Bazy danych 1. Wykład 5 Metodologia projektowania baz danych. (projektowanie logiczne)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Bazy danych 1. Wykład 5 Metodologia projektowania baz danych. (projektowanie logiczne)"

Transkrypt

1 Bazy danych 1 Wykład 5 Metodologia projektowania baz danych (projektowanie logiczne)

2 Projektowanie logiczne przegląd krok po kroku 1. Usuń własności niekompatybilne z modelem relacyjnym 2. Wyznacz relacje dla logicznego modelu danych 3. Wykonaj normalizację relacji 4. Sprawdź, czy relacje umoŝliwiają realizacje transakcji. 5. Wyznacz więzy integralności. 6. Omów logiczny model danych z uŝytkownikiem.

3 Projektowanie logiczne (krok 1) 1. Usuń własności niekompatybilne z modelem relacyjnym Związki złoŝone Atrybuty wielowartościowe

4 Usunięcie związków złoŝonych Personel Rejestruje Klient 0..* Biuro Przetwarza Personel Rejestracja Rejestruje Biuro * 0..* Potwierdza 1..1 Klient

5 Usunięcie atrybutów wielowartościowych Biuro NrBiura Adres NrTel [1..3] Biuro NrBiura Adres Udostępnia Telefon NrTel

6 Projektowanie logiczne (krok 2) 2. Wyznacz relacje dla logicznego modelu danych Relacje będziemy opisywać za pomocą języka definiowania bazy danych DDL (DataBase Definition Language) Definicja (uproszczona) relacji w DDL zawiera: nazwę relacji (w liczbie mnogiej), ujętą w nawiasy listę prostych atrybutów relacji, klucz główny, wszystkie klucze alternatywne i obce, nazwę relacji zawierającą wskazany klucz obcy jako klucz główny listę atrybutów pochodnych wraz z wyraŝeniami definiującymi sposób wyliczenia ich wartości.

7 Projektowanie logiczne (krok 2) Przykład definicji relacji w DDL Relacja_A AtrybutA1 Relacja_A (, AtrybutA1) Primary Key Relacja_B Klucz_B AtrybutB1 <fk> Relacja_B (Klucz_B,, AtrybutB1) Primary Key Klucz_B Foreign Key references Relacja_A()

8 Projektowanie logiczne (krok 2) reguły transformacji 1. Dla kaŝdej encji tworzymy schemat relacji (reprezentacją relacji jest tabela). Najczęściej nazwa relacji jest taka sama jak nazwa encji, tylko w liczbie mnogiej ze względu na to, ze relacja zawiera wiele wystąpień obiektu. 2. Atrybuty encji stają się atrybutami w schemacie relacji. Atrybuty odpowiadające kluczom głównym stają się kluczami głównymi relacji. Atrybuty opcjonalne stają się kolumnami o dopuszczalnych wartościach NULL, atrybuty obligatoryjne stają się kolumnami NOT NULL. 3. Sposób tworzenia kluczy obcych zaleŝy od liczności (krotności) oraz uczestnictwa encji w związku.

9 Reguły transformacji związki typu 1:1 Uczestnictwo obowiązkowe po obu stronach związku A B - Klucz_B Z encji A i B tworzymy jeden schemat relacji RAB, który zawiera atrybuty obu encji, a kluczem głównym jest klucz główny encji A lub klucz główny encji B. RAB Klucz_B

10 Reguły transformacji związki typu 1:1 Uczestnictwo obowiązkowe po jednej stronie związku A B - Klucz_B Z encji A i B tworzymy schematy relacji RA i RB; do schematu RB wstawiamy jako dodatkowy atrybut klucz główny ze schematu RA. RA RB Klucz_B <fk>

11 Reguły transformacji związki typu 1:1 Uczestnictwo opcjonalne po obu stronach związku A B - Klucz_B Dopuszczalne róŝne rozwiązania: -tworzymy relacje RA i RB przy czym klucz główny jednej z nich umieszczamy w relacji drugiej jako klucz obcy (wartości NULL) - tworzymy schematy relacji RA i RB, a związek reprezentujemy nowym schematem RAB, który zawiera dwa klucze obce - klucz główny relacji RA i klucz główny relacji RB RA Klucz_B RAB <pk,fk1> <pk,fk2> RB Klucz_B

12 Reguły transformacji związki typu 1:1 z atrybutami Przypadek gdy związek ma atrybuty A Zwiazek - Atrybut_Zwiazku B - Klucz_B Z encji A i B tworzymy schematy relacji RA i RB; związek reprezentujemy schematem RAB, który zawiera dwa klucze obce klucz główny ze schematu RA i klucz główny ze schematu RB - oraz atrybuty związku RA RB Klucz_B RAB Klucz_B Atrybut_Zwiazku <pk,fk1> <pk,fk2>

13 Reguły transformacji związki rekurencyjne typu 1:1 Uczestnictwo obowiązkowe po obu stronach związku 1..1 Rola2 A Rola1 Tworzymy jeden schemat relacji RA zawierający dwie kopie klucza głównego. Jedna kopia jest kluczem obcym i powinna mieć nazwę wskazującą na reprezentowany związek (rola). RA Rola1_ <fk1>

14 Reguły transformacji związki rekurencyjne typu 1:1 Uczestnictwo opcjonalne po jednej stronie związku 1..1 Rola2 A Rola1 Tworzymy schemat relacji RA z kluczem głównym odpowiadającym kluczowi głównemu encji A oraz schemat RAA, który zawiera dwa klucze obce klucze główne ze schematu RA - opatrzone rolą, którą encja sprawuje w związku. RA RAA Rola1_ Rola2_ <pk,fk1> <pk,fk2>

15 Reguły transformacji związki rekurencyjne typu 1:1 Uczestnictwo opcjonalne po obu stronach związku 0..1 Rola2 A Rola1 Tworzymy schemat relacji RA z kluczem głównym odpowiadającym kluczowi głównemu encji A oraz schemat RAA, który zawiera dwa klucze obce klucze główne ze schematu RA - opatrzone rolą, którą encja sprawuje w związku. RA RAA Rola1_ Rola2_ <pk,fk1> <pk,fk2>

16 Reguły transformacji związki rekurencyjne typu 1:1 z atrybutami Przypadek gdy związek ma atrybuty 1..1 Rola2 A Rola1 Zwiazek - Atrybut_Zwiazku Tworzymy schemat relacji RA z kluczem głównym odpowiadającym kluczowi głównemu encji A oraz schemat RAA, który zawiera dwa klucze obce klucze główne ze schematu RA - opatrzone rolą, którą encja sprawuje w związku oraz atrybuty związku. A RAA Rola1_ Rola2_ Atrybut_Zwiazku <pk,fk1> <pk,fk2>

