prowadząca(e) WDP PDP WIR DAW BDZ L.p Nazwa przedmiotu Kod przedmiotu Osoba(y) prowadząca(e) 1 2 3 4 5 Wykorzystanie systemu analizy statystycznej SAS w działalności przedsiębiorstwa Przetwarzanie danych w pakiecie SAS (makroprogramowanie,

Bardziej szczegółowo

Wykład 4: Wnioskowanie statystyczne. Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA

Wykład 4: Wnioskowanie statystyczne. Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA Wykład 4: Wnioskowanie statystyczne Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA Idea wnioskowania statystycznego Celem analizy statystycznej nie jest zwykle tylko

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

PRZYKŁAD WYKORZYSTANIA MODELI SKORINGOWYCH W MEDYCYNIE

PRZYKŁAD WYKORZYSTANIA MODELI SKORINGOWYCH W MEDYCYNIE PRZYKŁAD WYKORZYSTANIA MODELI SKORINGOWYCH W MEDYCYNIE Grzegorz Migut, StatSoft Polska Sp. z o.o. Jednym z szerzej wykorzystywanych typów modeli statystycznych są modele klasyfikacyjne, gdzie modelowana

Bardziej szczegółowo

Metodyczne aspekty zastosowania modeli skoringowych do oceny zdolności kredytowej z wykorzystaniem metod ilościowych

Metodyczne aspekty zastosowania modeli skoringowych do oceny zdolności kredytowej z wykorzystaniem metod ilościowych Metodyczne aspekty zastosowania modeli skoringowych do oceny zdolności kredytowej z wykorzystaniem metod ilościowych «Methodological aspects of the application of credit scoring models to assess the creditworthiness

Bardziej szczegółowo

Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści

Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

ZAAWANSOWANE METODY ANALIZ STATYSTYCZNYCH red. Ewa Frątczak

ZAAWANSOWANE METODY ANALIZ STATYSTYCZNYCH red. Ewa Frątczak Tytuł: Autor: ZAAWANSOWANE METODY ANALIZ STATYSTYCZNYCH red. Ewa Frątczak Wstęp Zaawansowane metody analiz statystycznych przenoszą analizy statystyczne na kolejny wyższy poziom. Określenie tego wyższego

Bardziej szczegółowo

Odczarowujemy modele predykcyjne Teoria i Praktyka

Odczarowujemy modele predykcyjne Teoria i Praktyka Odczarowujemy modele predykcyjne Teoria i Praktyka Mariusz Gromada, MathSpace.PL mariuszgromada.org@gmail.com 1 Kilka słów o mnie 1999 2004 Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych

Bardziej szczegółowo

Projekt zarządzania jakością wykorzystujący STATISTICA Data Miner przynosi w voestalpine roczne oszczędności w wysokości 800 000 EUR

Projekt zarządzania jakością wykorzystujący STATISTICA Data Miner przynosi w voestalpine roczne oszczędności w wysokości 800 000 EUR Projekt zarządzania jakością wykorzystujący STATISTICA Data Miner przynosi w voestalpine roczne oszczędności w wysokości 800 000 EUR Przemysł samochodowy stawia najwyższe wymagania jakościowe w stosunku

Bardziej szczegółowo

Algorytmy klasyfikacji

Algorytmy klasyfikacji Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

Elementarne metody statystyczne 9

Elementarne metody statystyczne 9 Elementarne metody statystyczne 9 Wybrane testy nieparametryczne - ciąg dalszy Test McNemary W teście takim dysponujemy próbami losowymi z dwóch populacji zależnych pewnej cechy X. Wyniki poszczególnych

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol) KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Ekonometria 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN: 30 / 30 7. TYP PRZEDMIOTU

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku

Bardziej szczegółowo

Z-LOGN1-006 Statystyka Statistics

Z-LOGN1-006 Statystyka Statistics KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOGN-006 Statystyka Statistics Obowiązuje od roku akademickiego 0/0 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

Data Mining Wykład 4. Plan wykładu

Data Mining Wykład 4. Plan wykładu Data Mining Wykład 4 Klasyfikacja danych Klasyfikacja poprzez indukcje drzew decyzyjnych Plan wykładu Sformułowanie problemu Kryteria oceny metod klasyfikacji Metody klasyfikacji Klasyfikacja poprzez indukcje

