Metody scoringowe w regresji logistycznej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody scoringowe w regresji logistycznej"

Transkrypt

1 Metody scoringowe w regresji logistycznej Andrzej Surma Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 19 listopada 2009 AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

2 Plan prezentacji 1 O klasyfikacji - Przypomnienie 2 Wprowadzenie do metody scoringowej 3 Wstępna analiza danych 4 Budowa modelu scoringowego 5 Ocena modelu 6 Implementacja w R 7 Bibliografia AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

3 Przypomnienie Reguła decyzyjna Reguła decyzyjna (reguła dyskryminacyjna lub klasyfikacyjna) d(x) : X G Zadanie klasyfikacji = zadanie predykcji Reguła klasyfikacyjna = klasyfikator Regresja logistyczna - przypadek dwóch klas y i {0, 1} niezależne y i ma rozkład bin(1, p(x i )) L(β) = n p(x i ) y i (1 p(x i )) 1 y i = i=1 n i=1 e y i x T i β 1 + e xt i β AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

4 Przypomnienie Przypadek K klas y i {1,..., K} niezależne o rozkładzie p(1 x i ),..., p(k x i ) p(j x i ) = e xt i β j 1+ K 1 m=1 ext i βm L(β 1,..., β K 1 ) = n p(1 x i ) 1(y i =1)... p(k x i ) 1(y i =K) i=1 log(l(β 1,..., β K 1 )) max β1,...,β K 1 Klasyfikator d(x) = argmax 1 j K p(j x) Regresja logistyczna zapewnia pozostawanie wartości estymatora p(k x) w przedziale [0, 1] AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

5 Wprowadzenie Podstawowy opis modelu Zbudowanie poprawnego modelu scoringowego wymaga dokładnie przemyślanego zaprojektowania całego przedsięwzięcia. Proces budowy analitycznych modeli jest tylko jednym z etapów tego procesu, w dużym stopniu uzależnionym od jakości i rzetelności zebranych danych. Trafność oceny zdolności kredytowej zależy zatem od tego, co zostało w taki model wbudowane. Wymagania stawiane narzędziom wspierającym procesy decyzyjne minimalizacja ryzyka błędnej decyzji szybkość działania (warunki konkurencji) możliwość uwzględniania różnych informacji jakościowych i ilościowych AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

6 Wstępna analiza danych wykorzystanie danych historycznych do ustalenia kształtu modelu odpowiedni dobór zmiennych możliwość uogólnienia danych zawartych w modelu zapewnienie wysokiej skuteczności predykcji AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

7 Ważne kwestie Jakość danych Budowa modelu odbywa się na zbiorze danych treningowych. Pożądane jest, aby dane były rzetelne i precyzyjne. To na ich podstawie później będziemy klasyfikować kredytobiorców do odpowiednich klas. Dane stanowią punkt wyjścia. Określenie charakteru oraz dekompozycja danych odpowiednia ilość obserwacji w celu zwiększenia własności predykcyjnych modelu względnie równy dobór obserwacji z różnych grup ryzyka poprawność i jednorodność danych sposób traktowania obserwacji brakujących i odstających AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

8 Ważne kwestie Metody przekształcania Normalizacja (przedział (0, 1)) Dyskretyzacja Segmentacja Stosowane techniki Statystyczno-matematyczne regresja liniowa regresja logistyczna analiza dyskryminacyjna drzewa decyzyjne Niestatystyczne programowanie (liniowe i całkowitoliczbowe) sieci neuronowe systemy eksperckie AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

9 Czynniki wpływające na stosowane techniki jakość dostępnych danych (w danych ze znaczną liczbą braków sugerowane są drzewa decyzyjne) typ zmiennej wyjaśnianej (ciągły, binarny, wielomianowy) rozmiar dostępnych prób możliwości implementacyjne interpretowalność wyników (sugerowana regresja logistyczna) AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

10 Credit scoring Ocena zdolności kredytowej łatwa dostępność informacji sprawne przetwarzanie informacji łatwa interpretowalność możliwość ustalenia jednoznacznej decyzji wyznaczenie na podstawie charakterystyk kredytobiorcy punktowej oceny służącej później do zaklasyfikowania kredytobiorcy do grupy o określonym poziomie ryzyka prognoza dla jakościowej zmiennej o rozkładzie dwumianowym z dwiema kategoriami przyznajemy kredyt (niewielkie ryzyko) nie przyznajemy kredytu AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

11 Dyskretyzacja zmiennych Metoda WOE pozwala ocenić dobroć podziału i siłę predykcyjną każdego z atrybutów badanej cechy, natomiast IV bada siłę predykcyjną całej zmiennej. W modelu staramy się uwzględnić zmienne o wysokim współczynniku IV, pamiętając jednocześnie o tym, aby ten współczynnik nie był zbyt wysoki, bo taka zmienna może zdominować model i niesie ryzyko spadku stabilności modelu. Wykres WOE powinien układać się w logiczny trend. Kategoryzacja powinna dać wystarczajęce udziały procentowe dla każdego przedziału. AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

12 WOE i IV Weight of evidence WOE jest miarą różnicy pomiędzy proporcją dobrych i złych klientów w każdym atrybucie. Dla j-tego atrybutu mamy woe j = ln( distr jgood distr j bad ) 100 Information Value Dla całej zmiennej (składającej się z kilku atrybutów) definiujemy Information Value k IV = [(distr j good distr j bad) ln( distr jgood distr j=1 j bad )] AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

13 Score Scoring można określić jako system automatycznej i obiektywnej oceny obiektu, wprowadzony w rezultacie doświadczenia, uzasadniony przykładami i statystykami. Ocena punktowa opiera się nie tylko na zmiennych dotyczących klienta bezpośrednio, ale również takich, które dotyczą jego otoczenia. Wygodnie jest przyjąć przedział punktowy od 0 do 100. Można wówczas nadać mu interpretację procentową. Scoring wychodzi z założenia, że przyszłość jest odzwierciedleniem przeszłości. Score = Offset + Factor ln(odds) W celu znalezienia wszystkich stałych we wzorze definiujemy pdo (points to double the odds) Score + pdo = Offset + Factor ln(2 odds) AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

14 Wartość cut off Punkt odcięcia - wartość reprezentująca próg ryzyka. Powinien być ustalony tak, aby: zminimalizować udział bads zapewnić pożądany poziom akceptowalności wniosków maksymalizować zyski AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

15 Ocena modelu scoringowego IV Statystyka Kołmogorowa-Smirnova (K-S) Wskaźnik Giniego Krzywa ROC Wykres odds ratio - wyraża stosunek ilości dobrych klientów do złych klientów Wskaźnik bad rate - oznacza stosunek ilości złych klientów do ilości wszystkich klientów Badanie stabilności modelu - postępowanie przyszłościowe AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

16 Zalety i wady scoringu Zalety scoringu Prostota stosowania Szerokie zastosowanie Ograniczenie kosztów analizy Skrócenie czasu weryfikacji Automatyzacja i obektywizm oceny Możliwość wtórnego wykorzystania danych Jednolitość procesu oceny Zmniejszenie liczby złych decyzji (kontrola i przewidywanie) Zwiększenie wydajności pracy AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

17 Wady scoringu Szybka dezaktualizacja systemu Mała elastyczność Kosztowne wdrażanie Błędy w danych Brak analizy jakościowej Dyskryminacja niektórych grup społecznych Problem z doborem kryteriów ocen Zbytnia ogólnikowość Ograniczenia ze strony prawa Problemy ze spełnieniem założeń funkcji statystycznych AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

18 Zastosowanie metody scoringowej scoring bankowy scoring ubezpieczeniowy scoring marketingowy zastosowanie w medycynie kwestia podatkowa zastosowanie w przemyśle okrętowym (ryzyko bezpieczeństwa ludzi i środowiska naturalnego) AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

19 Implementacja w R Składnia glm(formula,family,data,weights,subset,na.action,method,...) summary() step() predict() AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

20 Obiekt klasy glm $coefficient - oceny współczynników $fitted.values - oceny prawdopodobieństw p $linear.predictors - wartości dopasowane równe ln p 1 p $family - funkcja wiążąca $aic - wartość kryterium Akaike AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

21 Bibliografia 1 Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scoring N.Siddiqi 2 Scoring kredytowy a modele data mining G.Migut, J.Wątroba 3 Budowa modelu scoringowego do e-pożyczki z wykorzystaniem narzędzi Statistica K.Karnowska, K.Cioch 4 Podstawy statystyczne i uniwersalna funkcjonalność scoringu L.Boguszewski, B.Gelińska AS (MIMUW) Metody scoringowe w regresji logistycznej 19 listopada / 21

Scoring kredytowy w pigułce

Scoring kredytowy w pigułce Analiza danych Data mining Sterowanie jakością Analityka przez Internet Scoring kredytowy w pigułce Mariola Kapla Biuro Informacji Kredytowej S.A. StatSoft Polska Sp. z o.o. ul. Kraszewskiego 36 30-110

Bardziej szczegółowo

BUDOWA MODELU SCORINGOWEGO DO E-POŻYCZKI Z WYKORZYSTANIEM NARZĘDZI STATISTICA

BUDOWA MODELU SCORINGOWEGO DO E-POŻYCZKI Z WYKORZYSTANIEM NARZĘDZI STATISTICA BUDOWA MODELU SCORINGOWEGO DO E-POŻYCZKI Z WYKORZYSTANIEM NARZĘDZI STATISTICA Kamila Karnowska i Katarzyna Cioch, SKOK im. Franciszka Stefczyka Wykorzystanie metod scoringowych do oceny punktowej klientów

Bardziej szczegółowo

Wykorzystanie i monitorowanie scoringu

Wykorzystanie i monitorowanie scoringu Analiza danych Data mining Sterowanie jakością Analityka przez Internet Wykorzystanie i monitorowanie scoringu Tomasz Sudakowski Biuro Informacji Kredytowej S.A. StatSoft Polska Sp. z o.o. ul. Kraszewskiego

