MATEMATYKA (około 20 min)

Wielkość: px
Rozpocząć pokaz od strony:

Download "MATEMATYKA (około 20 min)"

Transkrypt

1 CZĘŚĆ II MATEMATYKA (około 20 min) 1. Milion sekund, to mniej więcej: A) 3 dni B) 2 tygodnie C) 3 miesiące D) 2 lata 2. W pewnym trójkącie średni kąt jest dwa razy większy od najmniejszego, a największy jest trzy razy większy od najmniejszego. Jaki to trójkąt? A) równoramienny B) prostokątny C) równoboczny D) dowolny 3. Marysia ma 5 kredek. Michał ma ich mniej niż Marysia, zaś ich starsza siostra ma tyle kredek, ile mają łącznie Marysia i Michał. Cała trójka może mieć łącznie: A) 8 kredek B) 11 kredek C) 14 kredek D) 20 kredek 4. Liczba całkowita a przy dzieleniu przez 10 daje resztę identyczną z ilorazem. Ile jest takich liczb? A) 1 B) 9 C) 10 D) nieskończenie wiele 5. Architekt ma dwa plany tego samego budynku: jeden w skali 1:20, drugi w skali 1:50. Jaka jest na planie w skali 1:50 szerokość fasady tego budynku, jeśli jest ona równa 20 cm na planie w skali 1:20? A) 16 cm B) 8 cm C) 50 cm D) 4 cm 6. Mam w kieszeni 51 banknotów wyłącznie stu- i pięćdziesięciozłotowych. Wiedząc, że mam w sumie 3500 zł, powiedz ile mam banknotów pięćdziesięciozłotowych? A) 19 B) 20 C) 26 D) Ile jest kwadratów, których wszystkie cztery wierzchołki leżą w zaznaczonych punktach A) 1 B) 2 C) 3 D) 4 8. Ilość bakterii w hodowli laboratoryjnej podwaja się co godzinę. Ile razy zwielokrotniła się ta ilość w ciągu 10 godzin? A) 20 B) 512 C) 1024 D) Podczas próbnego egzaminu z matematyki 12% uczniów w klasie w ogóle nie rozwiązało tego zadania, 32% uczniów otrzymało wynik niepoprawny, a tylko 14 uczniów rozwiązało zadanie poprawnie. Ilu uczniów uczestniczyło w tym egzaminie? A) 25 B) 56 C) 44 D) 11 GIMNAZJADA 2006 strona 5

2 10. Pewien kryształ ma formę graniastosłupa o 27 krawędziach. Ile ma on wierzchołków? A) 27 B) 54 C) 18 D) Zofia uzyskała z czterech sprawdzianów średnią równą 12,5. Ile punktów musi ona uzyskać w kolejnym sprawdzianie, aby z pięciu sprawdzianów średnia wynosiła 13? A) 13 B) 14 C) 15 D) niestety, to już nie jest możliwe 12. Gdyby ciasto francuskie wysokości 4 cm (zwane "millefeuille" tzn. "tysiącpłatkowiec") składało się rzeczywiście z tysiąca cienkich płatków, to grubość każdego płatka wynosiłaby: A) 0,004 mm B) 0,004 dm C) 0,04 mm D) 0,04 cm (miejsce na obliczenia) RAZEM PUNKTÓW ( MATEMATYKA ) GIMNAZJADA 2006 strona 6

