Neurokognitywistyka WYKŁAD 5 Nowe metody badawcze

Wielkość: px
Rozpocząć pokaz od strony:

Download "Neurokognitywistyka WYKŁAD 5 Nowe metody badawcze"

Transkrypt

1 Neurokognitywistyka WYKŁAD 5 Nowe metody badawcze Obrazowanie anatomii i patologii mózgu metodą MRI (Magnetic Interference Resonance). Prof. dr hab. Krzysztof Turlejski Uniwersytet Kardynała Stefana Wyszyńskiego

2 Obrazowanie magnetycznorezonansowe Obrazowanie magnetyczno-rezonansowe (ang. MRI, magnetic resonance imaging) nazywane jest też tomografią magnetycznego rezonansu jądrowego (NMR - Nuclear Magnetic Resonance). MRI jest nieinwazyjną, stosunkowo bezpieczną dla pacjenta/badanego metodą uzyskiwania obrazów narządów wewnętrznych (przekrojów w dowolnej płaszczyźnie, trójwymiarowych rekonstrukcji). Można nią także badać tkanki martwe i obiekty nieorganiczne.

3 Tomograf MRI Największą częścią aparatu MRI jest ogromny i bardzo silny elektromagnes o polu stałym (w badaniach ludzi Tesla). Ponadto w jego skład wchodzą elektromagnesy pomocnicze oraz zestaw czujników promieniowania w zakresie fal radiowych. Czujniki położone są wokół otworu w elektromagnesie i odbierają ukierunkowaną emisję wzbudzonych fal radiowych. Złożone emisje fal, zarejestrowane przez czujniki, są zapisywane w komputerze i przetwarzane na dwuwymiarowy obraz położenia źródeł promieniowania. Przesuwanie obiektu badanego w płaszczyźnie horyzontalnej dodaje trzeci wymiar.

4 Tomograf MRI Osoba badana jest układana na specjalnym wózku i unieruchamiana, a następnie wraz z wózkiem wprowadzana do wnętrza elektromagnesu. Zależnie od celu, badanie trwa od kilku minut do kilku godzin. Ogromny elektromagnes urządzenia zużywa bardzo dużo energii i wytwarza wysoki poziom hałasu. Po wyłączeniu, potrzeba kilku dni, aby ustabilizować jego pracę.

5 Obrazy MRI Od lewej: - obraz pokazujący przekrój strzałkowy (płaszczyzna pionowa) przez środek głowy człowieka; - obraz przekroju horyzontalnego przez głowę człowieka; - obraz przekroju czołowego przez jamę brzuszną człowieka.

6 Obrazowanie MRI MRI jest w tej chwili jedną z najważniejszych technik diagnostyki obrazowej. Na obrazach MRI można rozpoznać zarówno struktury prawidłowe, jak i zmiany patologiczne. MRI daje obrazy o dużym kontraście, ale kosztem dość niskiej rozdzielczości przestrzennej (w zastosowaniach medycznych ok mm, w zastosowaniach naukowych nawet 50 mikronów). Zależnie od typu rejestracji i koniecznej rozdzielczości, tworzenie jednego obrazu może trwać od 0.5 s do kilkudziesięciu godzin. W czasie dłuższego badania możliwe jest powtarzanie obrazowania i uzyskanie obrazu dynamiki zmian.

7 Zastosowania obrazowania MRI W medycynie ludzkiej i weterynaryjnej MRI jest jedną z podstawowych technik diagnostyki obrazowej. Przykłady zastosowań medycznych: diagnostyka nowotworów, obrazowanie przebiegu naczyń i ich zwężeń (angiografia), ocena zmian spowodowanych leczeniem, obrazowanie narządów przed radioterapią. W badaniach naukowych prowadzonych in vivo na zwierzętach lub ludziach MRI umożliwia nieinwazyjne porównywanie anatomii mózgu różnych osób/osobników i badanie dynamiki zmian związanych z ich rozwojem, starzeniem, rozwojem patologii i skutkami leczenia.

8 Jak wynaleziono obrazowanie magnetyczno-rezonansowe? Zjawisko rezonansu magnetycznego (MR) zostało przewidziane przez teorię kwantową w latach 1930-tych. Sposób analizy sygnału emitowanego przez jądra atomowe w zmiennym polu magnetycznym został opisany w 1946 roku przez F. Blocha i E.M. Purcella. W 1952 roku jej twórcy otrzymali nagrode Nobla za to osiągnięcie. W 1952 H. Carr (USA) zarejestrował jednowymiarowy sygnał emisji rezonansowej o złożonym przebiegu.

9 Nieudane próby stworzenia obrazowania magnetyczno-rezonansowego W 1960 profesor fizyki Władysław Iwanow złożył do władz Akademii Nauk Rosji w Leningradzie projekt skanera MRI pozwalającego tworzyć dwuwymiarowe obrazy struktur, z prośbą o sfinansowanie. Przez 10 nie otrzymał odpowiedzi. W 1971 Raymond Damadian, profesor State University of New York, opublikował w Science i opatentował urządzenie do wykrywania nowotworów, oparte na zjawisku rezonansu magnetycznego. Używał do analizy niewłaściwej komponenty złożonego sygnału, więc urządzenie nie znalazło praktycznego zastosowania.

10 Jak wynaleziono obrazowanie magnetyczno-rezonansowe? Paul Lauterbur (U. Stony Brook) rozwinął obrazowanie oparte na analizie gradientów (siły) sygnałów rejestrowanych przez różne czujniki. W 1973 opublikował pierwszy obraz uzyskany tą metodą, a w 1974 pierwszy obraz przekroju przez żywą mysz. W końcu lat 1970-tych Peter Mansfield, profesor fizyki na U. Nottingham w Anglii opracował narzędzia matematyczne, które umożliwiały otrzymanie dużo lepszego obrazu, skracając jednocześnie czas analizy z godzin do sekund. W roku 2003 Lauterbur i Mansfield otrzymali nagrodę Nobla za swój wkład w obrazowanie MRI. W roku 1980 Paul Bottomley (USA) zbudował pierwszą maszynę działającą na takich zasadach, jak współczesne MRI. Obecnie skanery MRI są powszechnie stosowane w medycynie ludzkiej i weterynaryjnej, oraz w badaniach naukowych.