17 Reguły transformacji związki typu 1:* Uczestnictwo obowiązkowe po stronie wiele związku A * B - Klucz_B Z encji A i B tworzymy schematy relacji RA i RB; do schematu RB wstawiamy jako dodatkowy atrybut klucz główny ze schematu RA. RA RB Klucz_B <fk>

18 Reguły transformacji związki typu 1:* Uczestnictwo opcjonalne po stronie wiele związku A * B - Klucz_B jak wyŝej Z encji A i B tworzymy schematy relacji RA i RB, jeśli duŝo wystąpień encji B nie uczestniczy w związku, to związek reprezentujemy schematem RAB, który zawiera dwa klucze obce klucz główny ze schematu RA i klucz główny ze schematu RB. RA Klucz_B RAB <pk,fk1> <pk,fk2> RB Klucz_B

19 Reguły transformacji związki typu 1:* z atrybutami Uczestnictwo obowiązkowe po stronie wiele związku A * Zwiazek - Atrybut_Zwiazku B - Klucz_B Z encji A i B tworzymy schematy relacji RA i RB; do schematu RB wstawiamy jako dodatkowy atrybut klucz główny ze schematu RA oraz atrybuty związku. RA RB Klucz_B Atrybut_Zwiazku <fk>

20 Reguły transformacji związki typu 1:* z atrybutami Uczestnictwo opcjonalne po stronie wiele związku A * B - Klucz_B Z encji A i B tworzymy schematy relacji RA i RB, jeśli duŝo wystąpień encji B nie uczestniczy w związku, to związek reprezentujemy schematem RAB, który zawiera dwa klucze obce klucz główny ze schematu RA i klucz główny ze schematu RB oraz atrybuty związku. RA RB Klucz_B RAB Klucz_B Atrybut_Zwiazku <pk,fk1> <pk,fk2>

21 Reguły transformacji związki typu *:* (bez i z atrybutami) Uczestnictwo opcjonalne po obu stronach A - 0..* 0..* Zwiazek - Atrybut_Zwiazku Z encji A i B tworzymy schematy relacji RA i RB, związek reprezentujemy schematem RAB, który zawiera dwa klucze obce klucz główny ze schematu RA i klucz główny ze schematu RB (oraz atrybuty związku). B - Klucz_B RA RB Klucz_B RAB Klucz_B Atrybut_Zwiazku <pk,fk1> <pk,fk2>

22 Reguły transformacji związki rekurencyjne typu *:* (bez i z atrybutami) Uczestnictwo opcjonalne po obu stronach 0..* Rola2 A - 0..* Rola1 Zwiazek - Atrybut_Zwiazku Z encji A schemat relacji RA, związek reprezentujemy schematem RAA, który zawiera dwa klucze obce klucze główne ze schematu RA opatrzone rolą, którą encja sprawuje w związku (oraz atrybuty związku). RA RAA Rola1_ Rola2_ Atrybut_Zwiazku <pk,fk1> <pk,fk2>

23 Metoda 1: Przekształcenie uogólnienia w schemat relacyjny tworzymy tabele: jedną dla nadklasy i po jednej dla kaŝdej podklasy; w tabelach podklas wstawiamy klucz tabeli nadklasy (jako klucz obcy). Wykorzystanie praktyczne: Schemat relacyjny uzyskany w ten sposób jest najlepszy z punktu widzenia normalizacji, moŝe on być jednak niewydajny przy częstych złączeniach tabeli nadrzędnej z tabelami podrzędnymi. Metoda ta moŝe przynieść dobre wyniki, jeśli: podklasy znacznie róŝnią się od siebie (mają wiele róŝnych atrybutów); podklasy są silnie przecinające się (jest wiele obiektów, które jednocześnie naleŝą do więcej niŝ jednej podklasy) wówczas łatwiej uniknąć jest niespójności danych (np. określona osoba moŝe być jednocześnie naleŝeć do klasy Student i Pracownik; modyfikując jej dane, na przykład atrybut , mamy pewność, Ŝe wystarczy nanieść zmiany w jednym miejscu: w tabeli [Osoba]).

24 Przekształcanie uogólnienia w schemat relacyjny metoda 1 Diagram klas Schemat relacji

25 Przekształcanie hierarchii Metoda 2: uogólnienia w schemat relacyjny tworzymy po jednej tabeli dla kaŝdej podklasy; do kaŝdej tabeli wstawiamy wszystkie atrybuty nadklasy. Wykorzystanie praktyczne: Stosujemy te metodą, gdy kaŝde wystąpienie nadklasy musi naleŝeć do przynajmniej jednej podklasy oraz podklasy dość znacznie róŝnią się Schemat ten jest wydajnie przetwarzany, jeśli są częste odwołania do tabel powstałych z podklas (unikamy złączeń tabel). Posługując się tą metodą tracimy zysk z zamodelowanego wcześniej uogólnienia (dziedziczenia) na przykład system nie rozpoznaje faktu, Ŝe obiekt zapisany w tabeli Student i Pracownik moŝe być samą osobą.

26 Przekształcanie uogólnienia w schemat relacyjny metoda 2 Diagram klas Schemat relacji

27 Metoda 3: Przekształcanie hierarchii uogólnienia w schemat relacyjny tworzymy dwie tabele: jedna reprezentuje nadklasę, a druga podklasy, do drugiej tabeli wstawiamy wszystkie atrybuty podklas oraz klucz główny nadklasy jako klucz obcy; w razie potrzeby dodajemy pole rozróŝniające, informujące, z której podklasy pochodzi dany obiekt. Wykorzystanie praktyczne: Rozwiązanie to moŝe być zastosowane tylko wtedy, gdy podklasy róŝnią się między sobą minimalnie (np. pojedynczymi atrybutami) oraz wystąpienie nadklasy nie musi naleŝeć do Ŝadnej z podklas.

28 Przekształcanie uogólnienia w schemat relacyjny metoda 3 Osoba Id_Osoby Imie Nazwisko NIP PESEL itd. integer varchar varchar varchar varchar <Undefined> Id_Osoby Nr_Pracownika Nr_Indeksu Data_Zapisania Data_Wypisania Tytul Stanowisko Data_Zatrudnienia Okres_Zatrudnienia itd. Pracownik_Student int int int date date varchar varchar date int <Undefined> <fk>

29 Metoda 4: Przekształcanie hierarchii uogólnienia w schemat relacyjny tworzymy jedną tabelę; wstawiamy do niej wszystkie atrybuty z nadklasy i podklas; w razie potrzeby dodajemy pole rozróŝniające, informujące, z której podklasy pochodzi dany obiekt. Wykorzystanie praktyczne: Rozwiązanie to moŝe być zastosowane tylko wtedy, gdy podklasy róŝnią się między sobą minimalnie (np. pojedynczymi atrybutami), a wystąpienie nadklasy naleŝy przynajmniej do jednej z podklas W przeciwnym razie w wierszach moŝe występować wiele wartości NULL (jest to bardzo niekorzystne z punktu widzenia normalizacji schematu relacyjnego i potencjalnych anomalii przy aktualizacji danych).