3 CZĘŚĆ III i IV Przeczytaj uważnie tekst HISTORIA (razem około 20 min) INKOWIE TWÓRCY KIPU. Inkowie to lud indiański, zamieszkujący terytoria przybrzeżne wzdłuż środkowych Andów w Ameryce Południowej. Państwo Inków, założone w XII wieku, rozbudowane zostało w rozległe imperium w ciągu niespełna 200 lat przed odkryciem Ameryki. Na początku XVI w. obejmowało prawie całe wybrzeże Pacyfiku wzdłuż Andów i tereny Peru i Boliwii w głębi kontynentu, a zamieszkane było wtedy przez ok. 12 milionów mieszkańców. Zajmowali się oni głównie rolnictwem, uprawiając kukurydzę, ziemniaki, trzcinę cukrową, bawełnę i kokę oraz hodowlą lam i alpak. Część pól nawadniano przy pomocy sztucznych kanałów irygacyjnych. Domy mieszkalne budowano z gliny lub kamienia. Bardzo rozwinięta była ceramika, zdobna inkrustacjami i malowidłami. Kraj pokryty był siecią dróg, chociaż nie znano koła i nie używano żadnych pojazdów do transportu. Najważniejszą część sieci drogowej stanowiły dwa trakty rozciągnięte na całej długości imperium, jeden wzdłuż wybrzeża a drugi przez Andy. Dzięki tym drogom Inkowie mogli względnie szybko przemieszczać swe wojska w czasie wojny czy zamieszek. Służyły też one do przesyłania wiadomości, czym zajmowali się specjalni biegacze, dla których przy drogach pobudowano stacje, gdzie mogli odpocząć i przebrać się. Przesyłanie wiadomości i drobnych przesyłek tym sposobem odbywało się na zasadzie sztafety tzn. w momencie kiedy jeden biegacz docierał do następnej stacji, drugi wybiegał mu na spotkanie i przejmował przesyłkę lub wiadomość. Same wiadomości zapisywane były w postaci wymyślnego układu węzełków na sznurach (kipu - pismo węzełkowe). Władcy Inków otoczeni byli wielkim przepychem i czczeni jak bogowie, po śmierci ich ciała mumifikowano i nadal oddawano im boską cześć. Do nich i kapłanów należała cała ziemia w państwie. Najważniejszymi bóstwami były Inti, czyli słońce i Illapa, władający siłami przyrody. Na ich cześć budowano kultowe kamienne piramidy. Stolicą państwa Inków było miasto Cuzco w Peru na Płaskowyżu Andyjskim. A najciekawszym i zagadkowym miastem, odkrytym w 1911 r., jest Machu Picchu, położone wysoko w górach, zbudowane tak, że nie jest widoczne z dołu. Z niewiadomych powodów zostało opuszczone przez mieszkańców krótko przed przybyciem Hiszpanów do Ameryki. W chwili rozpoczęcia podbojów przez Hiszpanów, imperium Inków zajmowało prawie wszystkie terytoria na zachodnich wybrzeżach Ameryki Południowej. Jeden z inkaskich władców Pachacutec Yupanqui (http://pl.wikipedia.org/wiki/inkowie) GIMNAZJADA 2006 strona 7

4 HISTORIA. Pytania do tekstu (5 p.): 13. Dwa najważniejsze trakty w państwie Inków używane były głównie do: a) transportu kołowego, b) pieszych wycieczek, c) przemieszczania się wojsk i przesyłania informacji. 14. Mieszkańcy państwa Inków czcili: a) władców państwa i bóstwa związane z przyrodą b) władców państwa, za ich życia, c) dwóch bogów: Inti i Ilapę. 15. W jakim innym państwie, położonym na innym kontynencie, również dokonywano mumifikacji ciał zmarłych władców? 16. Machu Picchu jest miastem zagadkowym dlatego, że: a) jest położone wysoko w górach, b) zbudowane jest tak, że nie widać go z dołu; c) nie są znane przyczyny opuszczenia miasta przez jego mieszkańców. 17. Imperium Inków: a) upadło nim została odkryta Ameryka, b) zostało zniszczone przez Hiszpanów, c) istnieje do tej pory. RAZEM PUNKTÓW ( HISTORIA ) GIMNAZJADA 2006 strona 8

5 PRZYRODA (7 p.) 18. Góry w Ameryce Południowej to: a) Kordyliery, b) Alpy, c) Andy. 19. Wraz ze wzrostem wysokości temperatura powietrza: a) nie zmienia się, b) spada, c) rośnie. 20. Podaj cechę charakterystyczną roślinności występującej w górach: Charakterystyczny wiatr wiejący w górach to: a) bryza, b) bora, c) fen (halny). 22. Step wysokogórski to: a) puna, b) pampa, c) preria. 23. Stolicą Peru jest: a) Lima, b) Quito, c) Machu Picchu. 24. Andy zamieszkiwali: a) Majowie, b) Aztekowie, c) Inkowie. RAZEM PUNKTÓW ( PRZYRODA ) GIMNAZJADA 2006 strona 9