11 Fizyczne podstawy obrazowania MRI Obrazowanie magnetyczno-rezonansowe (MRI) opiera się na zjawisku jądrowego rezonansu magnetycznego (MR). Jest to zjawisko, które zostało przewidziane i wyjaśnione przez teorię kwantową. Teoria kwantowa przewiduje, że cząstki elementarne jąder (w szczególności protony), w silnym polu magnetycznym zachowują się jak dipole (mają magnetyczny biegun dodatni i ujemny). Najliczniejsze w przyrodzie jądro stające się w polu magnetycznym dipolem, to jądro wodoru. Ponad 80% jąder wodoru wchodzących w skład naszego ciała wchodzi w skład cząsteczek wody.

12 Fizyczne podstawy obrazowania MRI Dipole o nieparzystej liczbie protonów (na przykład jądra wodoru = 1 proton) zachowują się jak planety, to jest wirują wokół własnej osi. W fizyce mówimy, że cząsteczki te mają różny od zera (niezerowy) magnetyczny moment obrotu ( spin ). Spin jest to własny (nie wynikający z ruchu danej cząsteczki w przestrzeni) moment pędu (moment obrotowy) tej cząsteczki w układzie, w którym ona spoczywa. Każdy rodzaj cząstek elementarnych ma charakterystyczny dla siebie spin. Gdy na cząsteczki elementarne nie oddziałuje zewnętrzne pole magnetyczne, spiny protonów są dipolami, których osie są ułożone w przypadkowych kierunkach.

13 Podstawą zjawiska magnetycznego rezonansu jądrowego (NMR) jest oddziaływanie magnetycznych spinów jądrowych z zewnętrznymi polami magnetycznymi

14 Polaryzacja spinów cząstek elementarnych w polu magnetycznym Przypadkowo ukierunkowane osie dipolów w jadrze można uporządkować silnym stałym polem magnetycznym. Kiedy na jądra atomów o momencie magnetycznym (spinie) różnym od zera działa stałe, silne pole magnetyczne, to porządkuje ono orientację spinów: wszystkie osie magnetyczne cząsteczek elementarnych ustawiają się w tym samym kierunku. Nie zmienia to położenia tych cząsteczek w przestrzeni (nie przemieszcza ich).

15 Zmiany kierunku spinu w stałym polu magnetycznym Koordynując oś spinu z kierunkiem stałego pola magnetycznego, protony emitują falę elektromagnetyczną w zakresie fal radiowych.. Wpływem innego pola o częstotliwościach rezonansowych można odwrócić kierunek spinów z góry na dół i odwrotnie. Każda zmiana kierunku spinu powoduje emisję jeszcze innego sygnału elektromagnetycznego.

16 Kierunki spinu jądrowego, stany energetyczne, statystyka. W mechanice kwantowej dwóm kierunkom spinu (oznaczanym + i -) odpowiadają dwa różne poziomy energetyczne, czyli dwa stany własne momentu pędu jądra. Stanom własnym energii odpowiadają tzw. populacje, opisane statystyką Boltzmanna. W temperaturach pokojowych, w stanie równowagi termodynamicznej istnieje tylko niewielka nadwyżka spinów (ok. 1 na 100 tys.) znajdujących się w stanie o niższej energii (zgodnie z polem ) i tylko tą różnicę możemy zaobserwować eksperymentalnie w stałych warunkach.

17 Odwrócenie kierunku polaryzacji Kiedy na tak uporządkowane (spolaryzowane) dipole podziałamy innym polem magnetycznym, które obraca się (wiruje) w płaszczyźnie prostopadłej do pola głównego, to dla pewnej ściśle określonej częstości tej rotacji (czyli określonej długości fali) obserwuje się oddziaływanie między polem a kierunkiem magnetyzacji próbki. Efektem tego oddziaływania jest wyprowadzenie magnetyzacji z położenia równowagi, w którym początkowo się znajdowała i odwrócenie kierunku magnetyzacji (rys. 3). Odwracając polaryzację, spiny o niższym poziomie energetycznym pochłaniają energię, a zatem osiągają wyższy poziom energetyczny.

18 Emisja sygnału relaksacji i jego wykrywanie Kiedy następnie wyłączymy wirujące pole magnetyczne, spiny spontanicznie powracają do poprzedniej orientacji (o niższej energii), emitując kwanty o częstotliwości właściwej dla danej cząstki elementarnej, jądra atomowego lub cząsteczki chemicznej (faza relaksacji). Fale (kwanty) wysyłane podczas relaksacji są wykrywane, a źródło tego promieniowania może być zlokalizowane w przestrzeni podczas rejestracji MRI.

19 Wirujące cząsteczki elementarne Precesja Oś wirującego dipolu magnetycznego zatacza kręgi wokół kierunku pola głównego (jak bączek). Jest to nazywane precesją. Tak też wiruje ziemia. Jej cykl precesji trwa lat. Precesja wirujących cząsteczek wytwarza odrębny sygnał (emisję fal), który również można zarejestrować przy pomocy specjalnych detektorów. Po odpowiednim przekształceniu, jest to jeszcze jeden sygnał pozwalający zlokalizować położenie dipolu w przestrzeni.

20 Rejestracja sygnałów MRI PODSUMOWANIE Podstawą magnetycznego rezonansu jądrowego jest wykrywanie zmian magnetyzacji cząstek, gdy ciało o makroskopowych wymiarach z nich złożone umieszczone jest w polu magnetycznym złożonym z dwu pól składowych: - pola nieruchomego; - pola zmiennego, którego wektor natężenia wiruje z pewną, ściśle określoną prędkością kątową; Pole nieruchome polaryzuje osie magnetyzacji dipoli. Wirujące dipole magnetyczne mają precesję, którą można wykrywać, a miejsce emisji jej sygnału lokalizować. Pole ruchome odwraca siłą (z nakładem energii) polaryzację magnetyczną cząstek Spontaniczny powrót części cząsteczek do dawnej polaryzacji, po zmianie kierunku pola uwalnia kwanty energii, które można również wykrywać i lokalizować. Modulowanie pola głównego przez pole ruchome i jednoczesny pomiar sygnału rezonansu magnetycznego są podstawą rejestracji MRI.