Bardziej szczegółowo

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

WYKŁAD 3. Klasyfikacja: modele probabilistyczne

WYKŁAD 3. Klasyfikacja: modele probabilistyczne Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami

Bardziej szczegółowo

Recenzenci Stefan Mynarski, Waldemar Tarczyński. Redaktor Wydawnictwa Anna Grzybowska. Redaktor techniczny Barbara Łopusiewicz. Korektor Barbara Cibis

Recenzenci Stefan Mynarski, Waldemar Tarczyński. Redaktor Wydawnictwa Anna Grzybowska. Redaktor techniczny Barbara Łopusiewicz. Korektor Barbara Cibis Komitet Redakcyjny Andrzej Matysiak (przewodniczący), Tadeusz Borys, Andrzej Gospodarowicz, Jan Lichtarski, Adam Nowicki, Walenty Ostasiewicz, Zdzisław Pisz, Teresa Znamierowska Recenzenci Stefan Mynarski,

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

UNIWERSALNOŚĆ ZASTOSOWAŃ MODELI SKORINGOWYCH

UNIWERSALNOŚĆ ZASTOSOWAŃ MODELI SKORINGOWYCH UNIWERSALNOŚĆ ZASTOSOWAŃ MODELI SKORINGOWYCH Ewa Wycinka, Uniwersytet Gdański, Katedra Statystyki Modele skoringowe znajdują zastosowanie we wszystkich obszarach badawczych, w których zadaniem badacza

Bardziej szczegółowo

Własności statystyczne regresji liniowej. Wykład 4

Własności statystyczne regresji liniowej. Wykład 4 Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności

Bardziej szczegółowo

Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji

Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Michał Witczak Data Mining 20 maja 2012 r. 1. Wstęp Dostarczone zostały nam 4 pliki, z których dwa stanowiły zbiory uczące

Bardziej szczegółowo

WYKORZYSTANIE SKORINGU DO PRZEWIDYWANIA WYŁUDZEŃ KREDYTÓW W INVEST-BANKU

WYKORZYSTANIE SKORINGU DO PRZEWIDYWANIA WYŁUDZEŃ KREDYTÓW W INVEST-BANKU WYKORZYSTANIE SKORINGU DO PRZEWIDYWANIA WYŁUDZEŃ KREDYTÓW W INVEST-BANKU Bartosz Wójcicki Naczelnik Wydziału Analiz i Prewencji Przestępstw, Invest-Bank S.A. Grzegorz Migut StatSoft Polska Sp. z o.o. Problem

Bardziej szczegółowo

Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun

Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów Politechnika Warszawska Strona 1 Podstawowe definicje Politechnika Warszawska Strona 2 Podstawowe definicje Zbiór treningowy

Bardziej szczegółowo

ASM 603 + ASM 604 + ASM 605: Finansowanie i wycena nieruchomości jako inwestycji cz. 1-3

ASM 603 + ASM 604 + ASM 605: Finansowanie i wycena nieruchomości jako inwestycji cz. 1-3 ASM 603 + ASM 604 + ASM 605: Finansowanie i wycena nieruchomości jako inwestycji cz. 1-3 Szczegółowy program kursu ASM 603: Finansowanie i wycena nieruchomości jako inwestycji cz. 1 1. Zagadnienia ekonomiczne

Bardziej szczegółowo

WSKAŹNIK KONDYCJI FINANSOWEJ KREDYTOBIORCY. ASPEKTY METODOLOGICZNE

WSKAŹNIK KONDYCJI FINANSOWEJ KREDYTOBIORCY. ASPEKTY METODOLOGICZNE WSKAŹNIK KONDYCJI FINANSOWEJ KREDYTOBIORCY. ASPEKTY METODOLOGICZNE Anna Nowak-Czarnocka, Kolegium Zarządzania i Finansów, Szkoła Główna Handlowa Wprowadzenie Wraz z początkiem globalnego kryzysu finansowego

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych PRZEDMIOT (liczba godzin konwersatoriów/ćwiczeń) Statystyka opisowa z elementami analizy regresji (4/19) Wnioskowanie

Bardziej szczegółowo

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni Przedmiot: Statystyczne Sterowanie Procesami Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu:

Bardziej szczegółowo

Modele selekcji próby

Modele selekcji próby Plan zajęć 1 Problem selekcji próby- heurystyka 2 Problem selekcji próby- teoria 3 Przykład empiryczny Selekcja próby 1 regresja tobitowa- cenzurowanie(transformacja) zmiennej objaśnianej 2 regresja ucięta-

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

Analiza przeżycia. Czym zajmuje się analiza przeżycia?

