Bazy Danych. Modele danych. Krzysztof Regulski WIMiIP, KISiM,

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Bazy Danych. Modele danych. Krzysztof Regulski WIMiIP, KISiM,"

Transkrypt

1 Bazy Danych Modele danych Krzysztof Regulski WIMiIP, KISiM,

2 Cele modelowania Strategia informatyzacji organizacji Cele informatyzacji Specyfikacja wymagań użytkownika Model procesów Model funkcji systemu Wymagania użytkownika Definiowanie funkcji systemu Model funkcji systemu Model procesów Definiowanie modelu procesów Model danych Model procesów Modyfikacja Weryfikacja modeli procesów i danych Model logiczny i fizyczny systemu Definiowanie modelu danych Modyfikacja Model danych Model danych Nowe wymagania Nowe wymagania STRATEGIA SPECYFIKACJA WYMAGAŃ MODELOWANIE KISIM, WIMiIP, AGH 2

3 Cele modelowania danych Dane każdej organizacji podlegają nieustannym zmianom. W miarę stabilne pozostają jedynie ich:» rodzaje» sposób przechowywania i przetwarzania Modelowanie danych jest techniką organizowania i dokumentowania danych. Poprzez uogólnienieich typów, cech i zależności między nimi można tworzyćmodele danych. Modele danych można opracowywaćna różnych poziomach abstrakcji czy szczegółowości. Najczęściej wyróżnia się:» podstawowe modele danych, (konceptualnebądźlogiczne), są ukierunkowane na potrzeby użytkownika, opisują dziedzinęprzedmiotową, niezależnie od technicznego sposobu jego wdrożenia.» wdrożeniowemodele danych dotycząwdrożenia modelu danych w konkretnej technologii baz danych. KISIM, WIMiIP, AGH 3

4 Cele modelowania danych Cele modelowania danych:» Otrzymanie dokładnego modelu potrzebinformacyjnych przedsiębiorstwa,» Dekompozycja i strukturalizacja problemu,» Sformalizowanie opisu z wykorzystaniem języka graficznego jednoznaczność i czytelność,» Mechanizm efektywnej komunikacjipomiędzy analitykiem i użytkownikiem, pomiędzy analitykami systemu, a nawet pomiędzy użytkownikami,» Poprawa jakości i efektywności projektowania bazy danych,» Opis danych niezależny od struktur logicznych i fizycznych,» Niezależnośćod implementacji pozwala na zastosowanie modelu do integracji istniejących baz danych,» Podstawa do zrozumieniaprocesów realizowanych w przedsiębiorstwie i jego reorganizacji,» Możliwośćprezentacji potrzeb informacyjnychna różnym poziomie. KISIM, WIMiIP, AGH 4

5 Modele danych Model konceptualny spojrzenie na dane jako całość, model najbardziej stabilny, powinien on być podstawą, na której opieraćsiębędzie przetwarzanie danych Model wewnętrzny, niskiego poziomu opisuje sposób przechowywania danych w pamięci komputerów i przedstawia formaty rekordów czy ścieżki dostępu, modelami takimi sąmetody adresowania, struktury łańcuchowe i pierścieniowe KISIM, WIMiIP, AGH 5

6 Historia rozwoju BD Sieciowy Hierarchiczny Semantyczny Relacyjny Dedukcyjny Obiektowy Postrelacyjny 2000 Modele użytkowe stanowiąpodstawędo budowy systemu informatycznego:» hierarchiczny» sieciowy» relacyjny» obiektowy» postrelacyjny KISIM, WIMiIP, AGH 6

7 Diagramy ERD Diagramy związku encji (Entity Relationship Diagrams) to metoda graficznego modelowania struktur danych oraz relacji między nimi Przedstawiająstrukturędanych opisywanego systemu wraz z wszystkimi niezbędnymi atrybutami dla jego funkcjonowania. Modele danych można opracowywaćna różnych poziomach szczegółowości. Modelowanie z dołu do góry (normalizacja) konieczność zidentyfikowania całości zbioru danych przed projektowaniem Modelowanie z góry do dołu (modelowanie danych) zbiór danych powstaje w trakcie projektowania Modelowanie semantyczne KISIM, WIMiIP, AGH 7

8 Komponenty diagramu związków encji Komponent Encja Atrybut Związek Opis Rzecz mająca znaczenie, rzeczywista lub wymyślona, o której informacje naleŝy znać lub przechowywać. Element informacji słuŝący do klasyfikowania, identyfikowania, kwalifikowania, określania ilości lub wyraŝania stanu encji. Znaczący sposób, wjakimogąbyćze sobą powiązane dwie rzeczy tego samego typu lub róŝnych typów. KISIM, WIMiIP, AGH 8

9 Przykład prostego diagramu związków encji KLIENT * Nazwa * Adres o e_mail FAKTURA Atrybuty Związek Encja KISIM, WIMiIP, AGH 9