21 Budowa aparatu MRI Zewnętrzną część aparatu MRI stanowi cewka główna, wytwarzająca stałe pole magnetyczne o dużym natężeniu (B 0 ). Wewnątrz są cewki wytwarzające zmienne pole magnetyczne (B 1 - B 3 ) w trzech prostopadłych kierunkach, oraz czujniki (rejestratory). Czujniki (niebieskie) wykrywają emitowane sygnały.

22 Aparatura MRI: Elektromagnesy i elektronika

23 Schemat rejestracji MRI Za pomocą wirującego pola B 1, znacznie słabszego od stałego pola B 0 i przesuniętego w fazie o 90 0 możemy zmieniać kierunek wektora magnetyzacji cząsteczek elementarnych, pod warunkiem, że prędkość kątowa wektora B 1 jest równa prędkości kątowej Magnes stały tomografu o indukcji 1,5T (Tesla) wytwarza pole magnetyczne ok razy silniejsze od ziemskiego pola magnetycznego. Do celów badawczych używa się aparatów o sile 3-12T. precesji cząsteczek. Emitowany sygnał relaksacji jest bardzo złożony i musi zostać poddany obróbce za pomocą specjalnych programów komputerowych.

24 Rejestracja MRI Badany obiekt umieszczany jest w silnym stałym polu magnetycznym, wytwarzającym siłę przyciągania około razy większą od siły przyciągania ziemi, z nałożonym zmiennym polem w trzech kierunkach (X,Y,Z). Obraz jest tworzony przez analizę i integrację czaso-przestrzenną odpowiedzi obiektów (dipoli), to jest wygenerowanych fal elektromagnetycznych o częstotliwościach radiowych (16-64 khz).

25 Metale zakłócają rejestrację MRI Obecnie w chirurgii stosuje się szereg sposobów leczenia wymagających wprowadzenia do organizmu elementów metalowych. Są to: protezy naczyniowe, stenty, spirale, klipsy naczyniowe, szwy metalowe, protezy stawów, materiały służące do zespoleń w ortopedii. Wszystkie one zakłócają rejestrację obrazów tomograficznych (CT), MRI i fmri, ograniczając wartość diagnostyczną nowoczesnych badań obrazowych. Gdy elementy metalowe są większe, to uniemożliwiają rejestrację. Obecność wszczepów metalowych może też doprowadzić do uszkodzeń mechanicznych tkanek w silnym polu magnetycznym. Przegrzanie tkanek w okolicy wszczepów może prowadzić do reakcji zapalnej.

26 Rejestracja sygnałów MRI PODSUMOWANIE Podstawą magnetycznego rezonansu jądrowego jest wykrywanie zmian magnetyzacji cząstek elementarnych, gdy ciało o makroskopowych wymiarach umieszczone jest w polu magnetycznym złożonym z dwu pól składowych: - pola nieruchomego, które polaryzuje osie magnetyzacji. Wokół tych osi odbywa się precesja, wytwarzająca sygnał, który można wykrywać i lokalizować. - pola zmiennego, którego wektor natężenia wiruje z pewną, ściśle określoną prędkością kątową, a następnie jest wyłączany. Obecnie na ogół nie stosuje się pól wirujących, gdyż do wywołania zjawiska rezonansu jądrowego wystarczy drgające pole magnetyczne, wytworzone przez jedną cewkę, której oś znajduje się w płaszczyźnie XY. Pole ruchome odwraca siłą (z nakładem energii) polaryzację magnetyczną cząstek. Spontaniczny powrót części cząstek do dawnej polaryzacji uwalnia kwanty energii w zakresie fal radiowych, które można również wykrywać i lokalizować. Modulowanie pola głównego i jednoczesny pomiar sygnału rezonansu magnetycznego są podstawą rejestracji MRI.

27 Sygnały używane w tomografii magnetycznego rezonansu jądrowego Pomiarowi podlega: Ilość zaabsorbowanej energii, co daje informację o gęstości protonów. Różne związki chemiczne i tkanki różnią się gętością upakowania w nich protonów. Wielkość energii E (informacja o częstotliwości precesji a więc o wielkości pola B w otoczeniu) Czas relaksacji spinu

28 Odmiany rejestracji MRI Obrazowanie MR może być przeprowadzone na podstawie analizy różnych sygnałów ( w różnych sekwencjach ). Nieznaczne zmiany w ustawieniu podstawowych parametrów obrazowania mogą doprowadzić do uzyskania nieco odmiennych danych, mających różne możliwości diagnostyczne. Najczęściej rejestruje się dwa różne czasy relaksacji T1 i T2

29 Rekonstrukcja mapy MRI W czasie jednej sesji zbierane są miliony pojedynczych sygnałów. Są one następnie przetwarzane w programach komputerowych, które konstruują mapy natężenia sygnału w różnych punktach przestrzeni badanego obiektu. Natężenie to odpowiada koncentracji jąder o nieparzystej liczbie protonów w przestrzeni. Jeśli koordynaty przestrzeni, w jakiej znajduje się próbka są znane, to informacja przestrzenna może zostać odkodowana a zbiór sygnałów (widm) o różnym czasie rejestracji może zostać zamieniony na trójwymiarowy obraz próbki. Odkodowanie obrazu nazywane jest jego rekonstrukcją.

30 Co naprawdę obrazujemy przy pomocy MRI? Każde jadro o nieparzystej liczbie protonów umieszczone w silnym polu magnetycznym może emitować energię użyteczną dla analizy MRI Najczęściej wykorzystywanym w obrazowaniu MRI jądrem rezonansowym jest pojedynczy proton jądro atomu wodoru występujące powszechnie w obiektach biologicznych, w szczególności w cząsteczkach wody. W ciele człowieka (i innych zwierząt) ponad 80% atomów to atomy wodoru, one więc dają najsilniejszy sygnał. Około 90% tych atomów, to wodór tworzący cząsteczki wody. Stopień uwodnienia tkanek i proporcja roztworów wodnych do ciał tłuszczowych w badanej przestrzeni są najważniejszymi zmiennymi, powodującymi różnice natężenia generowanego sygnału w różnych punktach badanego obiektu, n.p. układu nerwowego.