Matematyka Majów, Azteków, Inków. Kowalska Wioleta, Latoch Weronika, Łubniewska Julia

Matematyka Majów, Azteków, Inków. Kowalska Wioleta, Latoch Weronika, Łubniewska Julia Matematyka Majów, Azteków, Inków Kowalska Wioleta, Latoch Weronika, Łubniewska Julia MAJOWIE Kim byli Majowie? Indiańskie plemię Majów zamieszkiwało południowo-wschodnią część Meksyku, Gwatemalę, Belize

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Inkowie to plemię zamieszkujące południowozachodnią częśd Ameryki Południowej, które prawdopodobnie w połowie XII w. stworzyło doskonale

Inkowie to plemię zamieszkujące południowozachodnią częśd Ameryki Południowej, które prawdopodobnie w połowie XII w. stworzyło doskonale Inkowie to plemię zamieszkujące południowozachodnią częśd Ameryki Południowej, które prawdopodobnie w połowie XII w. stworzyło doskonale zorganizowane paostwo o nazwie Tawantinsuyu (paostwo pszczół). Dzięki

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ...................................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy. Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie instrukcję.

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy. Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie instrukcję. Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie

Bardziej szczegółowo

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 . kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Arkusz 1. I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Styczeń 2014

Arkusz 1. I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Styczeń 2014 I Ty możesz zostać itagorasem róbny arkusz egzaminacyjny z matematyki dla gimnazjalistów Arkusz 1 Styczeń 2014 Liczba punktów 29, czas pracy 90min mgr Iwona Tlałka I Ty możesz zostać itagorasem próbny

Bardziej szczegółowo

Trójkąty i ich własności klasa V

Trójkąty i ich własności klasa V Trójkąty i ich własności klasa V Opracowała Barbara Wichowska Nauczycielka matematyki Szkoły Podstawowej z Oddziałami Integracyjnymi Nr 9 w Sopocie Listopad 2007 rok SPIS TREŚCI 1. Temat: Z jakich odcinków

Bardziej szczegółowo

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2 MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI We współpracy z POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE

ZADANIA PRZYGOTOWAWCZE Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X I Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Konkurs

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy

Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy Kod ucznia Łączna liczba punktów Numer zadania 1 14 15 17 18 19 20 Drogi Uczniu! Liczba punktów Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 40 punktów. Aby przejść

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Wypełnia uczeń Kod ucznia Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

3 zawartości szklanki obliczył, że w pozostałej

3 zawartości szklanki obliczył, że w pozostałej Klasa I - zakres podstawowy Etap rejonowy 07.0.004 rok Zadanie 1 ( pkt ) Uzasadnij, że 7 50 : 81 37 jest liczbą większą od 8. Zadanie ( pkt ) Spośród 40 uczniów pewnej klasy 17 gra w szachy, 1 w brydża,

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy 19 stycznia 2009 r.

KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy 19 stycznia 2009 r. KOD Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 Razem Maksym. liczba punktów Liczba zdobytych punktów 3 3 3 3 3 3 3 3 4 5 3 4 40 Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM W MIEŚCIE WYPEŁNIA UCZEŃ. Kod ucznia

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM W MIEŚCIE WYPEŁNIA UCZEŃ. Kod ucznia WYPEŁNIA UCZEŃ Kod ucznia Informacje dla ucznia SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM W MIEŚCIE 1. Sprawdź, czy sprawdzian ma 9 stron. Ewentualny brak stron lub inne usterki

Bardziej szczegółowo

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP:

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP: WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania 1. 2.).

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012 ... pieczątka szkoły... kod pracy ucznia KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012 ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Zadania z ułamkami. Obliczenia czasowe

Zadania z ułamkami. Obliczenia czasowe Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 2014

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 2014 MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW Max liczba

Bardziej szczegółowo

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru? Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?