30 Przekształcanie uogólnienia w schemat relacyjny metoda 4 Diagram klas Schemat relacji Dodatkowe pole rozróŝniające

31 Dziękuj kuję za uwagę!!!

Bazy danych 2. Wykład 2 czyli Kilka słów o tworzeniu aplikacji bazodanowej

Bazy danych 2. Wykład 2 czyli Kilka słów o tworzeniu aplikacji bazodanowej Bazy danych 2 Wykład 2 czyli Kilka słów o tworzeniu aplikacji bazodanowej Metody projektowania baz danych Metoda wstępująca nadaje się do projektowania prostych baz danych zawierających względnie małą

Bardziej szczegółowo

030 PROJEKTOWANIE BAZ DANYCH. Prof. dr hab. Marek Wisła

030 PROJEKTOWANIE BAZ DANYCH. Prof. dr hab. Marek Wisła 030 PROJEKTOWANIE BAZ DANYCH Prof. dr hab. Marek Wisła Elementy procesu projektowania bazy danych Badanie zależności funkcyjnych Normalizacja Projektowanie bazy danych Model ER, diagramy ERD Encje, atrybuty,

Bardziej szczegółowo

Transformacja modelu ER do modelu relacyjnego

Transformacja modelu ER do modelu relacyjnego Transformacja modelu ER do modelu relacyjnego Wykład przygotował: Robert Wrembel BD wykład 4 (1) 1 Plan wykładu Transformacja encji Transformacja związków Transformacja hierarchii encji BD wykład 4 (2)

Bardziej szczegółowo

Dane wejściowe. Oracle Designer Generowanie bazy danych. Wynik. Przebieg procesu

Dane wejściowe. Oracle Designer Generowanie bazy danych. Wynik. Przebieg procesu Dane wejściowe Oracle Designer Generowanie bazy danych Diagramy związków encji, a w szczególności: definicje encji wraz z atrybutami definicje związków między encjami definicje dziedzin atrybutów encji

Bardziej szczegółowo

Transformacja modelu ER do modelu relacyjnego

Transformacja modelu ER do modelu relacyjnego Transformacja modelu ER do modelu relacyjnego Wykład przygotował: Robert Wrembel BD wykład 4 (1) Plan wykładu Transformacja encji Transformacja związków Transformacja hierarchii encji BD wykład 4 (2) Pojęcia

Bardziej szczegółowo

PLAN WYKŁADU BAZY DANYCH GŁÓWNE ETAPY PROJEKTOWANIA BAZY MODELOWANIE LOGICZNE

PLAN WYKŁADU BAZY DANYCH GŁÓWNE ETAPY PROJEKTOWANIA BAZY MODELOWANIE LOGICZNE PLAN WYKŁADU Modelowanie logiczne Transformacja ERD w model relacyjny Odwzorowanie encji Odwzorowanie związków Odwzorowanie specjalizacji i generalizacji BAZY DANYCH Wykład 7 dr inż. Agnieszka Bołtuć GŁÓWNE

Bardziej szczegółowo

Technologia informacyjna

Technologia informacyjna Technologia informacyjna Pracownia nr 9 (studia stacjonarne) - 05.12.2008 - Rok akademicki 2008/2009 2/16 Bazy danych - Plan zajęć Podstawowe pojęcia: baza danych, system zarządzania bazą danych tabela,

Bardziej szczegółowo

Bazy danych wykład trzeci. trzeci Przekształcenie modelu ER na model relacyjny 1 / 19

Bazy danych wykład trzeci. trzeci Przekształcenie modelu ER na model relacyjny 1 / 19 Bazy danych wykład trzeci Przekształcenie modelu ER na model relacyjny Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa trzeci Przekształcenie modelu ER na model relacyjny 1 / 19 Przekształcanie

Bardziej szczegółowo

Instytut Mechaniki i Inżynierii Obliczeniowej fb.com/groups/bazydanychmt/

Instytut Mechaniki i Inżynierii Obliczeniowej  fb.com/groups/bazydanychmt/ Instytut Mechaniki i Inżynierii Obliczeniowej www.imio.polsl.pl fb.com/imiopolsl @imiopolsl fb.com/groups/bazydanychmt/ Wydział Mechaniczny technologiczny Politechnika Śląska Laboratorium 4 (Asocjacje,

Bardziej szczegółowo

Bazy Danych 2008 Część 1 Egzamin Pisemny

Bazy Danych 2008 Część 1 Egzamin Pisemny Bazy Danych 2008 Część Egzamin Pisemny. Zagadnienia związane z CDM a) Model danych SłuŜy do wyraŝania struktury danych, projektowanego lub istniejącego systemu. Przez strukturę rozumiemy typ danych, powiązania

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 5. Modelowanie danych. 2009/ Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 5. Modelowanie danych. 2009/ Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 5. Modelowanie danych 1 Etapy tworzenia systemu informatycznego Etapy tworzenia systemu informatycznego - (według CASE*Method) (CASE Computer Aided Systems Engineering ) Analiza wymagań

Bardziej szczegółowo

TRANSFORMACJA MODELU ER DO MODELU RELACYJNEGO

TRANSFORMACJA MODELU ER DO MODELU RELACYJNEGO TRANSFORMACJA MODELU ER DO MODELU RELACYJNEGO Biologiczne Aplikacje Baz Danych dr inż. Anna Leśniewska alesniewska@cs.put.poznan.pl REPETYTORIUM Schemat bazy danych zbiór schematów relacji Relacja (tabela)

Bardziej szczegółowo

Plan wykładu: Relacyjny model danych: opis modelu, podstawowe pojęcia, ograniczenia, więzy.

Plan wykładu: Relacyjny model danych: opis modelu, podstawowe pojęcia, ograniczenia, więzy. Plan wykładu: Relacyjny model danych: opis modelu, podstawowe pojęcia, ograniczenia, więzy. Przejście od modelu związków encji do modelu relacyjnego: odwzorowanie zbiorów encji, odwzorowanie związków encji

Bardziej szczegółowo

D D L S Q L. Co to jest DDL SQL i jakie s jego ą podstawowe polecenia?