31 Rodzaje rejestracji MRI Ze względu na parametry podstawowe, metody obrazowania dzieli się na: obrazy T1-zależne, najlepiej oddające wizualnie strukturę anatomiczną mózgu, gdzie istota biała jest ukazywana w jasnych kolorach, zaś istota szara w ciemnych, płyn mózgowo-rdzeniowy, ropnie i guzy na ciemno, a n.p. miąższ wątroby na jasno. obrazy T2-zależne, na których istota biała ukazywana jest w ciemniejszych barwach, zaś istota szara w jaśniejszych, płyn mózgowo-rdzeniowy, guz, ropień, naczyniak wątroby i śledziona na jasno, a wątroba i trzustka na ciemno. FLAIR (ang. Fluid Light Attenuation Inversion Recovery), pewna modyfikacja sekwencji T2-zależnej, gdzie obszary z małą zawartością wody ukazywane są w ciemniejszych barwach, zaś obszary z dużą zawartością wody w jaśniejszych. Obrazowanie w tej sekwencji jest stosowane w wykrywaniu chorób demielinizacyjnych. Obrazowanie dyfuzyjne mierzy parametry dyfuzji cząsteczek wody w tkance. Wyróżnia się tutaj następujące techniki: obrazowanie tensora dyfuzji (ang. DTI diffusion tensor imaging), które może być zaadaptowane do obrazowania kierunku przebiegu włókien w istocie białej, oraz obrazowanie zależne od dyfuzji (ang. DWI diffusionweighted imaging), które skutecznie obrazuje zakres patologii po udarach mózgu.

32 Fazy rejestracji T1 i T2 W stanie równowagi (gdy nie działają na nie zewnętrzne siły elektromagnetyczne) spiny emitują energię odbieraną jako sygnał T1. Spiny są następnie wytrącane z równowagi przez impuls magnetyczny o kierunku poprzecznym do osi ich rotacji. Po ustaniu tego impulsu magnetyzacja zanika, wyzwalając energię w postaci sygnału T2.

33 Czasy relaksacji T1 i T2 dla różnych tkanek

34 Skany MRI kolana i całego ludzkiego ciała Arbitralnie dodane kolory oznaczją różny stopień uwodnienia tkanek. Różnicuje to wyraźnie tkanki uwodnione, zmineralizowane i zawierające dużo tłuszczu

35 Wynik obrazowania MRI: rekonstrukcja obrazu przekroju przez głowę żyjącego człowieka

36 Przekształcenia serii przecięć, trójwymiarowe wizualizacje Seria skanów mózgu w linii strzałkowej Rekonstrukcja przebiegu naczyń mózgu

37 Stwardnienie rozsiane (SM) Rejestracja MRI-T2FLAIR. Obraz jest tym jaśniejszy, im więcej jest w tkance wody. Jasne obszary na przekroju pokazują obszary objęte procesem chorobowym (demielinizacja aksonów) w wyniku reakcji autoimmunologicznej.

38 Starzenie się mózgu człowieka i psa Obrazowanie MRI pokazuje podobne zmiany u starzejących się ludzi i zwierząt. Zmniejszanie się grubości istoty szarej powoduje rozszerzenie komór mózgu.

39 Obrazowanie tensora dyfuzji Aksony są rurkami z substancji tłuszczowych, w których znajduje się nasycona wodą plazma komórkowa. Cząsteczki wody, wraz z ich atomami wodoru, nie mogą w nich wykonywać ruchów Browna z tym samym prawdopodobieństwem we wszystkich kierunkach. Możliwe jest zobrazowanie nierównomierności kierunku ruchów Browna wody w aksonach, co wyznacza trasę i kierunek przebiegu włókien nerwowych.

40 Obrazowanie szlaków włókien w żywym mózgu przy pomocy analizy tensora dyfuzji (DTI) - traktografia Kolory są dodawane sztucznie, dla lepszego śledzenia przebiegu poszczególnych pęczków włókien, łączących różne struktury.

41 Komputerowe atlasy mózgu MRI Prof. Wiesław Nowiński ukończył elektronikę na Politechnice Warszawskiej. Pracował w PAN nad rekonstrukcją obrazów w tomografii komputerowej. W 1991 wyjechał do Singapuru, gdzie opracował pierwszy komputerowy atlas mózgu ludzkiego. Stworzył 34 komputerowe atlasy mózgu, używane w czasie większości operacji chirurgicznych na całym świecie. Autor ponad 500 publikacji naukowych. 32 patenty w USA i UE. Wykłady w USA, Singapurze i Chinach. Wiele wysokich międzynarodowych nagród, w tym Europejski Wynalazca Roku Obecnie jest profesorem UKSW. Chce tworzyć atlasy komputerowe wszystkich narządów ciała.

42 Pytanie 1. Jak powstają i do jakich celów służą rejestracje magnetycznego rezonansu jądrowego (MRI)

Neurokognitywistyka WYKŁAD 5 Nowe metody badawcze

Neurokognitywistyka WYKŁAD 5 Nowe metody badawcze Neurokognitywistyka WYKŁAD 5 Nowe metody badawcze Obrazowanie anatomii i patologii mózgu metodą MRI (Magnetic Interference Resonance). Prof. dr hab. Krzysztof Turlejski Uniwersytet Kardynała Stefana Wyszyńskiego

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy

Bardziej szczegółowo

Neurokognitywistyka WYKŁAD 6a

Neurokognitywistyka WYKŁAD 6a Neurokognitywistyka WYKŁAD 6a Obrazowanie aktywności metodą funkcjonalnego rezonansu magnetycznego (fmri) Prof. dr hab. Krzysztof Turlejski Uniwersytet Kardynała Stefana Wyszyńskiego Instytut Biologii