Bardziej szczegółowo

FINAŁ 17 IGRZYSK MATEMATYCZNYCH SZKÓŁ NIEPUBLICZNYCH. Zadania dla klasy 6

FINAŁ 17 IGRZYSK MATEMATYCZNYCH SZKÓŁ NIEPUBLICZNYCH. Zadania dla klasy 6 FINAŁ 17 IGRZYSK MATEMATYCZNYCH SZKÓŁ NIEPUBLICZNYCH Zadania dla klasy 6 Na rozwiązanie pięciu zadań masz 90 minut. Kolejność rozwiązywania zadań jest dowolna. Maksymalną liczbę punktów możesz uzyskać

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM NIEROZŁĄCZNI PRZYJACIELE WYPEŁNIA UCZEŃ. Kod ucznia

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM NIEROZŁĄCZNI PRZYJACIELE WYPEŁNIA UCZEŃ. Kod ucznia WYPEŁNIA UCZEŃ Kod ucznia SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W PIERWSZEJ KLASIE GIMNAZJUM Informacje dla ucznia NIEROZŁĄCZNI PRZYJACIELE 1. Sprawdź, czy sprawdzian ma 10 stron. Ewentualny brak

Bardziej szczegółowo

Projekt jest współfinansowany w ramach programu polskiej współpracy rozwojowej Ministerstwa Spraw Zagranicznych RP w 2012 r.

Projekt jest współfinansowany w ramach programu polskiej współpracy rozwojowej Ministerstwa Spraw Zagranicznych RP w 2012 r. Projekt jest współfinansowany w ramach programu polskiej współpracy rozwojowej Ministerstwa Spraw Zagranicznych RP w 2012 r. eduglob.zrodla.org/peru/ Wiele gatunków ziemniaków na stoisku na rynku w mieście

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 00 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem EGZMIN MTURLNY Z MTEMTYKI

Bardziej szczegółowo

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki

Bardziej szczegółowo

Zadania statystyka semestr 6TUZ

Zadania statystyka semestr 6TUZ Zadania statystyka semestr 6TUZ Zad.1. W pewnym liceum, wśród uczniów 30 osobowej klasy (kaŝdy uczeń pochodzi z innej rodziny), zebrano dane na temat posiadanego rodzeństwa. Wyniki badań przedstawiono

Bardziej szczegółowo

KONKURS GEOGRAFICZNY ZAWODY SZKOLNE Listopad 2009

KONKURS GEOGRAFICZNY ZAWODY SZKOLNE Listopad 2009 Na rozwiązanie zadań masz 60 minut. Czytaj uważnie polecenia, pisz czytelnie. Powodzenia! KONKURS GEOGRAFICZNY ZAWODY SZKOLNE Listopad 2009 Zadanie 1. (0-2) Dopisz nazwę nauki geograficznej do opisu, wybierając

Bardziej szczegółowo

SUKCES W NAUCE MATEMATYKA. klasa IV

SUKCES W NAUCE MATEMATYKA. klasa IV SUKCES W NAUCE SPRAWDZIANY MATEMATYKA klasa IV FIGURY GEOMETRYCZNE: WIELOKĄTY, KOŁA I SKALA Zadanie 1. Która z narysowanych figur jest wielokątem? A. B. C. D. Zadanie 2. Wielokąt o 5 wierzchołkach ma:

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012 Finał 20 kwietnia 2012 roku Zestaw dla uczniów klas III Uczeń Liczba zdobytych punktów Drogi Uczniu, witaj na finale konkursu Omnibus Matematyczny. Przeczytaj

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zadanie PP-CL-1. Trzy liczby: a, b, c, których suma jest równa 93 tworzą ciąg geometryczny. Te same liczby, w podanej kolejności są pierwszym, drugim i siódmym wyrazem ciągu arytmetycznego. Znajdź te liczby.