D D L S Q L. Co to jest DDL SQL i jakie s jego ą podstawowe polecenia? D D L S Q L Co to jest DDL SQL i jakie s jego ą podstawowe polecenia? D D L S Q L - p o d s t a w y DDL SQL (Data Definition Language) Jest to zbiór instrukcji i definicji danych, którym posługujemy się

Bardziej szczegółowo

Tworzenie tabel. Bazy danych - laboratorium, Hanna Kleban 1

Tworzenie tabel. Bazy danych - laboratorium, Hanna Kleban 1 Tworzenie tabel Tabela podstawowa struktura, na której zbudowana jest relacyjna baza danych. Jest to zbiór kolumn (atrybutów) o ustalonych właściwościach, w których przechowuje się dane. Dane te są reprezentowane

Bardziej szczegółowo

Bazy danych 1. Wykład 4 Metodologia projektowania baz danych

Bazy danych 1. Wykład 4 Metodologia projektowania baz danych Bazy danych 1 Wykład 4 Metodologia projektowania baz danych Fazy cyklu Ŝycia aplikacji bazodanowych Planowanie bazy danych Definicja systemu Gromadzenie i analiza wymagań Projektowanie bazy danych Konceptualne

Bardziej szczegółowo

Bazy Danych. Modele danych. Krzysztof Regulski WIMiIP, KISiM,

Bazy Danych. Modele danych. Krzysztof Regulski WIMiIP, KISiM, Bazy Danych Modele danych Krzysztof Regulski WIMiIP, KISiM, regulski@agh.edu.pl Cele modelowania Strategia informatyzacji organizacji Cele informatyzacji Specyfikacja wymagań użytkownika Model procesów

Bardziej szczegółowo

Relacyjny model baz danych, model związków encji, normalizacje

Relacyjny model baz danych, model związków encji, normalizacje Relacyjny model baz danych, model związków encji, normalizacje Wyklad 3 mgr inż. Maciej Lasota mgr inż. Karol Wieczorek Politechnika Świętokrzyska Katedra Informatyki Kielce, 2009 Definicje Operacje na

Bardziej szczegółowo

2010-10-21 PLAN WYKŁADU BAZY DANYCH MODEL DANYCH. Relacyjny model danych Struktury danych Operacje Integralność danych Algebra relacyjna HISTORIA

2010-10-21 PLAN WYKŁADU BAZY DANYCH MODEL DANYCH. Relacyjny model danych Struktury danych Operacje Integralność danych Algebra relacyjna HISTORIA PLAN WYKŁADU Relacyjny model danych Struktury danych Operacje Integralność danych Algebra relacyjna BAZY DANYCH Wykład 2 dr inż. Agnieszka Bołtuć MODEL DANYCH Model danych jest zbiorem ogólnych zasad posługiwania

Bardziej szczegółowo

Program wykładu. zastosowanie w aplikacjach i PL/SQL;

Program wykładu. zastosowanie w aplikacjach i PL/SQL; Program wykładu 1 Model relacyjny (10 godz.): podstawowe pojęcia, języki zapytań (algebra relacji, relacyjny rachunek krotek, relacyjny rachunek dziedzin), zależności funkcyjne i postaci normalne (BCNF,

Bardziej szczegółowo

Projektowanie Systemów Informacyjnych

Projektowanie Systemów Informacyjnych Projektowanie Systemów Informacyjnych Wykład II Encje, Związki, Diagramy związków encji, Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.Widom Copyrights by Arkadiusz Rzucidło

Bardziej szczegółowo

Model relacyjny. Wykład II

Model relacyjny. Wykład II Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji

Bardziej szczegółowo

SIECI KOMPUTEROWE I BAZY DANYCH

SIECI KOMPUTEROWE I BAZY DANYCH KATEDRA MECHANIKI I ROBOTYKI STOSOWANEJ WYDZIAŁ BUDOWY MASZYN I LOTNICTWA, POLITECHNIKA RZESZOWSKA SIECI KOMPUTEROWE I BAZY DANYCH Laboratorium DB2: TEMAT: Relacyjne bazy danych Cz. I, II Cel laboratorium

Bardziej szczegółowo

SQL DDL DML TECHNOLOGIE BAZ DANYCH. Wykład 5: Język DDL i DML. Małgorzata Krętowska

SQL DDL DML TECHNOLOGIE BAZ DANYCH. Wykład 5: Język DDL i DML. Małgorzata Krętowska SQL TECHNOLOGIE BAZ DANYCH Wykład 5: Język DDL i DML. SQL (ang. StructuredQueryLanguage) strukturalny język zapytań używany do tworzenia, modyfikowania relacyjnych baz danych oraz do umieszczania i pobierania

Bardziej szczegółowo

Modelowanie danych, projektowanie systemu informatycznego

Modelowanie danych, projektowanie systemu informatycznego Modelowanie danych, projektowanie systemu informatycznego Modelowanie odwzorowanie rzeczywistych obiektów świata rzeczywistego w systemie informatycznym Modele - konceptualne reprezentacja obiektów w uniwersalnym

Bardziej szczegółowo

Definicja bazy danych TECHNOLOGIE BAZ DANYCH. System zarządzania bazą danych (SZBD) Oczekiwania wobec SZBD. Oczekiwania wobec SZBD c.d.

Definicja bazy danych TECHNOLOGIE BAZ DANYCH. System zarządzania bazą danych (SZBD) Oczekiwania wobec SZBD. Oczekiwania wobec SZBD c.d. TECHNOLOGIE BAZ DANYCH WYKŁAD 1 Wprowadzenie do baz danych. Normalizacja. (Wybrane materiały) Dr inż. E. Busłowska Definicja bazy danych Uporządkowany zbiór informacji, posiadający własną strukturę i wartość.

Bardziej szczegółowo

Przykładowa baza danych BIBLIOTEKA

Przykładowa baza danych BIBLIOTEKA Przykładowa baza danych BIBLIOTEKA 1. Opis problemu W ramach zajęć zostanie przedstawiony przykład prezentujący prosty system biblioteczny. System zawiera informację o czytelnikach oraz książkach dostępnych

Bardziej szczegółowo

Bazy danych. Algebra relacji

Bazy danych. Algebra relacji azy danych lgebra relacji Model danych Model danych to spójny zestaw pojęć służący do opisywania danych i związków między nimi oraz do manipulowania danymi i ich związkami, a także do wyrażania więzów

Bardziej szczegółowo

Krzysztof Kadowski. PL-E3579, PL-EA0312,

Krzysztof Kadowski. PL-E3579, PL-EA0312, Krzysztof Kadowski PL-E3579, PL-EA0312, kadowski@jkk.edu.pl Bazą danych nazywamy zbiór informacji w postaci tabel oraz narzędzi stosowanych do gromadzenia, przekształcania oraz wyszukiwania danych. Baza

Bardziej szczegółowo

Diagramy związków encji. Laboratorium. Akademia Morska w Gdyni

Diagramy związków encji. Laboratorium. Akademia Morska w Gdyni Akademia Morska w Gdyni Gdynia 2004 1. Podstawowe definicje Baza danych to uporządkowany zbiór danych umożliwiający łatwe przeszukiwanie i aktualizację. System zarządzania bazą danych (DBMS) to oprogramowanie

Bardziej szczegółowo

Projektowanie bazy danych. Jarosław Kuchta Projektowanie Aplikacji Internetowych

Projektowanie bazy danych. Jarosław Kuchta Projektowanie Aplikacji Internetowych Projektowanie bazy danych Jarosław Kuchta Projektowanie Aplikacji Internetowych Możliwości projektowe Relacyjna baza danych Obiektowa baza danych Relacyjno-obiektowa baza danych Inne rozwiązanie (np. XML)