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY - podstawy

MAGNETYCZNY REZONANS JĄDROWY - podstawy 1 MAGNETYCZNY REZONANS JĄDROWY - podstawy 1. Wprowadzenie. Wstęp teoretyczny..1 Ruch magnetyzacji jądrowej, relaksacja. Liniowa i kołowa polaryzacja pola zmiennego (RF)..3 Metoda echa spinowego 1. Wprowadzenie

Bardziej szczegółowo

Neurokognitywistyka WYKŁAD 6a

Neurokognitywistyka WYKŁAD 6a Neurokognitywistyka WYKŁAD 6a Obrazowanie aktywności metodą funkcjonalnego rezonansu magnetycznego (fmri) Prof. dr hab. Krzysztof Turlejski Uniwersytet Kardynała Stefana Wyszyńskiego Tomograf MRI Największą

Bardziej szczegółowo

Magnetyczny rezonans jądrowy

Magnetyczny rezonans jądrowy Magnetyczny rezonans jądrowy Mateusz Raczyński Jakub Cebulski Katolickie Liceum Ogólnokształcące w Szczecinie im. św. Maksymiliana Marii Kolbego Opiekun naukowy: mgr Magdalena Biskup Cel pracy Przedstawienie

Bardziej szczegółowo

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1) h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...

Bardziej szczegółowo

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac

Bardziej szczegółowo

Obrazowanie Metodą Magnetycznego Rezonansu Jądrowego Spis treści

Obrazowanie Metodą Magnetycznego Rezonansu Jądrowego Spis treści Obrazowanie Metodą Magnetycznego Rezonansu Jądrowego Spis treści 1 Kilka uwag na temat Mechaniki Kwantowej, Mechaniki Klasycznej oraz nazewnictwa. 2 Spin 3 Spin i moment magnetyczny jądra atomowego 4 Moment

Bardziej szczegółowo

DOSY (Diffusion ordered NMR spectroscopy)

DOSY (Diffusion ordered NMR spectroscopy) Wykład 8 DOSY (Diffusion ordered NMR spectroscopy) Dyfuzja migracja cząsteczek pod wpływem gradientu stężenia Pierwsze Prawo Ficka: przepływ cząsteczek jest proporcjonalny do gradientu stężenia: J przepływ

Bardziej szczegółowo

Tomografia magnetyczno-rezonansowa 1

Tomografia magnetyczno-rezonansowa 1 12 FOTON 96, Wiosna 2007 Tomografia magnetyczno-rezonansowa 1 Jadwiga Tritt-Goc Instytut Fizyki Molekularnej PAN, Poznań Wstęp Od połowy lat osiemdziesiątych XX w. rezonans magnetyczny najczęściej kojarzony

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego (NMR)

Spektroskopia magnetycznego rezonansu jądrowego (NMR) Spektroskopia magnetycznego rezonansu jądrowego (NM) Fizyczne podstawy spektroskopii NM W spektroskopii magnetycznego rezonansu jądrowego używane jest promieniowanie elektromagnetyczne o częstościach z

Bardziej szczegółowo

Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki

Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki Wykorzystanie zjawiska rezonansu magnetycznego w medycynie. Mariusz Grocki [1] WYŚCIG DO TYTUŁU ODKRYWCY. JĄDRO ATOMU W ZEWNĘTRZNYM POLU MAGNETYCZNYM. Porównanie do pola grawitacyjnego. CZYM JEST ZJAWISKO

Bardziej szczegółowo

NMR REZONANS MAGNETYCZNY. System nisko-polowy OMR Siemens Magnetom C. Obrazy z tomografu MRI 2015-06-04

NMR REZONANS MAGNETYCZNY. System nisko-polowy OMR Siemens Magnetom C. Obrazy z tomografu MRI 2015-06-04 NMR NMR (albo MRI) jest nowoczesną metodą diagnostyki obrazowej, dającą podobnie jak CT obraz przekrojów narządów wewnętrznych. Ten obraz magnetyczny dostarcza bardzo dużo dokładnych informacji dotyczących

Bardziej szczegółowo

Ćwiczenie 10 Badanie protonowego rezonansu magnetycznego

Ćwiczenie 10 Badanie protonowego rezonansu magnetycznego Laboratorium z Fizyki Materiałów 2010 Ćwiczenie 10 adanie protonowego rezonansu magnetycznego Rys. 1 Układ pomiarowy. 1. Wprowadzenie teoretyczne Jedną z podstawowych własności jądra atomowego jest jego

Bardziej szczegółowo

Podstawy informatyki kwantowej

Podstawy informatyki kwantowej Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

S16. Elektryzowanie ciał

S16. Elektryzowanie ciał S16. Elektryzowanie ciał ZADANIE S16/1: Naelektryzowanie plastikowego przedmiotu dodatnim ładunkiem polega na: a. dostarczeniu protonów, b. odebraniu części elektronów, c. odebraniu wszystkich elektronów,

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem Pole magnetyczne Własność przestrzeni polegającą na tym, że na umieszczoną w niej igiełkę magnetyczną działają siły, nazywamy polem magnetycznym. Pole takie wytwarza ruda magnetytu, magnes stały (czyli

Bardziej szczegółowo

Obrazowanie MR u pacjentów po zatruciu tlenkiem węgla.

Obrazowanie MR u pacjentów po zatruciu tlenkiem węgla. Obrazowanie MR u pacjentów po zatruciu tlenkiem węgla. Anna Drelich-Zbroja, Grzegorz Drelich, Maciej Siczek, Jarosław Szponar, Hanna Lewandowska-Stanek (Lublin) Definicja: Zatrucie tlenkiem węgla, podobnie

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

PL B1. Uniwersytet Śląski,Katowice,PL BUP 25/02. Andrzej Dyszkiewicz,Cieszyn,PL Zygmunt Wróbel,Katowice,PL

PL B1. Uniwersytet Śląski,Katowice,PL BUP 25/02. Andrzej Dyszkiewicz,Cieszyn,PL Zygmunt Wróbel,Katowice,PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)194256 (13) B1 (21) Numer zgłoszenia: 347750 (51) Int.Cl. A61B 6/03 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 25.05.2001

Bardziej szczegółowo

Rodzaje badań obrazowych i ich podstawy teoretyczne. Podstawy fizyczne diagnostyki obrazowej. Rentgenodiagnostyka. dr n. med.