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

KLASA. NR Z DZIENNIKA (np. 004, 017) DIAGNOZA WSTĘPNA Z ZAKRESU MATEMATYKI KLASY I (PO GIMNAZJUM) PAŹDZIERNIK 2010

KLASA. NR Z DZIENNIKA (np. 004, 017) DIAGNOZA WSTĘPNA Z ZAKRESU MATEMATYKI KLASY I (PO GIMNAZJUM) PAŹDZIERNIK 2010 Pieczęć szkoły KLASA NR Z DZIENNIKA (np. 00, 017) IMIĘ I NAZWISKO...... DIAGNOZA WSTĘPNA Z ZAKRESU MATEMATYKI KLASY I (PO GIMNAZJUM) PAŹDZIERNIK 2010 Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

Klasa 5. Liczby i działania

Klasa 5. Liczby i działania Klasa 5. Liczby i działania gr. A str. 1/3... imię i nazwisko...... klasa data 1. Ilu cyfr potrzeba do zapisania liczby siedem miliardów trzysta tysięcy osiemnaście? Ile wśród nich jest zer? Ile zer będzie

Bardziej szczegółowo

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów województwa lubuskiego 15 marca 2013 r. zawody III stopnia (wojewódzkie)

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów województwa lubuskiego 15 marca 2013 r. zawody III stopnia (wojewódzkie) Kod ucznia:... Konkurs przedmiotowy z matematyki dla uczniów gimnazjów województwa lubuskiego 15 marca 2013 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki.

Bardziej szczegółowo

Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie...

Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Spis treści Liczby naturalne i działania Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Geometria Tydzień IV

Bardziej szczegółowo

Kultura i zabytki Perú

Kultura i zabytki Perú Kultura i zabytki Perú Perú Perú to państwo w Ameryce Południowej, położone nad Oceanem Spokojnym, składające się z trzech malowniczych krain geograficznych - wybrzeża, łańcuchów And i Montany, w peruwiańskich

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY V

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY V WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY V Dział I LICZBY NATURALNE Ocena dopuszczająca 1. doda i odejmie liczby naturalne sposobem pisemnym z przekraczaniem progów dziesiątkowych 2. pomnoży pisemnie

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Peru 15.09-7.10.2006 Odcinek 1. Pomysł jest więc podążam dalej.

Peru 15.09-7.10.2006 Odcinek 1. Pomysł jest więc podążam dalej. Peru 15.09-7.10.2006 Odcinek 1. Pomysł jest więc podążam dalej. Myśląc o Ameryce Południowej początkowo zamierzałam pojechać do Brazylii, aby zobaczyć tam zjawiskowy wodospad Iguazu. Jednakże potem zdecydowałam

Bardziej szczegółowo

Zespół Społecznych Szkół Ogólnokształcących

Zespół Społecznych Szkół Ogólnokształcących Zespół Społecznych Szkół Ogólnokształcących Bednarska im. Maharadży Jam Saheba Digvijay Sinhji Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową ul. Raszyńska 22, 02-026 Warszawa, tel./fax 668

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny Kod ucznia.. KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny Witamy Cię na pierwszym etapie Konkursu Matematycznego. Przed przystąpieniem do rozwiązywania zadań przeczytaj uważnie

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

KLASA5 PAKIET3 KARTY PRACY MATEMATYKA

KLASA5 PAKIET3 KARTY PRACY MATEMATYKA 5 PAKIET KARTY PRACY MATEMATYKA Instrukcja matematyka Uważnie czytaj teksty zadań i polecenia. Rozwiązania wpisuj długopisem lub piórem. Nie używaj długopisu w kolorze czerwonym. W zadaniach, w których

Bardziej szczegółowo

Kategoria Szkoły podstawowe

Kategoria Szkoły podstawowe Kategoria Szkoły podstawowe O punkcie Y wiadomo, że odcinek łączący go z PK 41 jest podstawą trójkąta równoramiennego, którego trzeci wierzchołek stanowi PK o numerze podzielnym przez 13, a od Y do PK

Bardziej szczegółowo

X Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych

X Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Cele

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz. 5. Statystyka-średnia arytmetyczna, średnia ważona, mediana, dominanata.

Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz. 5. Statystyka-średnia arytmetyczna, średnia ważona, mediana, dominanata. Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz 1. Wzajemne położenia prostych, płaszczyzn w przestrzeni. 2. Graniastosłupy- podział, pole powierzchni i objętość. 3. Ostrosłupy- podział,

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA KOD UCZNIA WPISUJE UCZEŃ PESEL UZUPEŁNIA ZESPÓŁ NADZORUJĄCY dysleksja PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy z: PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja A

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja A Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja A Zadanie. (3 pkt.) Rozwiąż równanie:. Zadanie 2. (3 pkt.) Zadanie 3. (3 pkt.) Obok, na wykresie kołowym, przedstawiono procentowy udział

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 19 luty 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 19 luty 2013 Czas 90 minut Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 19 luty 01 Czas 90 minut ZADANIA ZAMKNIĘTE Rozwiązania zadań W zadaniach od 1. do 10. właściwe odpowiedzi zostały zaznaczone Zadanie 1. (1 punkt) Ile

Bardziej szczegółowo

Jak liczono dawniej?

Jak liczono dawniej? Jak liczono dawniej? Kinga Lużyńska 2a Strona 0 Praca długoterminowa z matematyki System karbowy Ludzie gdy jeszcze prowadzili koczowniczy tryb życia czyli jedli to co znaleźli bądź upolowali, nie musieli

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

BAZA ZADAŃ KLASA 3 Ha 2014/2015

BAZA ZADAŃ KLASA 3 Ha 2014/2015 BAZA ZADAŃ KLASA 3 Ha 2014/2015 GEOMETRIA 1 W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu opisanego ma długość 19 cm Oblicz pole tego trójkąta

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-P_P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania

Bardziej szczegółowo

Małe olimpiady przedmiotowe

Małe olimpiady przedmiotowe Małe olimpiady przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa Nr 17 Szkoła Podstawowa Nr 18 Drogi Uczniu, przeczytaj uwaŝnie

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL PESEL Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL PESEL miejsce na naklejkę

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na etapie rejonowym konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Test, dzień pierwszy, grupa młodsza

Test, dzień pierwszy, grupa młodsza Test, dzień pierwszy, grupa młodsza 1. Na połowinkach 60 procent wszystkich uczniów to dziewczyny. Impreza jest kiepska, bo tylko 40 procent wszystkich uczniów chce się tańczyć. Sytuacja poprawia sie odrobinę,

Bardziej szczegółowo

CZĘŚĆ A 18 pkt. 3. Które z poniższych brył A, B, C, D przedstawiają bryłę zaznaczoną kolorem szarym?

CZĘŚĆ A 18 pkt. 3. Które z poniższych brył A, B, C, D przedstawiają bryłę zaznaczoną kolorem szarym? WYDZIAŁ ARCHITEKTURY POLITECHNIKI GDAŃSKIEJ T E S T K W A L I F I K A C Y J N Y Z P R E D Y S P O Z Y C J I D O Z A W O D U A R C H I T E K T A GDAŃSK, 6 CZERWCA 2009, CZAS TRWANIA TESTU (CZĘŚĆ A + B +

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

WPISUJE UCZEŃ IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU

WPISUJE UCZEŃ IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU WPISUJE UCZEŃ IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU dysleksja PRÓBNY EGZAMIN W TRZECIEJ KLASIE GIMNAZJUM Z ZAKRESU PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH MATEMATYKA Instrukcja dla ucznia 1.