Bardziej szczegółowo

Projektowanie struktury danych

Projektowanie struktury danych Jarosław aw Kuchta Rozproszonych Projektowanie qhta@eti.pg.gda.pl J.Kuchta@eti.pg.gda.pl Zagadnienia Sposoby zapisu danych zewnętrznych Odwzorowanie dziedziny problemu w dziedzinę danych Normalizacja relacyjnej

Bardziej szczegółowo

System zarządzania bazą danych SZBD (ang. DBMS -Database Management System)

System zarządzania bazą danych SZBD (ang. DBMS -Database Management System) Podstawowe pojęcia Baza danych Baza danych jest logicznie spójnym zbiorem danych posiadających określone znaczenie. Precyzyjniej będzie jednak powiedzieć, Ŝe baza danych jest informatycznym odwzorowaniem

Bardziej szczegółowo

Wykład 2. Relacyjny model danych

Wykład 2. Relacyjny model danych Wykład 2 Relacyjny model danych Wymagania stawiane modelowi danych Unikanie nadmiarowości danych (redundancji) jedna informacja powinna być wpisana do bazy danych tylko jeden raz Problem powtarzających

Bardziej szczegółowo

WYKŁAD 1. Wprowadzenie do problematyki baz danych

WYKŁAD 1. Wprowadzenie do problematyki baz danych WYKŁAD 1 Wprowadzenie do problematyki baz danych WYKŁAD 2 Relacyjny i obiektowy model danych JĘZYK UML (UNIFIED MODELING LANGUAGE) Zunifikowany język modelowania SAMOCHÓD

Bardziej szczegółowo

3 Przygotowali: mgr inż. Barbara Łukawska, mgr inż. Maciej Lasota

3 Przygotowali: mgr inż. Barbara Łukawska, mgr inż. Maciej Lasota Laboratorium nr 3 1 Bazy Danych Instrukcja laboratoryjna Temat: Wprowadzenie do języka SQL, tworzenie, modyfikacja, wypełnianie tabel 3 Przygotowali: mgr inż. Barbara Łukawska, mgr inż. Maciej Lasota 1)

Bardziej szczegółowo

Bazy danych wykład trzeci. trzeci Modelowanie schematu bazy danych 1 / 40

Bazy danych wykład trzeci. trzeci Modelowanie schematu bazy danych 1 / 40 Bazy danych wykład trzeci Modelowanie schematu bazy danych Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa trzeci Modelowanie schematu bazy danych 1 / 40 Outline 1 Zalezności funkcyjne

Bardziej szczegółowo

Język SQL. Rozdział 9. Język definiowania danych DDL, część 2.

Język SQL. Rozdział 9. Język definiowania danych DDL, część 2. Język SQL. Rozdział 9. Język definiowania danych DDL, część 2. Ograniczenia integralnościowe, modyfikowanie struktury relacji, zarządzanie ograniczeniami. 1 Ograniczenia integralnościowe Służą do weryfikacji

Bardziej szczegółowo

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych Plan wykładu Bazy danych Wykład 9: Przechodzenie od diagramów E/R do modelu relacyjnego. Definiowanie perspektyw. Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - perspektywy

Bardziej szczegółowo

Pawel@Kasprowski.pl Bazy danych. Bazy danych. Podstawy języka SQL. Dr inż. Paweł Kasprowski. pawel@kasprowski.pl

Pawel@Kasprowski.pl Bazy danych. Bazy danych. Podstawy języka SQL. Dr inż. Paweł Kasprowski. pawel@kasprowski.pl Bazy danych Podstawy języka SQL Dr inż. Paweł Kasprowski pawel@kasprowski.pl Plan wykładu Relacyjne bazy danych Język SQL Zapytania SQL (polecenie select) Bezpieczeństwo danych Integralność danych Współbieżność

Bardziej szczegółowo

Normalizacja baz danych

Normalizacja baz danych Wrocławska Wyższa Szkoła Informatyki Stosowanej Normalizacja baz danych Dr hab. inż. Krzysztof Pieczarka Email: krzysztof.pieczarka@gmail.com Normalizacja relacji ma na celu takie jej przekształcenie,

Bardziej szczegółowo

PRZYKŁAD. Prosta uczelnia. Autor: Jan Kowalski nr indeksu: (przykładowy projekt)

PRZYKŁAD. Prosta uczelnia. Autor: Jan Kowalski nr indeksu: (przykładowy projekt) Prosta uczelnia (przykładowy projekt) Autor: Jan Kowalski nr indeksu: 123456 Opis problemu Projekt ten ma na celu stworzenie systemu do przechowywania i obróbki danych o wynikach egzaminacyjnych około

Bardziej szczegółowo

Tworzenie modelu logicznego i fizycznego danych.

Tworzenie modelu logicznego i fizycznego danych. Tworzenie modelu logicznego i fizycznego danych. W celu stworzenia modelu danych wykorzystamy program ata Architect wchodzący w skład pakietu narzędzi CASE Power esigner, który pozwala utworzyć tzw. logiczny

Bardziej szczegółowo

Systemy baz danych. mgr inż. Sylwia Glińska

Systemy baz danych. mgr inż. Sylwia Glińska Systemy baz danych Wykład 1 mgr inż. Sylwia Glińska Baza danych Baza danych to uporządkowany zbiór danych z określonej dziedziny tematycznej, zorganizowany w sposób ułatwiający do nich dostęp. System zarządzania

Bardziej szczegółowo

1. Mapowanie diagramu klas na model relacyjny.

1. Mapowanie diagramu klas na model relacyjny. Rafał Drozd 1. Mapowanie diagramu klas na model relacyjny. 1.1 Asocjacje Wpływ na sposób przedstawienia asocjacji w podejściu relacyjnym ma przede wszystkim jej liczność (jeden-do-jednego, jeden-do-wielu,

Bardziej szczegółowo

Księgarnia PWN: Michael J. Hernandez Bazy danych dla zwykłych śmiertelników

Księgarnia PWN: Michael J. Hernandez Bazy danych dla zwykłych śmiertelników Księgarnia PWN: Michael J. Hernandez Bazy danych dla zwykłych śmiertelników Słowo wstępne (13) Przedmowa i podziękowania (drugie wydanie) (15) Podziękowania (15) Przedmowa i podziękowania (pierwsze wydanie)

Bardziej szczegółowo

Informacje wstępne Autor Zofia Kruczkiewicz Wzorce oprogramowania 4

Informacje wstępne Autor Zofia Kruczkiewicz Wzorce oprogramowania 4 Utrwalanie danych zastosowanie obiektowego modelu danych warstwy biznesowej do generowania schematu relacyjnej bazy danych Informacje wstępne Autor Zofia Kruczkiewicz Wzorce oprogramowania 4 1. Relacyjne

Bardziej szczegółowo

Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko

Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko Podstawowe pojęcia dotyczące relacyjnych baz danych mgr inż. Krzysztof Szałajko Czym jest baza danych? Co rozumiemy przez dane? Czym jest system zarządzania bazą danych? 2 / 25 Baza danych Baza danych

Bardziej szczegółowo

Blaski i cienie wyzwalaczy w relacyjnych bazach danych. Mgr inż. Andrzej Ptasznik

Blaski i cienie wyzwalaczy w relacyjnych bazach danych. Mgr inż. Andrzej Ptasznik Blaski i cienie wyzwalaczy w relacyjnych bazach danych. Mgr inż. Andrzej Ptasznik Technologia Przykłady praktycznych zastosowań wyzwalaczy będą omawiane na bazie systemu MS SQL Server 2005 Wprowadzenie

Bardziej szczegółowo

Pawel@Kasprowski.pl Bazy danych. Bazy danych. Zapytania SELECT. Dr inż. Paweł Kasprowski. pawel@kasprowski.pl

Pawel@Kasprowski.pl Bazy danych. Bazy danych. Zapytania SELECT. Dr inż. Paweł Kasprowski. pawel@kasprowski.pl Bazy danych Zapytania SELECT Dr inż. Paweł Kasprowski pawel@kasprowski.pl Przykład HAVING Podaj liczebność zespołów dla których najstarszy pracownik urodził się po 1940 select idz, count(*) from prac p

Bardziej szczegółowo

Modelowanie związków encji. Oracle Designer: Diagramy związków encji. Encja (1)

Modelowanie związków encji. Oracle Designer: Diagramy związków encji. Encja (1) Modelowanie związków encji Oracle Designer: Modelowanie związków encji Technika określania potrzeb informacyjnych organizacji. Modelowanie związków encji ma na celu: dostarczenie dokładnego modelu potrzeb

Bardziej szczegółowo

Wykład II Encja, atrybuty, klucze Związki encji. Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.

Wykład II Encja, atrybuty, klucze Związki encji. Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J. Bazy Danych Wykład II Encja, atrybuty, klucze Związki encji Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.Widom Copyrights by Arkadiusz Rzucidło 1 Encja Byt pojęciowy

Bardziej szczegółowo

Bazy danych - wykład wstępny

Bazy danych - wykład wstępny Bazy danych - wykład wstępny Wykład: baza danych, modele, hierarchiczny, sieciowy, relacyjny, obiektowy, schemat logiczny, tabela, kwerenda, SQL, rekord, krotka, pole, atrybut, klucz podstawowy, relacja,

Bardziej szczegółowo

INFORMATYKA GEODEZYJNO- KARTOGRAFICZNA Relacyjny model danych. Relacyjny model danych Struktury danych Operacje Oganiczenia integralnościowe

INFORMATYKA GEODEZYJNO- KARTOGRAFICZNA Relacyjny model danych. Relacyjny model danych Struktury danych Operacje Oganiczenia integralnościowe Relacyjny model danych Relacyjny model danych Struktury danych Operacje Oganiczenia integralnościowe Charakterystyka baz danych Model danych definiuje struktury danych operacje ograniczenia integralnościowe

Bardziej szczegółowo

Jarosław Kuchta Projektowanie Aplikacji Internetowych. Projektowanie warstwy danych

Jarosław Kuchta Projektowanie Aplikacji Internetowych. Projektowanie warstwy danych Jarosław Kuchta Projektowanie Aplikacji Internetowych Projektowanie warstwy danych Zagadnienia Sposoby zapisu danych zewnętrznych Odwzorowanie dziedziny problemu w dziedzinę danych Normalizacja relacyjnej

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Technologie baz danych Wykład 4: Diagramy związków encji (ERD). SQL funkcje grupujące. Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Plan wykładu Diagramy związków encji elementy ERD

Bardziej szczegółowo

Projekt małej Bazy Danych.

Projekt małej Bazy Danych. Artykuł pobrano ze strony eioba.pl Projekt małej Bazy Danych. Przykałdowa baza danych dotycząca forum dyskusyjnego. Autor: Magister inżynier Ireneusz Łukasz Dzitkowski Wałcz, dnia: 08. 02. 2012r. Wszystkie

Bardziej szczegółowo

Projektowanie systemów baz danych

Projektowanie systemów baz danych Projektowanie systemów baz danych Seweryn Dobrzelewski 4. Projektowanie DBMS 1 SQL SQL (ang. Structured Query Language) Język SQL jest strukturalnym językiem zapewniającym możliwość wydawania poleceń do

Bardziej szczegółowo

Podstawy języka SQL. SQL Structured Query Languagestrukturalny

Podstawy języka SQL. SQL Structured Query Languagestrukturalny Podstawy języka SQL SQL Structured Query Languagestrukturalny język zapytań DDL Język definicji danych (np. tworzenie tabel) DML Język manipulacji danych (np. tworzenie zapytań) DCL Język kontroli danych

Bardziej szczegółowo

Aspekty aktywne baz danych

Aspekty aktywne baz danych Aspekty aktywne baz danych Aktywne aspekty baz danych Baza danych powinna zapewniać pewne własności i niezmienniki; Własności te powinny mogą być zapisane do bazy danych, a baza danych powinna zapewniać

Bardziej szczegółowo

Bazy danych 2. Wykład 3. Metodologia projektowania baz danych (projektowanie fizyczne)

Bazy danych 2. Wykład 3. Metodologia projektowania baz danych (projektowanie fizyczne) Bazy danych 2 Wykład 3 Metodologia projektowania baz danych (projektowanie fizyczne) Projektowanie fizyczne - przegląd krok po kroku 1. Wybór systemu zarządzania bazą danych (BDMS) 2. WyraŜenie logicznego

Bardziej szczegółowo

Projektowanie bazy danych przykład

Projektowanie bazy danych przykład Projektowanie bazy danych przykład Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeń wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana

Bardziej szczegółowo

Wprowadzenie do projektowania i wykorzystania baz danych Relacje

Wprowadzenie do projektowania i wykorzystania baz danych Relacje Wprowadzenie do projektowania i wykorzystania baz danych Relacje Katarzyna Klessa Dygresja nt. operatorów SELECT 2^2 SELECT 2^30 SELECT 50^50 2 Dygresja nt. operatorów SELECT 2^30 --Bitwise exclusive OR

Bardziej szczegółowo

Bazy danych. Wykład IV SQL - wprowadzenie. Copyrights by Arkadiusz Rzucidło 1

Bazy danych. Wykład IV SQL - wprowadzenie. Copyrights by Arkadiusz Rzucidło 1 Bazy danych Wykład IV SQL - wprowadzenie Copyrights by Arkadiusz Rzucidło 1 Czym jest SQL Język zapytań deklaratywny dostęp do danych Składnia łatwa i naturalna Standardowe narzędzie dostępu do wielu różnych

Bardziej szczegółowo

- Przedmiot kończy się egzaminem - Egzamin ma formę testu teoretycznego

- Przedmiot kończy się egzaminem - Egzamin ma formę testu teoretycznego Dr inż. Ludmiła Rekuć p. 58 B4 www.ioz.pwr.wroc.pl, ludmila.rekuc@pwr.wroc.pl Dr inż. Witold Rekuć p. 57 B4 www.ioz.pwr.wroc.pl, witold.rekuc@pwr.wroc.pl - Przedmiot kończy się egzaminem - Egzamin ma formę

Bardziej szczegółowo

Wykład 05 Bazy danych

Wykład 05 Bazy danych Wykład 05 Bazy danych Tabela składa się z: Kolumn Wierszy Wartości Nazwa Wartości Opis INT [UNSIGNED] -2^31..2^31-1 lub 0..2^32-1 Zwykłe liczby całkowite VARCHAR(n) n = długość [1-255] Łańcuch znaków o

Bardziej szczegółowo

Transformacja modelu pojęciowego. do logicznego

Transformacja modelu pojęciowego. do logicznego Transformacja modelu pojęciowego do logicznego Plan wykładu 1. Modelowanie logiczne 2. Transformacja modelu pojęciowego do logicznego Transformacja własności Transformacja związków Transformacja hierarchii

Bardziej szczegółowo

WPROWADZENIE DO BAZ DANYCH

WPROWADZENIE DO BAZ DANYCH WPROWADZENIE DO BAZ DANYCH Pojęcie danych i baz danych Dane to wszystkie informacje jakie przechowujemy, aby w każdej chwili mieć do nich dostęp. Baza danych (data base) to uporządkowany zbiór danych z

Bardziej szczegółowo

Wykład 5 Charakterystyka języka SQL. Elementy obliczeń relacyjnych.

Wykład 5 Charakterystyka języka SQL. Elementy obliczeń relacyjnych. Wrocławska WyŜsza Szkoła Informatyki Stosowanej Wykład 5 Charakterystyka języka SQL. Elementy obliczeń relacyjnych. Dr inŝ. Krzysztof Pieczarka Email: krzysztof.pieczarka@up.wroc.pl Tradycyjne bazy danych

Bardziej szczegółowo

BAZY DANYCH model relacyjny. Opracował: dr inż. Piotr Suchomski

BAZY DANYCH model relacyjny. Opracował: dr inż. Piotr Suchomski BAZY DANYCH model relacyjny Opracował: dr inż. Piotr Suchomski Relacyjny model danych Relacyjny model danych posiada trzy podstawowe składowe: relacyjne struktury danych operatory algebry relacyjnej, które

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Bazy danych. Wykład 4: Model SERM. dr inż. Magdalena Krakowiak

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Bazy danych. Wykład 4: Model SERM. dr inż. Magdalena Krakowiak Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Bazy danych Wykład 4: Model SERM dr inż. Magdalena Krakowiak makrakowiak@wi.zut.edu.pl Słabości modelu ERD Wraz ze wzrostem złożoności obiektów

Bardziej szczegółowo

Model relacyjny. Wykład II

Model relacyjny. Wykład II Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji

Bardziej szczegółowo

Paweł Rajba pawel@ii.uni.wroc.pl http://www.itcourses.eu/

Paweł Rajba pawel@ii.uni.wroc.pl http://www.itcourses.eu/ Paweł Rajba pawel@ii.uni.wroc.pl http://www.itcourses.eu/ Wprowadzenie Historia i standardy Podstawy relacyjności Typy danych DDL tabele, widoki, sekwencje zmiana struktury DML DQL Podstawy, złączenia,

Bardziej szczegółowo

I. Język manipulowania danymi - DML (Data Manipulation Language). Polecenia INSERT, UPDATE, DELETE

I. Język manipulowania danymi - DML (Data Manipulation Language). Polecenia INSERT, UPDATE, DELETE Wykład 9 Implementacja języka SQL w systemach baz danych Oracle manipulowanie danymi (DML), tworzenie, modyfikowanie i usuwanie obiektów bazy danych: tabel i perspektyw, więzów integralności, komentarzy

Bardziej szczegółowo

Bazy danych Wykład zerowy. P. F. Góra

Bazy danych Wykład zerowy. P. F. Góra Bazy danych Wykład zerowy P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Patron? Św. Izydor z Sewilli (VI wiek), biskup, patron Internetu (sic!), stworzył pierwszy katalog Copyright c 2011-12 P.

Bardziej szczegółowo

Zaawansowane Modelowanie I Analiza Systemów Informatycznych

Zaawansowane Modelowanie I Analiza Systemów Informatycznych Zaawansowane Modelowanie I Analiza Systemów Informatycznych ORM mapowanie do schematu relacyjnego mgr. inż. Tomasz Pieciukiewicz tomasz.pieciukiewicz@gmail.com Zasady mapowania Predykaty mające role funkcjonalne

Bardziej szczegółowo

Bazy danych i usługi sieciowe

Bazy danych i usługi sieciowe Bazy danych i usługi sieciowe Wstęp do problematyki baz danych Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) BDiUS w. I Jesień 2014 1 / 17 Plan wykładu 1 Bazy danych 1 Motywacja

Bardziej szczegółowo

BAZY DANYCH. Dr hab. Sławomir Zadrożny, prof. PR

BAZY DANYCH. Dr hab. Sławomir Zadrożny, prof. PR BAZY DANYCH Dr hab. Sławomir Zadrożny, prof. PR Co to jest baza danych? Wiele możliwych definicji Zbiór danych, który istnieje przez dłuższy okres czasu Współdzielony zestaw logicznie powiązanych danych

Bardziej szczegółowo

Normalizacja relacyjnych baz danych. Sebastian Ernst

Normalizacja relacyjnych baz danych. Sebastian Ernst Normalizacja relacyjnych baz danych Sebastian Ernst Zależności funkcyjne Zależność funkcyjna pomiędzy zbiorami atrybutów X oraz Y oznacza, że każdemu zestawowi wartości atrybutów X odpowiada dokładnie

Bardziej szczegółowo

Relacyjne bazy danych. Normalizacja i problem nadmierności danych.

Relacyjne bazy danych. Normalizacja i problem nadmierności danych. Relacyjne bazy danych. Normalizacja i problem nadmierności danych. Robert A. Kłopotek r.klopotek@uksw.edu.pl Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych, UKSW Relacyjne bazy danych Stworzone

Bardziej szczegółowo

PLAN WYKŁADU BAZY DANYCH ZALEŻNOŚCI FUNKCYJNE

PLAN WYKŁADU BAZY DANYCH ZALEŻNOŚCI FUNKCYJNE PLAN WYKŁADU Zależności funkcyjne Anomalie danych Normalizacja Postacie normalne Zależności niefunkcyjne Zależności złączenia BAZY DANYCH Wykład 5 dr inż. Agnieszka Bołtuć ZALEŻNOŚCI FUNKCYJNE Niech R

Bardziej szczegółowo

Relacyjne bazy danych. Podstawy SQL

Relacyjne bazy danych. Podstawy SQL Relacyjne bazy danych Podstawy SQL Język SQL SQL (Structured Query Language) język umoŝliwiający dostęp i przetwarzanie danych w bazie danych na poziomie obiektów modelu relacyjnego tj. tabel i perspektyw.

Bardziej szczegółowo

W poniŝszej tabeli zestawiono charakterystyki poszczególnych postaci normalnych bazy.

W poniŝszej tabeli zestawiono charakterystyki poszczególnych postaci normalnych bazy. Postacie normalne W odróŝnieniu od schematu procesu projektowania bazy danych z góry do dołu (ang. top down od ogółu do szczegółów), normalizacja jest uznawana niekiedy za odrębną metodologię projektowania

Bardziej szczegółowo

Bazy danych. Zasady konstrukcji baz danych

Bazy danych. Zasady konstrukcji baz danych Bazy danych Zasady konstrukcji baz danych Diagram związków encji Cel: Opracowanie modelu logicznego danych Diagram związków encji [ang. Entity-Relationship diagram]: zapewnia efektywne operacje na danych

Bardziej szczegółowo

Projektowanie warstwy danych

Projektowanie warstwy danych Jarosław Kuchta Internetowych Projektowanie warstwy danych qhta@eti.pg.gda.pl J.Kuchta@eti.pg.gda.pl Zagadnienia Sposoby zapisu danych zewnętrznych Odwzorowanie dziedziny problemu w dziedzinę danych Normalizacja

Bardziej szczegółowo

Bazy danych. Dr inż. Paweł Kasprowski

Bazy danych. Dr inż. Paweł Kasprowski Plan wykładu Bazy danych Podstawy relacyjnego modelu danych Dr inż. Paweł Kasprowski pawel@kasprowski.pl Relacyjne bazy danych Język SQL Zapytania SQL (polecenie select) Bezpieczeństwo danych Integralność

Bardziej szczegółowo

Wykład XII. optymalizacja w relacyjnych bazach danych

Wykład XII. optymalizacja w relacyjnych bazach danych Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Bazy danych Database Kierunek: Rodzaj przedmiotu: obieralny Rodzaj zajęć: wykład, laboratorium Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień: 2W, 2L Semestr: III Liczba

Bardziej szczegółowo

Laboratorium nr 4. Temat: SQL część II. Polecenia DML

Laboratorium nr 4. Temat: SQL część II. Polecenia DML Laboratorium nr 4 Temat: SQL część II Polecenia DML DML DML (Data Manipulation Language) słuŝy do wykonywania operacji na danych do ich umieszczania w bazie, kasowania, przeglądania, zmiany. NajwaŜniejsze

Bardziej szczegółowo

77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego.

77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. 77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. Przy modelowaniu bazy danych możemy wyróżnić następujące typy połączeń relacyjnych: jeden do wielu, jeden do jednego, wiele

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: BAZY DANYCH 2. Kod przedmiotu: Bda 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Informatyka Stosowana

Bardziej szczegółowo

Wydział Elektroniki Politechniki Wrocławskiej. Kierunek: Informatyka Specjalność: InŜynieria Systemów Informatycznych

Wydział Elektroniki Politechniki Wrocławskiej. Kierunek: Informatyka Specjalność: InŜynieria Systemów Informatycznych Wydział Elektroniki Politechniki Wrocławskiej Kierunek: Informatyka Specjalność: InŜynieria Systemów Informatycznych Projekt z przedmiotu Komputerowe Systemy Zarządzania (INE3608) pt. System. Opracowanie:

Bardziej szczegółowo

Bazy danych i usługi sieciowe

Bazy danych i usługi sieciowe Bazy danych i usługi sieciowe Modelowanie związków encji Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) BDiUS w. II Jesień 2014 1 / 28 Modelowanie Modelowanie polega na odwzorowaniu

Bardziej szczegółowo

Projektowanie baz danych

Projektowanie baz danych Projektowanie baz danych Etapy procesu projektowania BD Określenie celów, jakim ma służyć baza danych (w kontakcie z decydentem z firmy zamawiającej projekt). Sprecyzowanie zakresu dostępnych danych, kategorii

Bardziej szczegółowo

Biblioteka. Bazy danych I dokumentacja projektu. Cel projektu:

Biblioteka. Bazy danych I dokumentacja projektu. Cel projektu: Biblioteka Bazy danych I dokumentacja projektu. Cel projektu: Aplikacja bazodanowa zrealizowana z wykorzystaniem SZBD PostgreSQL wraz z interfejsem użytkownika. Temat projektu: Realizacja bazy danych Biblioteki

Bardziej szczegółowo

Projekt jest finansowany ze środków Unii Europejskiej, Europejskiego Funduszu Społecznego i budŝetu państwa. Studia Podyplomowe dla Nauczycieli

Projekt jest finansowany ze środków Unii Europejskiej, Europejskiego Funduszu Społecznego i budŝetu państwa. Studia Podyplomowe dla Nauczycieli Projekt jest finansowany ze środków Unii Europejskiej, Europejskiego Funduszu Społecznego i budŝetu państwa Studia Podyplomowe dla Nauczycieli Bazy danych SQL Języki baz danych Interfejs DBMS składa się

Bardziej szczegółowo

Integralność danych Wersje języka SQL Klauzula SELECT i JOIN

Integralność danych Wersje języka SQL Klauzula SELECT i JOIN Integralność danych Wersje języka SQL Klauzula SELECT i JOIN Robert A. Kłopotek r.klopotek@uksw.edu.pl Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych, UKSW Integralność danych Aspekty integralności

Bardziej szczegółowo

BAZY DANYCH LABORATORIUM. Studia niestacjonarne I stopnia

BAZY DANYCH LABORATORIUM. Studia niestacjonarne I stopnia BAZY DANYCH LABORATORIUM Studia niestacjonarne I stopnia Gdańsk, 2011 1. Cel zajęć Celem zajęć laboratoryjnych jest wyrobienie praktycznej umiejętności tworzenia modelu logicznego danych a nastepnie implementacji

Bardziej szczegółowo

Tworzenie baz danych i tabel

Tworzenie baz danych i tabel Tworzenie baz danych i tabel Wprowadzenie SQL (ang. Structured Query Language strukturalny język zapytań używany do tworzenia, modyfikowania baz danych oraz do umieszczania i pobierania danych z baz danych.

Bardziej szczegółowo

Modelowanie związków encji

Modelowanie związków encji Modelowanie związków encji Instrukcja 1. Projekt danych metodą modelowania związków encji Do projektowania struktury bazy danych wykorzystuje się metodę Modelowania Związków Encji Jest to powszechnie stosowana

Bardziej szczegółowo