Rodzaje badań obrazowych i ich podstawy teoretyczne. Podstawy fizyczne diagnostyki obrazowej. Rentgenodiagnostyka. dr n. med. Rodzaje badań obrazowych i ich podstawy teoretyczne dr n. med. Jolanta Meller Podstawy fizyczne diagnostyki obrazowej Rentgenodiagnostyka Ultrasonografia Rezonans magnetyczny Scyntygrafia Rentgenodiagnostyka

Bardziej szczegółowo

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 3. Magnetostatyka.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

Pole elektromagnetyczne w bioinżynierii

Pole elektromagnetyczne w bioinżynierii Pole elektromagnetyczne w bioinżynierii Wprowadzenie opracował Jacek Starzyński wersja 04.2008 Treść wykładu Podstawy fizyczne Opis matematyczny równania Maxwella Zastosowania w medycynie diagnostyka terapia

Bardziej szczegółowo

zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź.

zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (1 p.) Wybierz ten zestaw wielkości fizycznych, który zawiera wyłącznie wielkości skalarne. a. ciśnienie,

Bardziej szczegółowo

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO 1. Wiadomości wstępne Silniki asynchroniczne jednofazowe są szeroko stosowane wszędzie tam, gdzie

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Warszawa, 31 sierpnia 2015r. Zespół Przedmiotowy z chemii i fizyki Temat

Bardziej szczegółowo

Wpływ pola elektromagnetycznego na { zdrowie }

Wpływ pola elektromagnetycznego na { zdrowie } Wpływ pola elektromagnetycznego na { zdrowie } Czym jest w ogóle promieniowane? Jest to zjawisko polegające na wysyłaniu i przekazywaniu energii na odległość. Energia ta może być wysyłana w postaci cząstek,

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMII

MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMII J4 MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMII Cel ćwiczenia Celem ćwiczenia laboratoryjnego jest uzyskanie w ziemskim polu magnetycznym sygnału rezonansu magnetycznego pochodzącego od jąder

Bardziej szczegółowo

Klasyczny efekt Halla

Klasyczny efekt Halla Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp

Bardziej szczegółowo

Zastosowanie spektroskopii NMR do określania struktury związków organicznych

Zastosowanie spektroskopii NMR do określania struktury związków organicznych Zastosowanie spektroskopii NMR do określania struktury związków organicznych Atomy zbudowane są z jąder atomowych i powłok elektronowych. Modelowo można stwierdzić, że jądro atomowe jest kulą, w której

Bardziej szczegółowo

Wykłady z Fizyki. Kwanty

Wykłady z Fizyki. Kwanty Wykłady z Fizyki 10 Kwanty Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Anatomia radiologiczna. Kończyny

Anatomia radiologiczna. Kończyny Anatomia radiologiczna. Kończyny Zakład Radiologii i Diagnostyki Obrazowej Uniwersytet Medyczny w Łodzi Kierownik: prof. dr hab. n. med. Ludomir Stefańczyk 1 Jak to się zaczęło 8 listopada 1895, w trakcie

Bardziej szczegółowo

Komputerowe obrazowanie medyczne

Komputerowe obrazowanie medyczne Komputerowe obrazowanie medyczne Część I Akwizycja obrazów medycznych Obrazowanie medyczne wczoraj Obrazowanie wnętrza ciała przez dawnych anatomów było dalekie od doskonałości (Atlas anatomiczny XIII

Bardziej szczegółowo

rezonans magnetyczny informacje dla pacjentów

rezonans magnetyczny informacje dla pacjentów rezonans magnetyczny informacje dla pacjentów MR 1 najważniejsze jest zdrowie Dla wygody naszych pacjentów stworzyliśmy portal Wyniki Online, gdzie, bez wychodzenia z domu, można odebrać wyniki badania

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Elektroradiologia w roku akademickim 2016/2017.

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Elektroradiologia w roku akademickim 2016/2017. Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Elektroradiologia w roku akademickim 2016/2017. w1. Platforma elearningowa stosowana na kursie. w2. Metodyka eksperymentu fizycznego - rachunek błędów.

Bardziej szczegółowo

Oddziaływanie wirnika

Oddziaływanie wirnika Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ

Bardziej szczegółowo

Badania obrazowe w diagnostyce chorób serca. II Katedra i klinika Kardiologii CM UMK

Badania obrazowe w diagnostyce chorób serca. II Katedra i klinika Kardiologii CM UMK Badania obrazowe w diagnostyce chorób serca II Katedra i klinika Kardiologii CM UMK RTG klatki piersiowej Ocenia zarys i wielkość serca, aorty, naczyń krążenia płucnego, wykrywa w ich rzucie zwapnienia

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne 1

Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

Badanie protonowego rezonansu magnetycznego

Badanie protonowego rezonansu magnetycznego adanie protonowego rezonansu magnetycznego Rys. 1 Układ pomiarowy. Wprowadzenie teoretyczne Jedną z podstawowych własności jądra atomowego jest jego moment pędu. Naukowcy w trakcie badań zaobserwowali

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMI

MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMI MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMI Cel ćwiczenia Celem ćwiczenia laboratoryjnego jest uzyskanie w ziemskim polu magnetycznym sygnału rezonansu magnetycznego pochodzącego od jąder wodoru

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego.

MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego. MAGNETYZM 1. Pole magnetyczne Ziemi i magnesu stałego. Źródła pola magnetycznego: Ziemia, magnes stały (sztabkowy, podkowiasty), ruda magnetytu, przewodnik, w którym płynie prąd. Każdy magnes posiada dwa

Bardziej szczegółowo

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Katedra Elektroniki ZSTi Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Symbole umieszczone na przyrządzie Katedra Elektroniki ZSTiO Mierniki magnetoelektryczne Budowane: z ruchomącewkąi

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład I Moment magnetyczny a moment pędu czynnik g. Precesja Larmora. Zjawisko rezonansu magnetycznego. Fenomenologiczny

Bardziej szczegółowo

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia 1. Ćwiczenie wprowadzające: Wielkości fizyczne i błędy pomiarowe. Pomiar wielkości fizjologicznych 2. Prąd elektryczny: Pomiar oporu

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, 2015 Spis treści Od Wydawcy do drugiego wydania polskiego Przedmowa Podziękowania xi xiii xxi 1. Pomiar 1 1.1.

Bardziej szczegółowo

Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1)

Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) 1. Wymagane zagadnienia - klasyfikacja rodzajów magnetyzmu - własności magnetyczne ciał stałych, wpływ temperatury - atomistyczna

Bardziej szczegółowo

Co to jest termografia?

Co to jest termografia? Co to jest termografia? Słowo Termografia Pochodzi od dwóch słów "termo" czyli ciepło i "grafia" rysować, opisywać więc termografia to opisywanie przy pomocy temperatury zmian zachodzących w naszym organiźmie

Bardziej szczegółowo

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego.

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Zmienne pole magnetyczne wytwarza zmienne pole elektryczne i odwrotnie zmienne pole elektryczne jest źródłem zmiennego pola magnetycznego

Bardziej szczegółowo

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRĄDNICE I SILNIKI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Prądnice i silniki (tzw. maszyny wirujące) W każdej maszynie można wyróżnić: - magneśnicę

Bardziej szczegółowo

PRZED KONKURSEM CZĘŚĆ 13

PRZED KONKURSEM CZĘŚĆ 13 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 13 Zadanie 1 Przez cewkę przepuszczono prąd elektryczny, podłączając ją do źródła prądu, a nad nią zawieszono magnes sztabkowy na dół biegunem N. Naciąg tej nici A. Zwiększy

Bardziej szczegółowo

Dane mikromacierzowe. Mateusz Markowicz Marta Stańska

Dane mikromacierzowe. Mateusz Markowicz Marta Stańska Dane mikromacierzowe Mateusz Markowicz Marta Stańska Mikromacierz Mikromacierz DNA (ang. DNA microarray) to szklana lub plastikowa płytka (o maksymalnych wymiarach 2,5 cm x 7,5 cm) z naniesionymi w regularnych

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

METODYKA BADAŃ MR KRĘGOSŁUPA I KANAŁU KRĘGOWEGO

METODYKA BADAŃ MR KRĘGOSŁUPA I KANAŁU KRĘGOWEGO KURS Rezonans magnetyczny w neuroradiologii Wrocław 2-3.12.2016 METODYKA BADAŃ MR KRĘGOSŁUPA I KANAŁU KRĘGOWEGO Marek SĄSIADEK Zakład Radiologii Ogólnej i Zabiegowej i Neuroradiologii Katedra Radiologii

Bardziej szczegółowo

Opis modułu kształcenia / przedmiotu (sylabus)

Opis modułu kształcenia / przedmiotu (sylabus) Opis modułu kształcenia / przedmiotu (sylabus) Rok akademicki: 2016/2017 Grupa przedmiotów: podstawowe Numer katalogowy: Nazwa przedmiotu 1) : Tłumaczenie nazwy na jęz. angielski 3) : Kierunek studiów

Bardziej szczegółowo

Tomografia magnetyczno-rezonansowa

Tomografia magnetyczno-rezonansowa FIZYKA FAZY SKONDENSOWANEJ Tomografia magnetyczno-rezonansowa Jadwiga Tritt-Goc Instytut Fizyki Molekularnej PAN, Poznań Magnetic resonance imaging Abstract: Magnetic Resonance Imaging (MRI) is a method

Bardziej szczegółowo

VLF (Very Low Frequency) 15 khz do 30 khz

VLF (Very Low Frequency) 15 khz do 30 khz VLF (Very Low Frequency) 15 khz do 30 khz Metoda elektromagnetyczna (EM) polega na pomiarze pól wtórnych wytwarzanych przez ciała przewodzące, znajdujące się w ziemi, które podlegają działaniu pierwotnego

Bardziej szczegółowo

Październik 2013 Grupa Voxel

Październik 2013 Grupa Voxel Październik 2013 Grupa Voxel GRUPA VOXEL Usługi medyczne Produkcja Usługi komplementarne ie mózgowia - traktografia DTI RTG TK (CT) od 1 do 60 obrazów/badanie do1500 obrazów/badanie TELE PACS Stacje diagnostyczne

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Semestr I Elektrostatyka Ocenę dopuszczającą otrzymuje uczeń, który: Wie że materia zbudowana jest z cząsteczek Wie że cząsteczki składają się

Bardziej szczegółowo

PROGRAM STAŻU SZKOLENIOWEGO DLA NAUCZYCIELI W ZAWODZIE TECHNIK ELEKTRORADIOLOG

PROGRAM STAŻU SZKOLENIOWEGO DLA NAUCZYCIELI W ZAWODZIE TECHNIK ELEKTRORADIOLOG PROGRAM STAŻU SZKOLENIOWEGO DLA NAUCZYCIELI W ZAWODZIE TECHNIK ELEKTRORADIOLOG Symbol cyfrowy [19] Spis treści Wprowadzenie I. Założenia programowo-organizacyjne stażu. 1. Charakterystyka zawodu - elektroradiolog..

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 2 tomu I O Richardzie P. Feynmanie

Bardziej szczegółowo

Prosty model silnika elektrycznego

Prosty model silnika elektrycznego Prosty model silnika elektrycznego Program: Coach 6 Projekt: komputer H : C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6\Elektronika\Silniczek2.cma Cel ćwiczenia Pokazanie zasady

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Rodzaje badań obrazowych i ich podstawy teoretyczne. Podstawy fizyczne diagnostyki obrazowej. Rentgenodiagnostyka. dr n. med.

Rodzaje badań obrazowych i ich podstawy teoretyczne. Podstawy fizyczne diagnostyki obrazowej. Rentgenodiagnostyka. dr n. med. Rodzaje badań obrazowych i ich podstawy teoretyczne dr n. med. Jolanta Meller Podstawy fizyczne diagnostyki obrazowej Rentgenodiagnostyka Ultrasonografia Rezonans magnetyczny Scyntygrafia Rentgenodiagnostyka

Bardziej szczegółowo

BADANIA LABORATORYJNE WYKONYWANE W PRZYPADKU NIEDOKRWIENNEGO UDARU MÓZGU

BADANIA LABORATORYJNE WYKONYWANE W PRZYPADKU NIEDOKRWIENNEGO UDARU MÓZGU 442 Część II. Neurologia kliniczna BADANIA LABORATORYJNE WYKONYWANE W PRZYPADKU NIEDOKRWIENNEGO UDARU MÓZGU Badania neuroobrazowe Badanie tomografii komputerowej głowy Zasadniczym rozróżnieniem wydaje

Bardziej szczegółowo

Lewitron TM prosta zabawka fizyczna o wyrafinowanej teorii działania, część I

Lewitron TM prosta zabawka fizyczna o wyrafinowanej teorii działania, część I Lewitron TM prosta zabawka fizyczna o wyrafinowanej teorii działania, część I Twierdzenie Earnschaw a Krzysztof Byczuk Uniwersytet Augsburski, Niemcy, i Uniwersytet Warszawski, Polska Lewitacją nazywamy

Bardziej szczegółowo

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Studenckie Koło Naukowe Maszyn Elektrycznych Magnesik Obliczenia polowe silnika

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA NADPRZEWODNICTWO I EFEKT MEISSNERA

POLITECHNIKA GDAŃSKA NADPRZEWODNICTWO I EFEKT MEISSNERA POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA ENERGETYKI I APARATURY PRZEMYSŁOWEJ NADPRZEWODNICTWO I EFEKT MEISSNERA Katarzyna Mazur Inżynieria Mechaniczno-Medyczna Sem. 9 1. Przypomnienie istotnych

Bardziej szczegółowo

Silniki prądu stałego z komutacją bezstykową (elektroniczną)

Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silnik bezkomutatorowy z fototranzystorami Schemat układu przekształtnikowego zasilającego trójpasmowy silnik bezszczotkowy Pojedynczy cykl

Bardziej szczegółowo

NMR Nuclear Magnetic Resonance. Co to jest?

NMR Nuclear Magnetic Resonance. Co to jest? 1 NMR Nuclear Magnetic Resonance Co to jest? Spektroskopia NMR ang. Nuclear Magnetic Resonance Spektroskopia Magnetycznego Rezonansu Jądrowego (MRJ) Wykorzystuje własności magnetyczne jąder atomowych Spektroskopia

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

KONKURS Z FIZYKI I ASTRONOMII. Fuzja jądrowa. dla uczniów gimnazjum i uczniów klas I i II szkół ponadgimnazjalnych

KONKURS Z FIZYKI I ASTRONOMII. Fuzja jądrowa. dla uczniów gimnazjum i uczniów klas I i II szkół ponadgimnazjalnych KONKURS Z FIZYKI I ASTRONOMII Fuzja jądrowa dla uczniów gimnazjum i uczniów klas I i II szkół ponadgimnazjalnych I. Organizatorem konkursu jest Krajowy Punkt Kontaktowy Euratom przy Instytucie Fizyki Plazmy

Bardziej szczegółowo

JĄDROWY REZONANS MAGNETYCZNY

JĄDROWY REZONANS MAGNETYCZNY JĄDROWY REZONANS MAGNETYCZNY - pierwsze prace to rok 1946 E.M.Purcell, H.S.Torrey, R.V.Pound, Phys. Rev. 69(1946) 37 F.Bloch, W.W.Hansen, M.E.Packard, Phys. Rev. 69(1946) 127 - pierwsze prace polskie J.W.Hennel,

Bardziej szczegółowo

Rezonans magnetyczny jest tomograficzną

Rezonans magnetyczny jest tomograficzną Zastosowanie rezonansu magnetycznego w onkologii spektrum możliwości Dzięki wysokiej czułości i wysokiej swoistości rezonans magnetyczny stał się jedną z najdokładniejszych metod obrazowania dostępnych

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

Plan wynikowy (propozycja)

Plan wynikowy (propozycja) Plan wynikowy (propozycja) Wymagania Temat lekcji ele operacyjne - uczeń: Kategoria celów podstawowe ponad podstawowe konieczne podstawowe rozszerzające dopełniające 1 2 3 4 5 6 7 Rozdział I. Elektrostatyka

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Obrazowanie MR przy użyciu spolaryzowanego 3 He jak chcemy badać szczurze płuca w Krakowie

Obrazowanie MR przy użyciu spolaryzowanego 3 He jak chcemy badać szczurze płuca w Krakowie FAMO Obrazowanie MR przy użyciu spolaryzowanego 3 He jak chcemy badać szczurze płuca w Krakowie Katarzyna Cieślar, Tomasz Dohnalik Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Narodowe Centrum Radioterapii Hadronowej. Centrum Cyklotronowe Bronowice

Narodowe Centrum Radioterapii Hadronowej. Centrum Cyklotronowe Bronowice 1 Narodowe Centrum Radioterapii Hadronowej Centrum Cyklotronowe Bronowice Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk ul. Radzikowskiego 152, 31-342 Kraków www.ifj.edu.pl

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII LABORATORIUM METROLOGII POMIARY TEMPERATURY NAGRZEWANEGO WSADU Cel ćwiczenia: zapoznanie z metodyką pomiarów temperatury nagrzewanego wsadu stalowego 1 POJĘCIE TEMPERATURY Z definicji, która jest oparta

Bardziej szczegółowo

Nowoczesne techniki obrazowania w medycynie. Jakub Zieliński Zakład Biofizyki i Fizjologii Człowieka WUM

Nowoczesne techniki obrazowania w medycynie. Jakub Zieliński Zakład Biofizyki i Fizjologii Człowieka WUM Nowoczesne techniki obrazowania w medycynie Jakub Zieliński Zakład Biofizyki i Fizjologii Człowieka WUM Dipol magnetyczny Cząstka lub układ cząstek (np. elektron, proton, jądro atomowe) posiadająca niezerowy

Bardziej szczegółowo