Bardziej szczegółowo

MATEMATYKA KWIECIEŃ 2014 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA. Instrukcja dla ucznia

MATEMATYKA KWIECIEŃ 2014 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA. Instrukcja dla ucznia Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 2013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Matematyka. Repetytorium szóstoklasisty

Matematyka. Repetytorium szóstoklasisty Matematyka Repetytorium szóstoklasisty 7 do sprawdzianu Najpierw... Potem... 4 1 2 + 8 Powodzenia!!! 7 Szóstoklasisto, już wkrótce ukończysz naukę w szkole podstawowej. Zanim to jednak nastąpi, w kwietniu

Bardziej szczegółowo

INDIAŃSKIE WIERZENIA, MIEJSCA MOCY, UZDRAWIAJĄCE ZIOŁA AMAZOŃSKIE

INDIAŃSKIE WIERZENIA, MIEJSCA MOCY, UZDRAWIAJĄCE ZIOŁA AMAZOŃSKIE Leszek Matela PIECZĘĆ WIRAKOCZY I TAJEMNICE INKÓW INDIAŃSKIE WIERZENIA, MIEJSCA MOCY, UZDRAWIAJĄCE ZIOŁA AMAZOŃSKIE COPYRIGHT 2012, LESZEK MATELA, BIAŁYSTOK e-mail: leszek@euro-net.pl http: //www.euro-net.pl/~leszek

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 03 WPISUJE ZJĄY KO PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI POZIOM POSTWOWY MJ

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 20 minut Instrukcja dla zdającego POZIOM PODSTAWOWY. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania ).

Bardziej szczegółowo

Matematyka podstawowa VII Planimetria Teoria

Matematyka podstawowa VII Planimetria Teoria Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma

Bardziej szczegółowo

GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są.

GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są. GRANIASTOSŁUPY Euklides (365-300 p.n.e.) słynny grecki matematyk i fizyk. Jego najwybitniejsze dzieło Elementy składało się z trzynastu ksiąg, z czego trzy ostatnie księgi dotyczą geometrii przestrzennej:

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

MATEMATYKA 2 GIMNAZJUM

MATEMATYKA 2 GIMNAZJUM Wymagania przedmiotowe z matematyki w klasie II gimnazjum w roku szkolnym 2012/2013 MATEMATYKA 2 GIMNAZJUM Na ocenę dopuszczającą uczeń: I Potęgi i pierwiastki potęguje potęgi nia z liczb nieujemnych trzeciego

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy

Próbny egzamin maturalny z matematyki Poziom podstawowy Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI STYCZEŃ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut

Bardziej szczegółowo

O wiośnie. (można przedłużyć nie więcej niż o 30 minut)

O wiośnie. (można przedłużyć nie więcej niż o 30 minut) UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA DATA URODZENIA UCZNIA miejsce na naklejkę z kodem dzień miesiąc rok SPRAWDZIAN W SZÓSTEJ KLASIE SZKOŁY PODSTAWOWEJ O wiośnie KWIECIEŃ 2007 Informacje dla ucznia

Bardziej szczegółowo

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8 Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

O zeszycie ćwiczeń. Zeszyt ćwiczeń część 1 obejmuje tematykę 19 pierwszych modułów podręcznika. Przy każdym ćwiczeniu podano jego stopień trudności

O zeszycie ćwiczeń. Zeszyt ćwiczeń część 1 obejmuje tematykę 19 pierwszych modułów podręcznika. Przy każdym ćwiczeniu podano jego stopień trudności O zeszycie ćwiczeń Zeszyt ćwiczeń część 1 obejmuje tematykę 19 pierwszych modułów podręcznika. Przy każdym ćwiczeniu podano jego stopień trudności Tytuł modułu odpowiada tytułowi z podręcznika Każdą lekcję

Bardziej szczegółowo

III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R.

III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. CZĘŚĆ I 7 KONKURENCJI ( CZAS 45 MINUT) DO ZDOBYCIA 25 PUNKTÓW KWADRAT MAGICZNY (3 pkt) INTRUZ (4 pkt) PIRAMIDA (3

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

TERMIN ODDAWANIA PRAC 22 GRUDNIA

TERMIN ODDAWANIA PRAC 22 GRUDNIA KLASA IV Pojemnik zawierał 70 litrów płynu. Po pewnym czasie w pojemniku zostało 5 razy mniej płynu niż było na początku. Ile litrów płynu zużyto? Jak zmieni się suma trzech liczb, jeżeli pierwszą zwiększymy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 0 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo