MATEMATYKA (około 20 min)

Wielkość: px
Rozpocząć pokaz od strony:

Download "MATEMATYKA (około 20 min)"

Transkrypt

1 CZĘŚĆ II MATEMATYKA (około 20 min) 1. Milion sekund, to mniej więcej: A) 3 dni B) 2 tygodnie C) 3 miesiące D) 2 lata 2. W pewnym trójkącie średni kąt jest dwa razy większy od najmniejszego, a największy jest trzy razy większy od najmniejszego. Jaki to trójkąt? A) równoramienny B) prostokątny C) równoboczny D) dowolny 3. Marysia ma 5 kredek. Michał ma ich mniej niż Marysia, zaś ich starsza siostra ma tyle kredek, ile mają łącznie Marysia i Michał. Cała trójka może mieć łącznie: A) 8 kredek B) 11 kredek C) 14 kredek D) 20 kredek 4. Liczba całkowita a przy dzieleniu przez 10 daje resztę identyczną z ilorazem. Ile jest takich liczb? A) 1 B) 9 C) 10 D) nieskończenie wiele 5. Architekt ma dwa plany tego samego budynku: jeden w skali 1:20, drugi w skali 1:50. Jaka jest na planie w skali 1:50 szerokość fasady tego budynku, jeśli jest ona równa 20 cm na planie w skali 1:20? A) 16 cm B) 8 cm C) 50 cm D) 4 cm 6. Mam w kieszeni 51 banknotów wyłącznie stu- i pięćdziesięciozłotowych. Wiedząc, że mam w sumie 3500 zł, powiedz ile mam banknotów pięćdziesięciozłotowych? A) 19 B) 20 C) 26 D) Ile jest kwadratów, których wszystkie cztery wierzchołki leżą w zaznaczonych punktach A) 1 B) 2 C) 3 D) 4 8. Ilość bakterii w hodowli laboratoryjnej podwaja się co godzinę. Ile razy zwielokrotniła się ta ilość w ciągu 10 godzin? A) 20 B) 512 C) 1024 D) Podczas próbnego egzaminu z matematyki 12% uczniów w klasie w ogóle nie rozwiązało tego zadania, 32% uczniów otrzymało wynik niepoprawny, a tylko 14 uczniów rozwiązało zadanie poprawnie. Ilu uczniów uczestniczyło w tym egzaminie? A) 25 B) 56 C) 44 D) 11 GIMNAZJADA 2006 strona 5

2 10. Pewien kryształ ma formę graniastosłupa o 27 krawędziach. Ile ma on wierzchołków? A) 27 B) 54 C) 18 D) Zofia uzyskała z czterech sprawdzianów średnią równą 12,5. Ile punktów musi ona uzyskać w kolejnym sprawdzianie, aby z pięciu sprawdzianów średnia wynosiła 13? A) 13 B) 14 C) 15 D) niestety, to już nie jest możliwe 12. Gdyby ciasto francuskie wysokości 4 cm (zwane "millefeuille" tzn. "tysiącpłatkowiec") składało się rzeczywiście z tysiąca cienkich płatków, to grubość każdego płatka wynosiłaby: A) 0,004 mm B) 0,004 dm C) 0,04 mm D) 0,04 cm (miejsce na obliczenia) RAZEM PUNKTÓW ( MATEMATYKA ) GIMNAZJADA 2006 strona 6