Bardziej szczegółowo

SKORING JAKO NARZĘDZIE WSPIERAJĄCE SPÓŁDZIELCZE KASY OSZCZĘDNOŚCIOWO-KREDYTOWE W SPEŁNIENIU NOWYCH WYMAGAŃ NADZORCZYCH

SKORING JAKO NARZĘDZIE WSPIERAJĄCE SPÓŁDZIELCZE KASY OSZCZĘDNOŚCIOWO-KREDYTOWE W SPEŁNIENIU NOWYCH WYMAGAŃ NADZORCZYCH SKORING JAKO NARZĘDZIE WSPIERAJĄCE SPÓŁDZIELCZE KASY OSZCZĘDNOŚCIOWO-KREDYTOWE W SPEŁNIENIU NOWYCH WYMAGAŃ NADZORCZYCH Katarzyna Cioch, Towarzystwo Zarządzające SKOK Sp. z o.o. SKA Spółdzielcze kasy oszczędnościowo

Bardziej szczegółowo

StatSoft profesjonalny partner w zakresie analizy danych

StatSoft profesjonalny partner w zakresie analizy danych Analiza danych Data mining Sterowanie jakością Analityka przez Internet StatSoft profesjonalny partner w zakresie analizy danych StatSoft Polska Sp. z o.o. StatSoft Polska Sp. z o.o. ul. Kraszewskiego

Bardziej szczegółowo

PRAKTYCZNY SKORING - NIE TYLKO KREDYTOWY

PRAKTYCZNY SKORING - NIE TYLKO KREDYTOWY PRAKTYCZNY SKORING - NIE TYLKO KREDYTOWY Piotr Wójtowicz, Grzegorz Migut StatSoft Polska Jakie są różnice pomiędzy osobami prawidłowo regulującymi swoje zobowiązania a niechętnie spłacającymi swoje długi,

Bardziej szczegółowo

SKORING KREDYTOWY A MODELE DATA MINING

SKORING KREDYTOWY A MODELE DATA MINING SKORING KREDYTOWY A MODELE DATA MINING Janusz Wątroba StatSoft Polska Sp. z o.o. Przedmiotem rozważań w niniejszym artykule jest problematyka oceny ryzyka kredytowego oraz wybrane zagadnienia związane

Bardziej szczegółowo

Quick Launch Manual:

Quick Launch Manual: egresja Odds atio Quick Launch Manual: regresja logistyczna i odds ratio Uniwesytet Warszawski, Matematyka 28.10.2009 Plan prezentacji egresja Odds atio 1 2 egresja egresja logistyczna 3 Odds atio 4 5

Bardziej szczegółowo

Scoring kredytowy a modele data mining

Scoring kredytowy a modele data mining Grzegorz Migut, Janusz Wątroba Scoring kredytowy a modele data mining Wprowadzenie Jedną z najbardziej charakterystycznych cech otaczającej nas rzeczywistości jest niepewność. Dotyczy to zarówno zjawisk

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

OCENA MODELI SCORINGOWYCH W SKOK STEFCZYKA

OCENA MODELI SCORINGOWYCH W SKOK STEFCZYKA OCENA MODELI SCORINGOWYCH W SKOK STEFCZYKA Katarzyna Cioch Specjalista ds. Ryzyka, SKOK Stefczyka Kamila Karnowska Specjalista ds. Ryzyka, SKOK Stefczyka Scoring SKOK Stefczyka Scoring kredytowy w Spółdzielczej

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Konstrukcja miernika szans na bankructwo firmy

Konstrukcja miernika szans na bankructwo firmy Natalia Nehrebecka / Departament Statystyki Konstrukcja miernika szans na bankructwo firmy Statystyka Wiedza Rozwój, 17-18 października 2013 r. w Łodzi Konstrukcja miernika szans na bankructwo firmy 2

Bardziej szczegółowo

DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE:

DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: DATAMINING 1 S t r o n a WSTĘP Czyli jak zastąpić wróżenie z fusów i przysłowiowego nosa, statystyką i modelami ekonometrycznymi. Niniejszy dokument,

Bardziej szczegółowo

Analiza danych ilościowych i jakościowych

Analiza danych ilościowych i jakościowych Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 8 kwietnia 2010 Plan prezentacji 1 Zbiory danych do analiz 2 3 4 5 6 Implementacja w R Badanie depresji Depression trial data Porównanie

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Szkolenie Regresja liniowa

Szkolenie Regresja liniowa Szkolenie Regresja liniowa program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Regresja liniowa Co to jest regresja liniowa? Regresja liniowa jest podstawową metodą

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

PRZYKŁAD WYKORZYSTANIA MODELI SKORINGOWYCH W MEDYCYNIE

PRZYKŁAD WYKORZYSTANIA MODELI SKORINGOWYCH W MEDYCYNIE PRZYKŁAD WYKORZYSTANIA MODELI SKORINGOWYCH W MEDYCYNIE Grzegorz Migut, StatSoft Polska Sp. z o.o. Jednym z szerzej wykorzystywanych typów modeli statystycznych są modele klasyfikacyjne, gdzie modelowana

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

ZAAWANSOWANE METODY ANALIZ STATYSTYCZNYCH red. Ewa Frątczak

ZAAWANSOWANE METODY ANALIZ STATYSTYCZNYCH red. Ewa Frątczak Tytuł: Autor: ZAAWANSOWANE METODY ANALIZ STATYSTYCZNYCH red. Ewa Frątczak Wstęp Zaawansowane metody analiz statystycznych przenoszą analizy statystyczne na kolejny wyższy poziom. Określenie tego wyższego

Bardziej szczegółowo

Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun

Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów Politechnika Warszawska Strona 1 Podstawowe definicje Politechnika Warszawska Strona 2 Podstawowe definicje Zbiór treningowy

Bardziej szczegółowo

w ekonomii, finansach i towaroznawstwie

w ekonomii, finansach i towaroznawstwie w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych PRZEDMIOT (liczba godzin konwersatoriów/ćwiczeń) Statystyka opisowa z elementami analizy regresji (4/19) Wnioskowanie

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

Modele selekcji próby

Modele selekcji próby Plan zajęć 1 Problem selekcji próby- heurystyka 2 Problem selekcji próby- teoria 3 Przykład empiryczny Selekcja próby 1 regresja tobitowa- cenzurowanie(transformacja) zmiennej objaśnianej 2 regresja ucięta-

Bardziej szczegółowo

ZNACZENIE WYMIANY DANYCH MIĘDZY BIK i UFG DLA BEZPIECZEŃSTWA TRANSAKCJI UBEZPIECZENIOWO-BANKOWYCH. dr Mariusz Cholewa Prezes Zarządu BIK S.A.

ZNACZENIE WYMIANY DANYCH MIĘDZY BIK i UFG DLA BEZPIECZEŃSTWA TRANSAKCJI UBEZPIECZENIOWO-BANKOWYCH. dr Mariusz Cholewa Prezes Zarządu BIK S.A. ZNACZENIE WYMIANY DANYCH MIĘDZY BIK i UFG DLA BEZPIECZEŃSTWA TRANSAKCJI UBEZPIECZENIOWO-BANKOWYCH dr Mariusz Cholewa Prezes Zarządu BIK S.A. Informacje o BIK GRUPA BIK NAJWIĘKSZY ZBIÓR INFORMACJI O ZOBOWIĄZANIACH

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

KREATOR REGRESJI LOGISTYCZNEJ

KREATOR REGRESJI LOGISTYCZNEJ KREATOR REGRESJI LOGISTYCZNEJ Grzegorz Migut, StatSoft Polska Sp. z o.o. W niniejszym opracowaniu zaprezentowany zostanie przykład budowy modelu regresji logistycznej za pomocą Kreatora Regresji Logistycznej.

Bardziej szczegółowo

WYKORZYSTANIE MODELI SKORINGOWYCH I REGUŁ DO OPTYMALIZACJI PROCESÓW BIZNESOWYCH

WYKORZYSTANIE MODELI SKORINGOWYCH I REGUŁ DO OPTYMALIZACJI PROCESÓW BIZNESOWYCH WYKORZYSTANIE MODELI SKORINGOWYCH I REGUŁ DO OPTYMALIZACJI PROCESÓW BIZNESOWYCH Grzegorz Migut, StatSoft Polska Sp. z o.o. Modele skoringowe na trwałe wpisują się w kulturę organizacyjną coraz większej

Bardziej szczegółowo

SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE

SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE SUM - WLK 2011 WYKŁAD PIĄTY: BIOSTATYSTYKA C.D. Prof. dr hab. med. Jan E. Zejda! UWAGA! SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE TREŚĆ WYKŁADU Dokumentowanie efektu (analiza danych

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH Wykład 3 Liniowe metody klasyfikacji. Wprowadzenie do klasyfikacji pod nadzorem. Fisherowska dyskryminacja liniowa. Wprowadzenie do klasyfikacji pod nadzorem. Klasyfikacja pod nadzorem Klasyfikacja jest

Bardziej szczegółowo

Projekt zarządzania jakością wykorzystujący STATISTICA Data Miner przynosi w voestalpine roczne oszczędności w wysokości 800 000 EUR

Projekt zarządzania jakością wykorzystujący STATISTICA Data Miner przynosi w voestalpine roczne oszczędności w wysokości 800 000 EUR Projekt zarządzania jakością wykorzystujący STATISTICA Data Miner przynosi w voestalpine roczne oszczędności w wysokości 800 000 EUR Przemysł samochodowy stawia najwyższe wymagania jakościowe w stosunku

Bardziej szczegółowo

ASM 603 + ASM 604 + ASM 605: Finansowanie i wycena nieruchomości jako inwestycji cz. 1-3

ASM 603 + ASM 604 + ASM 605: Finansowanie i wycena nieruchomości jako inwestycji cz. 1-3 ASM 603 + ASM 604 + ASM 605: Finansowanie i wycena nieruchomości jako inwestycji cz. 1-3 Szczegółowy program kursu ASM 603: Finansowanie i wycena nieruchomości jako inwestycji cz. 1 1. Zagadnienia ekonomiczne

Bardziej szczegółowo

ZARZĄDZANIE MARKĄ. Doradztwo i outsourcing

ZARZĄDZANIE MARKĄ. Doradztwo i outsourcing ZARZĄDZANIE MARKĄ Doradztwo i outsourcing Pomagamy zwiększać wartość marek i maksymalizować zysk. Prowadzimy projekty w zakresie szeroko rozumianego doskonalenia organizacji i wzmacniania wartości marki:

Bardziej szczegółowo

WYKORZYSTANIE SKORINGU DO PRZEWIDYWANIA WYŁUDZEŃ KREDYTÓW W INVEST-BANKU

WYKORZYSTANIE SKORINGU DO PRZEWIDYWANIA WYŁUDZEŃ KREDYTÓW W INVEST-BANKU WYKORZYSTANIE SKORINGU DO PRZEWIDYWANIA WYŁUDZEŃ KREDYTÓW W INVEST-BANKU Bartosz Wójcicki Naczelnik Wydziału Analiz i Prewencji Przestępstw, Invest-Bank S.A. Grzegorz Migut StatSoft Polska Sp. z o.o. Problem

Bardziej szczegółowo

Optymalizacja Automatycznych Testów Regresywnych

Optymalizacja Automatycznych Testów Regresywnych Optymalizacja Automatycznych Testów Regresywnych W Organizacji Transformującej do Agile Adam Marciszewski adam.marciszewski@tieto.com Agenda Kontekst projektu Typowe podejście Wyzwania Cel Założenia Opis

Bardziej szczegółowo

ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO

ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO Wydział Nauk Ekonomicznych i Zarządzania Kierunek Analityka Gospodarcza Studia stacjonarne I stopnia ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO Zagadnienia ogólnoekonomiczne 1. Aktualna sytuacja na europejskim

Bardziej szczegółowo

ANALIZA CZYNNIKÓW ROKOWNICZYCH I METOD LECZENIA U CHORYCH NA ZIARNICĘ ZŁOŚLIWĄ

ANALIZA CZYNNIKÓW ROKOWNICZYCH I METOD LECZENIA U CHORYCH NA ZIARNICĘ ZŁOŚLIWĄ ANALIZA CZYNNIKÓW ROKOWNICZYCH I METOD LECZENIA U CHORYCH NA ZIARNICĘ ZŁOŚLIWĄ prof. dr hab. Andrzej Sokołowski, dr Adam Sagan Jednym z ważniejszych obszarów zastosowań programu STATISTICA w badaniach

Bardziej szczegółowo

1. Informacje o StatSoft Polska

1. Informacje o StatSoft Polska 1. Informacje o StatSoft Polska StatSoft Polska jest największym w Polsce dostawcą programów do statystycznej analizy danych, a także największym w Polsce organizatorem specjalistycznych kursów i szkoleń

Bardziej szczegółowo

Oracle Data Mining 10g

Oracle Data Mining 10g Oracle Data Mining 10g Zastosowanie algorytmu Support Vector Machines do problemów biznesowych Piotr Hajkowski Oracle Consulting Agenda Podstawy teoretyczne algorytmu SVM SVM w bazie danych Klasyfikacja

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew.

PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. Wprowadzenie Drzewo klasyfikacyjne Wprowadzenie Formalnie : drzewo

Bardziej szczegółowo

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Cezary Dendek Wydział Matematyki i Nauk Informacyjnych PW Plan prezentacji Plan prezentacji Wprowadzenie

Bardziej szczegółowo

Drzewa decyzyjne w SAS Enterprise Miner

Drzewa decyzyjne w SAS Enterprise Miner Drzewa decyzyjne w SAS Enterprise Miner Aneta Ptak-Chmielewska Instytut Statystyki i Demografii Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych www.sgh.waw.pl/zaklady/zahziaw 1 struktura ćwiczeń

Bardziej szczegółowo

DLACZEGO GORSZA METODA JEST CZASEM LEPSZA, CZYLI REGRESJA LOGISTYCZNA W WYKRYWANIU WYŁUDZEŃ ODSZKODOWAŃ

DLACZEGO GORSZA METODA JEST CZASEM LEPSZA, CZYLI REGRESJA LOGISTYCZNA W WYKRYWANIU WYŁUDZEŃ ODSZKODOWAŃ DLACZEGO GORSZA METODA JEST CZASEM LEPSZA, CZYLI REGRESJA LOGISTYCZNA W WYKRYWANIU WYŁUDZEŃ ODSZKODOWAŃ Barbara Leśniarek-Woźniak, TUiR WARTA S.A. Wyłudzenia odszkodowań w sektorze ubezpieczeniowym są

Bardziej szczegółowo

Zagadnienie klasyfikacji (dyskryminacji)

Zagadnienie klasyfikacji (dyskryminacji) Zagadnienie klasyfikacji (dyskryminacji) Przykład Bank chce klasyfikować klientów starających się o pożyczkę do jednej z dwóch grup: niskiego ryzyka (spłacających pożyczki terminowo) lub wysokiego ryzyka

Bardziej szczegółowo

WYKORZYSTANIE SKORINGU MARKETINGOWEGO DO OPTYMALIZACJI KAMPANII SPRZEDAŻOWYCH

WYKORZYSTANIE SKORINGU MARKETINGOWEGO DO OPTYMALIZACJI KAMPANII SPRZEDAŻOWYCH WYKORZYSTANIE SKORINGU MARKETINGOWEGO DO OPTYMALIZACJI KAMPANII SPRZEDAŻOWYCH Grzegorz Migut, StatSoft Polska Sp. z o.o. Znajomość wzorców zachowania klientów oraz czynników, jakie na nie wpływają, jest

Bardziej szczegółowo

z zastosowaniem analizy przeżycia Zuzanna Karolak Druga Otwarta Konferencja Naukowa Modelowanie dla Biznesu 18 listopada 2014

z zastosowaniem analizy przeżycia Zuzanna Karolak Druga Otwarta Konferencja Naukowa Modelowanie dla Biznesu 18 listopada 2014 Dynamiczne uj ecie oceny ryzyka kredytowego z zastosowaniem analizy przeżycia Zuzanna Karolak Druga Otwarta Konferencja Naukowa Modelowanie dla Biznesu 18 listopada 2014 Zuzanna Karolak, SKN Business Analytics

Bardziej szczegółowo

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Ubezpieczeniowy Fundusz Gwarancyjny mgr Karolina Pasternak-Winiarska mgr Kamil Gala Zagadnienia

Bardziej szczegółowo

Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem.

Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Andrzej Podszywałow Własność przemysłowa w innowacyjnej gospodarce. Zarządzanie ryzykiem, strategia zarządzania własnością intelektualną

Bardziej szczegółowo

Wstęp... 9. Podstawowe oznaczenia stosowane w książce... 13

Wstęp... 9. Podstawowe oznaczenia stosowane w książce... 13 Spis treści Wstęp... 9 Podstawowe oznaczenia stosowane w książce... 13 1. PODEJŚCIE SYMBOLICZNE W BADANIACH EKONOMICZ- NYCH... 15 1.1. Uwagi dotyczące przyjętych w rozdziale konwencji nomenklaturowych.

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

Data Mining podstawy analizy danych Część druga

Data Mining podstawy analizy danych Część druga Data Mining podstawy analizy danych Część druga W części pierwszej dokonaliśmy procesu analizy danych treningowych w oparciu o algorytm drzewa decyzyjnego. Proces analizy danych treningowych może być realizowany

Bardziej szczegółowo

STATISTICA DECISIONING PLATFORM, CZYLI JAK PODEJMOWAĆ DECYZJE W EPOCE BIG DATA

STATISTICA DECISIONING PLATFORM, CZYLI JAK PODEJMOWAĆ DECYZJE W EPOCE BIG DATA STATISTICA DECISIONING PLATFORM, CZYLI JAK PODEJMOWAĆ DECYZJE W EPOCE BIG DATA Mirosław Popieluch, StatSoft Polska Sp. z o.o. Gromadzenie coraz większych ilości danych w każdej dziedzinie życia i gospodarki

Bardziej szczegółowo

Klasyfikacja metodą Bayesa

Klasyfikacja metodą Bayesa Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo

Bardziej szczegółowo

Klasyfikacja. Indeks Gini Zysk informacyjny. Eksploracja danych. Klasyfikacja wykład 2

Klasyfikacja. Indeks Gini Zysk informacyjny. Eksploracja danych. Klasyfikacja wykład 2 Klasyfikacja Indeks Gini Zysk informacyjny Klasyfikacja wykład 2 Kontynuujemy prezentacje metod klasyfikacji. Na wykładzie zostaną przedstawione dwa podstawowe algorytmy klasyfikacji oparte o indukcję

Bardziej szczegółowo

Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować?

Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Algorytm k-nn Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Jak daleko są położone obiekty od siebie? knn k nearest neighbours jest

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

EKONOMIA STUDIA DRUGIEGO STOPNIA. Przedmiot: Analiza finansowa/analiza finansowa przedsiębiorstwa

EKONOMIA STUDIA DRUGIEGO STOPNIA. Przedmiot: Analiza finansowa/analiza finansowa przedsiębiorstwa Przedmiot: Analiza finansowa/analiza finansowa przedsiębiorstwa Dr Edyta Sidorczuk-Pietraszko (semestr I/II) 1. Jakie informacje pochodzące ze sprawozdao finansowych są wykorzystywane przez poszczególne

Bardziej szczegółowo

Szkolenie Regresja logistyczna

Szkolenie Regresja logistyczna Szkolenie Regresja logistyczna program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Regresja logistyczna Co to jest regresja logistyczna? Regresja logistyczna pozwala

Bardziej szczegółowo

PRZEWIDYWANIE WYŁUDZEŃ W SZKODACH KOMUNIKACYJNYCH ZA POMOCĄ MODELI PREDYKCYJNYCH W TUIR WARTA

PRZEWIDYWANIE WYŁUDZEŃ W SZKODACH KOMUNIKACYJNYCH ZA POMOCĄ MODELI PREDYKCYJNYCH W TUIR WARTA PRZEWIDYWANIE WYŁUDZEŃ W SZKODACH KOMUNIKACYJNYCH ZA POMOCĄ MODELI PREDYKCYJNYCH W TUIR WARTA Barbara Leśniarek, TUiR WARTA S.A. Ubezpieczenia komunikacyjne są strategicznym filarem biznesu ubezpieczeniowego.

Bardziej szczegółowo

NUK w Banku Spółdzielczym (19) System IT w zarządzaniu ryzykiem kredytowym

NUK w Banku Spółdzielczym (19) System IT w zarządzaniu ryzykiem kredytowym 1 NUK w Banku Spółdzielczym (19) System IT w zarządzaniu ryzykiem kredytowym Przyszedł czas, aby po nowemu spojrzeć na zarządzanie ryzykiem w banku spółdzielczym, zwłaszcza przed wyborem oferty systemu

Bardziej szczegółowo

Szkolenie Analiza przeżycia

Szkolenie Analiza przeżycia Analiza przeżycia program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Analiza przeżycia - program i cennik Analiza przeżycia Co obejmuje? Analiza przeżycia (Survival analysis)

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 162, 2002. Agata Szczukocka*

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 162, 2002. Agata Szczukocka* A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 162, 2002 Agata Szczukocka* M E T O D Y A N A L IZ Y R Y Z Y K A P O JE D Y N C Z E J U M O W Y K R E D Y T O W E J O R A Z P O R

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?

Bardziej szczegółowo

SPIS TREŚCI. Do Czytelnika... 7

SPIS TREŚCI. Do Czytelnika... 7 SPIS TREŚCI Do Czytelnika.................................................. 7 Rozdział I. Wprowadzenie do analizy statystycznej.............. 11 1.1. Informacje ogólne..........................................

Bardziej szczegółowo

KARTA OCENY MERYTORYCZNEJ. Kryterium Czy warunek został spełniony? Okres realizacji projektu jest zgodny z okresem wskazanym w regulaminie

KARTA OCENY MERYTORYCZNEJ. Kryterium Czy warunek został spełniony? Okres realizacji projektu jest zgodny z okresem wskazanym w regulaminie KARTA OCENY MERYTORYCZNEJ Część I: Kryteria formalne podlegające weryfikacji na etapie oceny merytorycznej Kryterium Czy warunek został spełniony? Okres realizacji projektu jest zgodny z okresem wskazanym

Bardziej szczegółowo

Metody szacowania zdolności kredytowej klientów indywidualnych. Mateusz Kobos 15.11.2006

Metody szacowania zdolności kredytowej klientów indywidualnych. Mateusz Kobos 15.11.2006 Metody szacowania zdolności kredytowej klientów indywidualnych Mateusz Kobos 15.11.2006 Spis treści Czym jest Credit Scoring (CS)? Analizowane dane Zalety i ograniczenia CS CS w praktyce CS jako zagadnienie

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Spis treści 377 379 WSTĘP... 9

Spis treści 377 379 WSTĘP... 9 Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...

Bardziej szczegółowo

Badania Marketingowe. Zajęcia 1 Wprowadzenie do badań marketingowych

Badania Marketingowe. Zajęcia 1 Wprowadzenie do badań marketingowych Badania Marketingowe Zajęcia 1 Wprowadzenie do badań marketingowych Definicje badań marketingowych Badanie marketingowe to systematyczne i obiektywne identyfikowanie, gromadzenie, analizowanie i prezentowanie

Bardziej szczegółowo

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: FINANSE I RACHUNKOWOŚĆ STUDIA DRUGIEGO STOPNIA

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: FINANSE I RACHUNKOWOŚĆ STUDIA DRUGIEGO STOPNIA PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: FINANSE I RACHUNKOWOŚĆ STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Finanse i Rachunkowość pytania podstawowe 1. Miernik dobrobytu alternatywne

Bardziej szczegółowo

Cykle życia systemu informatycznego

Cykle życia systemu informatycznego Cykle życia systemu informatycznego Cykl życia systemu informatycznego - obejmuję on okres od zgłoszenia przez użytkownika potrzeby istnienia systemu aż do wycofania go z eksploatacji. Składa się z etapów

Bardziej szczegółowo

Matryca efektów kształcenia dla programu studiów podyplomowych ZARZĄDZANIE I SYSTEMY ZARZĄDZANIA JAKOŚCIĄ

Matryca efektów kształcenia dla programu studiów podyplomowych ZARZĄDZANIE I SYSTEMY ZARZĄDZANIA JAKOŚCIĄ Podstawy firmą Marketingowe aspekty jakością Podstawy prawa gospodarczego w SZJ Zarządzanie Jakością (TQM) Zarządzanie logistyczne w SZJ Wymagania norm ISO serii 9000 Dokumentacja w SZJ Metody i Techniki

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Zestawy zagadnień na egzamin magisterski dla kierunku EKONOMIA (studia II stopnia)

Zestawy zagadnień na egzamin magisterski dla kierunku EKONOMIA (studia II stopnia) Zestawy zagadnień na egzamin magisterski dla kierunku EKONOMIA (studia II stopnia) Obowiązuje od 01.10.2014 Zgodnie z Zarządzeniem Rektora ZPSB w sprawie Regulaminu Procedur Dyplomowych, na egzaminie magisterskim

Bardziej szczegółowo

Proces badawczy schemat i zasady realizacji

Proces badawczy schemat i zasady realizacji Proces badawczy schemat i zasady realizacji Agata Górny Zaoczne Studia Doktoranckie z Ekonomii Warszawa, 14 grudnia 2014 Metodologia i metoda badawcza Metodologia Zadania metodologii Metodologia nauka

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI

APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI Łukasz MACH Streszczenie: W artykule przedstawiono wybrane aspekty prognozowania czynników istotnie określających sytuację na

Bardziej szczegółowo

Co matematyka może dać bankowi?

Co matematyka może dać bankowi? Co matematyka może dać bankowi? Biznes zakres pracy matematyków Pomiar i analiza miar detalicznych procesów kredytowych i ubezpieczeniowych, inicjowanie działań zapewniających poprawę efektywności i obniżenie

Bardziej szczegółowo

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy y/ ćwiczenia

Bardziej szczegółowo

Kluge: Skrypt do przedmiotu Analiza danych (rok studiów 2006/2007) 1. Analiza danych. (Skrypt na rok studiów 2006/2007) Literatura podstawowa

Kluge: Skrypt do przedmiotu Analiza danych (rok studiów 2006/2007) 1. Analiza danych. (Skrypt na rok studiów 2006/2007) Literatura podstawowa Kluge: Skrypt do przedmiotu Analiza danych (rok studiów 2006/2007) 1 P. D. Kluge / S. Andracki Analiza danych (Skrypt na rok studiów 2006/2007) Literatura podstawowa Kluge, P.D. et al.: Skrypty do przedmiotów

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Co to jest analiza regresji?

Co to jest analiza regresji? Co to jest analiza regresji? Celem analizy regresji jest badanie związków pomiędzy wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (objaśnianą), która musi mieć charakter liczbowy. W

Bardziej szczegółowo

Systematyka ryzyka w działalności gospodarczej

Systematyka ryzyka w działalności gospodarczej Systematyka ryzyka w działalności gospodarczej Najbardziej ogólna klasyfikacja kategorii ryzyka EFEKT Całkowite ryzyko dzieli się ze względu na kształtujące je czynniki na: Ryzyko systematyczne Ryzyko

Bardziej szczegółowo

Ćwiczenie 12. Metody eksploracji danych

Ćwiczenie 12. Metody eksploracji danych Ćwiczenie 12. Metody eksploracji danych Modelowanie regresji (Regression modeling) 1. Zadanie regresji Modelowanie regresji jest metodą szacowania wartości ciągłej zmiennej celu. Do najczęściej stosowanych

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

Kierunki rozwoju firmy Decyzje o wyborze rynków Decyzje inwestycyjne Rozwój nowych produktów Pozycjonowanie. Marketing strategiczny

Kierunki rozwoju firmy Decyzje o wyborze rynków Decyzje inwestycyjne Rozwój nowych produktów Pozycjonowanie. Marketing strategiczny Badania marketingowe dr Grzegorz Mazurek Istota badań Podejmowanie decyzji odbywa się na bazie doświadczenia, wiedzy oraz intuicji. Podejmowanie decyzji wiąże się automatycznie z ryzykiem poniesienia porażki

Bardziej szczegółowo

Ekonometria. Ćwiczenia 6. Krzysztof Pytka. 29 listopada 2011. Zakład Wspomagania i Analizy Decyzji (SGH)

Ekonometria. Ćwiczenia 6. Krzysztof Pytka. 29 listopada 2011. Zakład Wspomagania i Analizy Decyzji (SGH) Ekonometria Ćwiczenia 6 Krzysztof Pytka Zakład Wspomagania i Analizy Decyzji (SGH) 29 listopada 2011 Mapa drogowa na dziś Mapa drogowa na dziś 1 Wstęp Mapa drogowa na dziś 2 3 4 Anatomia funkcji logistycznej

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Działanie 8.1 PO IG konkurs w 2010 r. OCENA PROJEKTÓW. Michał Wiśniewski Warszawa, dnia 14 września 2010 r.

Działanie 8.1 PO IG konkurs w 2010 r. OCENA PROJEKTÓW. Michał Wiśniewski Warszawa, dnia 14 września 2010 r. 2010 Działanie 8.1 PO IG konkurs w 2010 r. OCENA PROJEKTÓW Michał Wiśniewski Warszawa, dnia 14 września 2010 r. Nowe kryterium formalne specyficzne Dodatni skumulowany, zdyskontowany zysk na działalności

Bardziej szczegółowo

Automatyczny system wykrywania nieubezpieczonych posiadaczy pojazdów mechanicznych wspierający kontrole prowadzone przez UFG

Automatyczny system wykrywania nieubezpieczonych posiadaczy pojazdów mechanicznych wspierający kontrole prowadzone przez UFG Automatyczny system wykrywania nieubezpieczonych posiadaczy pojazdów mechanicznych wspierający kontrole prowadzone przez UFG XX Forum Teleinformatyki 25.09.2014, Warszawa dr hab. Wojciech Bijak, prof.

Bardziej szczegółowo

ZAGADNIENIA I WYMAGANIA DLA UCZNIÓW KL.I LO PRZEDSIĘBIORCZOŚĆ SEMESTR I /II

ZAGADNIENIA I WYMAGANIA DLA UCZNIÓW KL.I LO PRZEDSIĘBIORCZOŚĆ SEMESTR I /II ZAGADNIENIA I WYMAGANIA DLA UCZNIÓW KL.I LO PRZEDSIĘBIORCZOŚĆ SEMESTR I /II SEMESTR I l.p Zagadnienia. 1. Kim jest osoba przedsiębiorcza? Typy osobowości Wymagania dla ucznia wyjaśnia, czym jest przedsiębiorczość

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna

Bardziej szczegółowo