Analiza przeżycia. Czym zajmuje się analiza przeżycia? ANALIZA PRZEŻYCIA Analiza przeżycia Czym zajmuje się analiza przeżycia? http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/ Analiza przeżycia Jest to inaczej analiza czasu trwania

Bardziej szczegółowo

Regresja linearyzowalna

Regresja linearyzowalna 1 z 5 2007-05-09 23:22 Medycyna Praktyczna - portal dla lekarzy Regresja linearyzowalna mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie Data utworzenia:

Bardziej szczegółowo

Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość

Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość Dwie metody Klasyczna metoda histogramu jako narzędzie do postawienia hipotezy, jaki rozkład prawdopodobieństwa pasuje do danych Indukcja drzewa decyzyjnego jako metoda wykrycia klasyfikatora ukrytego

Bardziej szczegółowo

Optymalizacja Automatycznych Testów Regresywnych

Optymalizacja Automatycznych Testów Regresywnych Optymalizacja Automatycznych Testów Regresywnych W Organizacji Transformującej do Agile Adam Marciszewski adam.marciszewski@tieto.com Agenda Kontekst projektu Typowe podejście Wyzwania Cel Założenia Opis

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1 1. Binarne zmienne zależne 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników 3. Probit a) Interpretacja współczynników b) Miary dopasowania 4.

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 7

Stanisław Cichocki Natalia Nehrebecka. Wykład 7 Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherebecka. Zajęcia 15-17

Stanisław Cichocki. Natalia Neherebecka. Zajęcia 15-17 Stanisław Cichocki Natalia Neherebecka Zajęcia 15-17 1 1. Binarne zmienne zależne 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników 3. Probit a) Interpretacja współczynników b) Miary

Bardziej szczegółowo

ZARZĄDZANIE MARKĄ. Doradztwo i outsourcing

ZARZĄDZANIE MARKĄ. Doradztwo i outsourcing ZARZĄDZANIE MARKĄ Doradztwo i outsourcing Pomagamy zwiększać wartość marek i maksymalizować zysk. Prowadzimy projekty w zakresie szeroko rozumianego doskonalenia organizacji i wzmacniania wartości marki:

Bardziej szczegółowo

MODELE SKORINGOWE W BIZNESIE I NAUCE

MODELE SKORINGOWE W BIZNESIE I NAUCE MODELE SKORINGOWE W BIZNESIE I NAUCE Grzegorz Migut, StatSoft Polska Sp. z o.o. Jednym z szerzej wykorzystywanych typów modeli statystycznych są modele klasyfikacyjne, gdzie modelowana zmienna zależna

Bardziej szczegółowo

SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE

SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE SUM - WLK 2011 WYKŁAD PIĄTY: BIOSTATYSTYKA C.D. Prof. dr hab. med. Jan E. Zejda! UWAGA! SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE TREŚĆ WYKŁADU Dokumentowanie efektu (analiza danych

Bardziej szczegółowo

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na

Bardziej szczegółowo

Rok akademicki: 2030/2031 Kod: ZZP MK-n Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Niestacjonarne

Rok akademicki: 2030/2031 Kod: ZZP MK-n Punkty ECTS: 3. Poziom studiów: Studia II stopnia Forma i tryb studiów: Niestacjonarne Nazwa modułu: Komputerowe wspomaganie decyzji Rok akademicki: 2030/2031 Kod: ZZP-2-403-MK-n Punkty ECTS: 3 Wydział: Zarządzania Kierunek: Zarządzanie Specjalność: Marketing Poziom studiów: Studia II stopnia

Bardziej szczegółowo