3 CZĘŚĆ III i IV Przeczytaj uważnie tekst HISTORIA (razem około 20 min) INKOWIE TWÓRCY KIPU. Inkowie to lud indiański, zamieszkujący terytoria przybrzeżne wzdłuż środkowych Andów w Ameryce Południowej. Państwo Inków, założone w XII wieku, rozbudowane zostało w rozległe imperium w ciągu niespełna 200 lat przed odkryciem Ameryki. Na początku XVI w. obejmowało prawie całe wybrzeże Pacyfiku wzdłuż Andów i tereny Peru i Boliwii w głębi kontynentu, a zamieszkane było wtedy przez ok. 12 milionów mieszkańców. Zajmowali się oni głównie rolnictwem, uprawiając kukurydzę, ziemniaki, trzcinę cukrową, bawełnę i kokę oraz hodowlą lam i alpak. Część pól nawadniano przy pomocy sztucznych kanałów irygacyjnych. Domy mieszkalne budowano z gliny lub kamienia. Bardzo rozwinięta była ceramika, zdobna inkrustacjami i malowidłami. Kraj pokryty był siecią dróg, chociaż nie znano koła i nie używano żadnych pojazdów do transportu. Najważniejszą część sieci drogowej stanowiły dwa trakty rozciągnięte na całej długości imperium, jeden wzdłuż wybrzeża a drugi przez Andy. Dzięki tym drogom Inkowie mogli względnie szybko przemieszczać swe wojska w czasie wojny czy zamieszek. Służyły też one do przesyłania wiadomości, czym zajmowali się specjalni biegacze, dla których przy drogach pobudowano stacje, gdzie mogli odpocząć i przebrać się. Przesyłanie wiadomości i drobnych przesyłek tym sposobem odbywało się na zasadzie sztafety tzn. w momencie kiedy jeden biegacz docierał do następnej stacji, drugi wybiegał mu na spotkanie i przejmował przesyłkę lub wiadomość. Same wiadomości zapisywane były w postaci wymyślnego układu węzełków na sznurach (kipu - pismo węzełkowe). Władcy Inków otoczeni byli wielkim przepychem i czczeni jak bogowie, po śmierci ich ciała mumifikowano i nadal oddawano im boską cześć. Do nich i kapłanów należała cała ziemia w państwie. Najważniejszymi bóstwami były Inti, czyli słońce i Illapa, władający siłami przyrody. Na ich cześć budowano kultowe kamienne piramidy. Stolicą państwa Inków było miasto Cuzco w Peru na Płaskowyżu Andyjskim. A najciekawszym i zagadkowym miastem, odkrytym w 1911 r., jest Machu Picchu, położone wysoko w górach, zbudowane tak, że nie jest widoczne z dołu. Z niewiadomych powodów zostało opuszczone przez mieszkańców krótko przed przybyciem Hiszpanów do Ameryki. W chwili rozpoczęcia podbojów przez Hiszpanów, imperium Inków zajmowało prawie wszystkie terytoria na zachodnich wybrzeżach Ameryki Południowej. Jeden z inkaskich władców Pachacutec Yupanqui (http://pl.wikipedia.org/wiki/inkowie) GIMNAZJADA 2006 strona 7

4 HISTORIA. Pytania do tekstu (5 p.): 13. Dwa najważniejsze trakty w państwie Inków używane były głównie do: a) transportu kołowego, b) pieszych wycieczek, c) przemieszczania się wojsk i przesyłania informacji. 14. Mieszkańcy państwa Inków czcili: a) władców państwa i bóstwa związane z przyrodą b) władców państwa, za ich życia, c) dwóch bogów: Inti i Ilapę. 15. W jakim innym państwie, położonym na innym kontynencie, również dokonywano mumifikacji ciał zmarłych władców? 16. Machu Picchu jest miastem zagadkowym dlatego, że: a) jest położone wysoko w górach, b) zbudowane jest tak, że nie widać go z dołu; c) nie są znane przyczyny opuszczenia miasta przez jego mieszkańców. 17. Imperium Inków: a) upadło nim została odkryta Ameryka, b) zostało zniszczone przez Hiszpanów, c) istnieje do tej pory. RAZEM PUNKTÓW ( HISTORIA ) GIMNAZJADA 2006 strona 8

5 PRZYRODA (7 p.) 18. Góry w Ameryce Południowej to: a) Kordyliery, b) Alpy, c) Andy. 19. Wraz ze wzrostem wysokości temperatura powietrza: a) nie zmienia się, b) spada, c) rośnie. 20. Podaj cechę charakterystyczną roślinności występującej w górach: Charakterystyczny wiatr wiejący w górach to: a) bryza, b) bora, c) fen (halny). 22. Step wysokogórski to: a) puna, b) pampa, c) preria. 23. Stolicą Peru jest: a) Lima, b) Quito, c) Machu Picchu. 24. Andy zamieszkiwali: a) Majowie, b) Aztekowie, c) Inkowie. RAZEM PUNKTÓW ( PRZYRODA ) GIMNAZJADA 2006 strona 9

Matematyka Majów, Azteków, Inków. Kowalska Wioleta, Latoch Weronika, Łubniewska Julia

Matematyka Majów, Azteków, Inków. Kowalska Wioleta, Latoch Weronika, Łubniewska Julia Matematyka Majów, Azteków, Inków Kowalska Wioleta, Latoch Weronika, Łubniewska Julia MAJOWIE Kim byli Majowie? Indiańskie plemię Majów zamieszkiwało południowo-wschodnią część Meksyku, Gwatemalę, Belize

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2. Obok każdego zadania podana

Bardziej szczegółowo

Inkowie to plemię zamieszkujące południowozachodnią częśd Ameryki Południowej, które prawdopodobnie w połowie XII w. stworzyło doskonale

Inkowie to plemię zamieszkujące południowozachodnią częśd Ameryki Południowej, które prawdopodobnie w połowie XII w. stworzyło doskonale Inkowie to plemię zamieszkujące południowozachodnią częśd Ameryki Południowej, które prawdopodobnie w połowie XII w. stworzyło doskonale zorganizowane paostwo o nazwie Tawantinsuyu (paostwo pszczół). Dzięki

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję. Arkusz

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2015/2016 ETAP WOJEWÓDZKI

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2015/2016 ETAP WOJEWÓDZKI Kuratorium Oświaty w Lublinie Instrukcja dla ucznia KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2015/2016 ETAP WOJEWÓDZKI 1. Zestaw konkursowy zawiera 13

Bardziej szczegółowo

czyli Prekolumbijskie Cywilizacje Andów

czyli Prekolumbijskie Cywilizacje Andów Spotkanie Dwóch Kultur cz.2 Spotkanie Dwóch Kultur cz.2 czyli Prekolumbijskie Cywilizacje Andów Kultury przedinkaskie Przed powstaniem Imperium Inków, w strefie andyjskiej dominowały następujące kultury:

Bardziej szczegółowo

Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:

Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi: Razem Kod ucznia Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 1 1 1 1 1 1 1 1 1 3 5 3 3 3 4 30 XV Powiatowy Konkurs z Matematyki dla uczniów

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy klasa 1 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 MAJA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Rozwiazaniem nierówności

Bardziej szczegółowo

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów. GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

Próbny egzamin w drugiej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka

Próbny egzamin w drugiej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka Wypełnia uczeń PESEL Kod ucznia Próbny egzamin w drugiej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 9 stron.

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Drogi Uczniu ETAP REJONOWY Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STYCZEŃ 2014 R. 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i

Bardziej szczegółowo

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm

Bardziej szczegółowo

... KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

... KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY .......................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 23 MARCA 203 CZAS PRACY: 90 MINUT ZADANIE ( PKT.) Na diagramie zaznaczono, w których miesiacach urodzili się uczniowie

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ...................................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM PODSTAWOWY KOD UZUPEŁNIA ZDAJĄCY PESEL PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 3 CZERWCA 2016 R. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 MINUT LICZBA PUNKTÓW DO UZYSKANIA: 50

Bardziej szczegółowo

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 23 stycznia 2015 r. zawody II stopnia (rejonowe)

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 23 stycznia 2015 r. zawody II stopnia (rejonowe) Kod ucznia:. Liczba punktów: Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 23 stycznia 2015 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu przedmiotowego z matematyki. Przed

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy. Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie instrukcję.

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy. Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie instrukcję. Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

MATURA probna listopad 2010

MATURA probna listopad 2010 MATURA probna listopad 00 ZADANIA ZAMKNIĘTE W zadaniach od. do 5. wybierz i zaznacz poprawną odpowiedź. Zadanie. ( pkt) - 4 $ 4 Liczba 0 jest równa 4-0, 5 A. B. C. D. 4 Zadanie. ( pkt) Liczba log 6 - log

Bardziej szczegółowo

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P3 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla

Bardziej szczegółowo

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe) Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 31 zadań.

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1

Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1 Zadanie. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S i S 2 obliczyć pole trapezu ABCD. Zadanie 2. Mamy trapez, w którym suma kątów przy dłuższej podstawie

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych

Bardziej szczegółowo

SPRAWDZIAN NR Oceń prawdziwość zdania. 2. Zaznacz poprawną odpowiedź. 3. Na rysunkach przedstawiono dwie bryły. Nazwij każdą z nich.

SPRAWDZIAN NR Oceń prawdziwość zdania. 2. Zaznacz poprawną odpowiedź. 3. Na rysunkach przedstawiono dwie bryły. Nazwij każdą z nich. SPRAWDZIAN NR 1 WIESŁAWA MALINOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Oceń prawdziwość zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe. A. Rysunek nie przedstawia siatki ostrosłupa

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 20/205 KOD UCZNIA Etap: Data: Czas pracy: szkolny 7 listopada 20 r. 90 minut Informacje

Bardziej szczegółowo

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZED MATURĄ MAJ 015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 34). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM WYPEŁNIA UCZEŃ Kod ucznia SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Rozwiązania zadań

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Rozwiązania zadań Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 014 Rozwiązania zadań ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Jaka jest cyfra jedności liczby 3 014 + 3 01? a) 0 b) 1 c) 3

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 KWIETNIA 2016 CZAS PRACY: 90 MINUT 1 Informacja do zadań 1 i 2 Każda z dwóch wind towarowych obsługujacych nowo

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH Etap szkolny 16 listopada 2011 r. Instrukcja dla ucznia Godzina 10.00 1. Sprawdź, czy zestaw zawiera 7 stron. Kod ucznia. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH . kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie

Bardziej szczegółowo

Klasa 2. Ostrosłupy str. 1/4

Klasa 2. Ostrosłupy str. 1/4 Klasa 2. Ostrosłupy str. 1/4 1. Liczba wierzchołków ostrosłupa ośmiokątnego wynosi: A. 9 B. 16 C. 8 D. 7 2. Łączna długość prętów potrzebnych do wykonania szkieletu namiotu w kształcie ostrosłupa prawidłowego

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY 2015/2016 ETAP III - WOJEWÓDZKI

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY 2015/2016 ETAP III - WOJEWÓDZKI Kod ucznia. Imię i nazwisko ucznia (Po rozkodowaniu wpisuje Wojewódzka Komisja Konkursowa) Czas rozwiązywania: 90 minut. WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY 2015/2016 ETAP

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 90880 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Korzystajac ze

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie)

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie) Kod ucznia:... Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki. Przed przystąpieniem

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 011 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy 1 MATEMATYKA - poziom podstawowy CZERWIEC 2014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJĄCY IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). Ewentualny

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki z Elementami Przyrody dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2011/2012

Wojewódzki Konkurs Przedmiotowy z Matematyki z Elementami Przyrody dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2011/2012 Wojewódzki Konkurs Przedmiotowy z Matematyki z Elementami Przyrody dla uczniów szkół podstawowych województwa śląskiego w roku szkolnym 2011/2012 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 21 lutego

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie Uzupełnia zdający PESEL PRÓBNY EGZAMIN MATURALNY MATEMATYKA POZIOM ROZSZERZONY DATA: 26 stycznia 2017 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 180 minut MaturoBranie LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI We współpracy z POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2 MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI KLASA I

SPRAWDZIAN Z MATEMATYKI KLASA I Imię i Nazwisko:.. Klasa:. SPRAWDZIAN Z MATEMATYKI KLASA I POZIOM PODSTAWOWY Czas pracy 100 minut Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 11 stron (zadania 1 19). 2. Arkusz zawiera 13 zadań

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2009/2010

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2009/2010 Etap wojewódzki 13 marca 2010 r. Kod ucznia Godzina 10.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Czas 90 minut pieczątka szkoły imię, nazwisko i data urodzenia ucznia liczba punktów Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2015 Czas 90 minut 1. Otrzymujesz do rozwiązania 10

Bardziej szczegółowo

TEST MATEMATYCZNY DLA UCZNIÓW KLAS IV - V

TEST MATEMATYCZNY DLA UCZNIÓW KLAS IV - V TEST MTEMTYZNY L UZNIÓW KLS IV - V Zadanie. daś waży 47,09 kg, a Monika 47, kg. Kto ważywięcejioile? Monika o 0,009 kg daś o 0,00 kg Monika o 0,00 kg daś o 0,009 kg Zadanie. Gdyby ciasto francuskie wysokości

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE

ZADANIA PRZYGOTOWAWCZE Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X I Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Konkurs

Bardziej szczegółowo

KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. Finał 20 IV 2012 roku. Zestaw dla uczniów klas IV

KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. Finał 20 IV 2012 roku. Zestaw dla uczniów klas IV Uczeń Liczba zdobytych punktów Drogi Uczniu, KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012 Finał 20 IV 2012 roku Zestaw dla uczniów klas IV witaj na finale konkursu Omnibus Matematyczny. Przeczytaj

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 . kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy

Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy Kod ucznia Łączna liczba punktów Numer zadania 1 14 15 17 18 19 20 Drogi Uczniu! Liczba punktów Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 40 punktów. Aby przejść

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM NIEROZŁĄCZNI PRZYJACIELE WYPEŁNIA UCZEŃ. Kod ucznia

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM NIEROZŁĄCZNI PRZYJACIELE WYPEŁNIA UCZEŃ. Kod ucznia WYPEŁNIA UCZEŃ Kod ucznia SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM Informacje dla ucznia NIEROZŁĄCZNI PRZYJACIELE 1. Sprawdź, czy sprawdzian ma 10 stron. Ewentualny brak

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Suma punktów Numer zadania 1-20 21 22 23 Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2014/2015 13 STYCZNIA 2015R. 1. Test konkursowy zawiera 23 zadania.

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut. Rozwiązania zadań

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut. Rozwiązania zadań Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut Rozwiązania zadań ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy 19 stycznia 2009 r.

KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy 19 stycznia 2009 r. KOD Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 Razem Maksym. liczba punktów Liczba zdobytych punktów 3 3 3 3 3 3 3 3 4 5 3 4 40 Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy

Bardziej szczegółowo

Skrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów

Skrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Bryły 11. Ostrosłupy - rozpoznawanie,

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ...................................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7

Bardziej szczegółowo

ekonomicznym. Urbanizacja oznacza także przestrzenny rozwój miast oraz zmianę stylu życia w mieście.

ekonomicznym. Urbanizacja oznacza także przestrzenny rozwój miast oraz zmianę stylu życia w mieście. proces koncentracji ludności w punktach przestrzeni geograficznej, głównie na obszarach miejskich, określający także wzrost liczby ludności miejskiej i jej udziału w liczbie ludności danego obszaru, dzięki

Bardziej szczegółowo

3 zawartości szklanki obliczył, że w pozostałej

3 zawartości szklanki obliczył, że w pozostałej Klasa I - zakres podstawowy Etap rejonowy 07.0.004 rok Zadanie 1 ( pkt ) Uzasadnij, że 7 50 : 81 37 jest liczbą większą od 8. Zadanie ( pkt ) Spośród 40 uczniów pewnej klasy 17 gra w szachy, 1 w brydża,

Bardziej szczegółowo

Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka

Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka Wypełnia uczeń PESEL Kod ucznia Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 10 stron.

Bardziej szczegółowo

GSP077 Pakiet. KArty pracy. MateMatyka. Ekstraklasa 6klasisty matematyka kpracy 6 pak 1.indd 1

GSP077 Pakiet. KArty pracy. MateMatyka. Ekstraklasa 6klasisty matematyka kpracy 6 pak 1.indd 1 GSP077 klasa Pakiet 6 KArty pracy MateMatyka Ekstraklasa 6klasisty matematyka kpracy 6 pak.indd 9/24/3 2:2 PM Instrukcja matematyka Uważnie czytaj teksty zadań i polecenia. Rozwiązania zapisz długopisem

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012 ... pieczątka szkoły... kod pracy ucznia KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012 ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok 2015/2016 Etap III wojewódzki

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok 2015/2016 Etap III wojewódzki Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok 2015/2016 Etap III wojewódzki W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę rozwiązania

Bardziej szczegółowo

SPIS TREŚCI. PIERWIASTKI 1. Pierwiastki Działania na pierwiastkach Działania na pierwiastkach (cd.) Zadania testowe...

SPIS TREŚCI. PIERWIASTKI 1. Pierwiastki Działania na pierwiastkach Działania na pierwiastkach (cd.) Zadania testowe... SPIS TREŚCI POTĘGI 1. Potęga o wykładniku naturalnym................................. 7 2. Iloczyn i iloraz potęg o jednakowych podstawach................ 8 3. Potęgowanie potęgi................................................

Bardziej szczegółowo

Zadania z ułamkami. Obliczenia czasowe

Zadania z ułamkami. Obliczenia czasowe Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM W MIEŚCIE WYPEŁNIA UCZEŃ. Kod ucznia

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM W MIEŚCIE WYPEŁNIA UCZEŃ. Kod ucznia WYPEŁNIA UCZEŃ Kod ucznia Informacje dla ucznia SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM W MIEŚCIE 1. Sprawdź, czy sprawdzian ma 9 stron. Ewentualny brak stron lub inne usterki

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2013/2014

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2013/2014 Etap wojewódzki 22 lutego 2014 r. Godzina 11.00 M Kod ucznia Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę swój Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 NAUCZYCIEL: edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 mgr Dorota Maj PODRĘCZNIK: Liczy się matematyka WYD. WSiP Na lekcjach matematyki

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Czas pracy 170 minut Klasa 3 Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od

Bardziej szczegółowo

Instrukcja dla zdającego Czas pracy: 170 minut

Instrukcja dla zdającego Czas pracy: 170 minut MATEMATYKA klasa pierwsza (pp) CZERWIEC 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

Określ zbiór wartości i przedziały monotoniczności funkcji.

Określ zbiór wartości i przedziały monotoniczności funkcji. Zadanie 1 Sprowadź do postaci ogólnej funkcję kwadratową Zadanie 2 Wyznacz zbiór wartości funkcji Zadanie 3 Określ zbiór wartości i przedziały monotoniczności funkcji Zadanie 4 Wykres funkcji kwadratowej

Bardziej szczegółowo

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP:

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP: WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania 1. 2.).

Bardziej szczegółowo

5. Oblicz pole powierzchni bocznej tego graniastosłupa.

5. Oblicz pole powierzchni bocznej tego graniastosłupa. 11. STEREOMETRIA Zad.11.1. Oblicz pole powierzchni całkowitej sześcianu, wiedząc Ŝe jego objętość wynosi 16 cm. Zad.11.. Oblicz długość przekątnej sześcianu, jeśli jego pole powierzchni całkowitej wynosi

Bardziej szczegółowo