10 Encja Encja (ang. entity) jest to jednoznacznie identyfikowany składnik badanej rzeczywistości, októryminformacja jest lub może byćzbierana iprzechowywana. KISIM, WIMiIP, AGH 10

11 Encja cd. Przykładami encji są:» PRACOWNIK,» KLIENT,» DOSTAWCA,» ZAMÓWIENIE,» MAGAZYN,» KONTO itp. Uwaga: encje zazwyczaj opisuje się za pomocą rzeczowników lub wyrażeń rzeczownikowych w liczbie pojedynczej KISIM, WIMiIP, AGH 11

12 Atrybut Atrybut-jest cechą, elementem charakteryzującym encje i związki w badanej dziedzinie przedmiotowej. KISIM, WIMiIP, AGH 12

13 Atrybut cd. Atrybut ma jedno zpięciuzadań:»identyfikować,»opisywać,»klasyfikować,» określać ilość,»wyrażaćstan encji. KISIM, WIMiIP, AGH 13

14 Rodzaje atrybutów Przykład numer zamówienia opis towaru typ towaru ilość towaru w magazynie status płatności za zamówienie Przeznaczenie identyfikacja opis werbalny klasyfikacja określenie ilości wyraŝenie stanu KISIM, WIMiIP, AGH 14

15 Przykładowe atrybuty Encja STUDENT Wystąpienia encji: STUDENT # nr albumu * imię * nazwisko * data urodzenia * miejsce urodzenia Mat/123/04 Jan Kowalski Dobre Miasto Mat/345/04 Anna Nowak Dobre Miasto Encja SAMOCHÓD Wystąpienia encji: SAMOCHÓD # nr rejestracyjny * typ * rok produkcji * cena * kolor * pojemność silnika OLX 2361 Nissan Almera Czerwony 1,6 m 3 OM Renault Złoty 1,4 m 3 KISIM, WIMiIP, AGH 15

16 Związek Związek stanowi naturalne powiązanie pomiędzy dwoma lub więcej encjami wbadanejdziedzinie przedmiotowej. Widentyfikowaniuimodelowaniu związków encji bierze siępod uwagęnastępujące cechy:»stopieńzwiązku (liczebnośćzwiązku)» opcjonalność(uczestnictwo encji). KISIM, WIMiIP, AGH 16

17 Stopieńzwiązku oznacza stosunek ilościowy między liczebnością wystąpieńposzczególnych encji, uczestniczących wdanymzwiązku, mówi otym, ile wystąpieńencji jednego rodzaju jest powiązanych zilomawystąpieniami encji innego rodzaju KISIM, WIMiIP, AGH 17

18 Przykłady związków encji Stopień związku 1:1 1:m 1: wiele m:n Wiele : wiele Przykład Dziekan- Wydział Wydział- Student KsiąŜka - Autor Znaczenie KaŜde wystąpienie encji Dziekan jest powiązane tylko z jednym wystąpieniem encji Wydział. Zatem jeden Dziekan kieruje jednym Wydziałem KaŜde wystąpienie encji Wydziałpowiązane jest jednym lub wieloma wystąpieniami encji Student, przy czym kaŝde wystąpienie encji Student powiązane jest tylko jednym wystąpieniem encji Wydział. Zatem Wydziałposiada wielu Studentów, natomiast Student studiuje wyłącznie na jednym Wydziale KaŜde wystąpienie encji KsiąŜka powiązane jest z wieloma wystąpieniami encji Autor i odwrotnie kaŝde wystąpienie encji Autor powiązane jest z wieloma wystąpieniami encji KsiąŜka. Jest to sytuacja, gdzie KsiąŜka moŝe być napisana przez jednego lub wielu autorów i jeden Autor jest podpisany pod jednym lub wieloma tytułami KsiąŜek. KISIM, WIMiIP, AGH 18

19 Formy zapisu związku KISIM, WIMiIP, AGH 19

20 Opcjonalność dotyczy zaangażowania encji w związek, zuwagina tęcechęwyróżnia siędwa typy związków:»wymagane (obowiązkowe) zachodzi wówczas, jeśli wszystkie wystąpienia encji muszą uczestniczyćwzwiązku;»opcjonalne-zachodzi wówczas, jeśli istnieje, co najmniej jedno wystąpienie encji, które nie uczestniczy w związku. KISIM, WIMiIP, AGH 20

21 Cechy związków encji (notacja Martina) Stopień związku Typ związku (opcjonalność) jeden - do - jednego związek opcjonalny jeden - do - wielu wiele - do - wielu związek wymagany (obowiązkowy) KISIM, WIMiIP, AGH 21

22 Diagramy Związków Encji Związki rekurencyjne (jednoargumentowe) Związki trójargumentowe rozbicie na dwie osobne relacje powoduje utratę informacji Role Atrybuty związków (możliwa konwersja do nowego zbioru encji) KISIM, WIMiIP, AGH 22

23 ERD Modelowanie upływu czasu KISIM, WIMiIP, AGH 23

24 Reguły czytania związków encji KaŜda Encja 1 musi być lub moŝe być nazwa związku jeden lub wiele lub jeden I tylko jeden Encja 2 Przykład: składa Klient Zamówienia jest zlecone KaŜdy Klient moŝe złoŝyć jedno lub wiele Zamówień. KaŜde Zamówienie musi być zlecone przez jedngo i tylko jednego Klienta. KISIM, WIMiIP, AGH 24

25 Terminologia relacyjna Pojęcie Relacja Krotka Atrybut Stopień relacji Liczebność relacji Opis Jest to podzbiór iloczynu kartezjańskiego reprezentowany przez zbiór krotek. Reprezentacją relacji jest tablica. Oznacza wiersz tablicy. Reprezentacją krotki w tablicy jest rekord. Oznacza kolumnę tablicy (a dokładnie są to róŝne wystąpienia tego samego atrybutu). Reprezentacją atrybutu w tablicy jest pole. Liczba typów atrybutów w relacji. Liczba krotek w relacji. Klucz główny Klucz obcy Kolumna lub kombinacja kolumn, których wartości jednoznacznie identyfikują wiersze w tablicy. Kolumna lub kombinacja kolumn, których wartości określają klucz główny innej tablicy. Dziedzina (atrybutu) Lista dostępnych wartości atrybutu, wszystkie tego samego typu. KISIM, WIMiIP, AGH 25

26 Stworzenie relacyjnego modelu danych każda encjastaje siętablicą, której nazwa jest zazwyczaj nazwą encji w liczbie mnogiej; każdy atrybutstaje siękolumną, ajegonazwa odpowiednio nazwą tej kolumny. Natomiast właściwości atrybutu stają się odpowiadającymi im właściwościami wprojekciedanych. Atrybuty obowiązkowe stająsiękolumnami NOT NULL (co oznacza, że nie jest możliwe by wartośćkolumny przyjmowała wartość NULL); unikalny identyfikator encji staje się kluczem głównym tabeli; każdy związek jest przekształcany w dwa obiekty. Kolumnę klucza obcego, zgodnązkluczemgłównym(lub unikalnym) tabeli, której dotyczy. Dziedziczy ona typ irozmiardanego klucza głównego. KISIM, WIMiIP, AGH 26

27 Przekształcanie encji Logiczny model danych Encja Klient Atrybuty nazwa unikalny identyfikator Klient # id_klient * nazwa * adres Relacyjny model danych Tabela Klienci Kolumny nazwa klucz głowny Klienci # id_klient * nazwa * adres Przekształcanie związków Klient # id_klient * nazwa * adres Zamówienie # id_zamówienia * data zamówienia Klienci # id_klient * nazwa * adres Zamówienia # id_zamowiania * data-zamówienia * id_klienta... Not NULL KISIM, WIMiIP, AGH 27

28 Przekształcenie diagramu ERD KISIM, WIMiIP, AGH 28

29 Przekształcenie diagramu ERD KISIM, WIMiIP, AGH 29

30 ToadData Modeler-ERD KISIM, WIMiIP, AGH 30

31 ToadData Modeler-ERD KISIM, WIMiIP, AGH 31

Projektowanie systemów informatycznych. Roman Simiński siminskionline.pl. Modelowanie danych Diagramy ERD

Projektowanie systemów informatycznych. Roman Simiński siminskionline.pl. Modelowanie danych Diagramy ERD Projektowanie systemów informatycznych Roman Simiński roman.siminski@us.edu.pl siminskionline.pl Modelowanie danych Diagramy ERD Modelowanie danych dlaczego? Od biznesowego gadania do magazynu na biznesowe

Bardziej szczegółowo

030 PROJEKTOWANIE BAZ DANYCH. Prof. dr hab. Marek Wisła

030 PROJEKTOWANIE BAZ DANYCH. Prof. dr hab. Marek Wisła 030 PROJEKTOWANIE BAZ DANYCH Prof. dr hab. Marek Wisła Elementy procesu projektowania bazy danych Badanie zależności funkcyjnych Normalizacja Projektowanie bazy danych Model ER, diagramy ERD Encje, atrybuty,

Bardziej szczegółowo

Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym

Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym konceptualnym modelem danych jest tzw. model związków encji (ERM

Bardziej szczegółowo

Systemy informatyczne. Modelowanie danych systemów informatycznych

Systemy informatyczne. Modelowanie danych systemów informatycznych Modelowanie danych systemów informatycznych Diagramy związków encji Entity-Relationship Diagrams Modelowanie danych diagramy związków encji ERD (ang. Entity-Relationship Diagrams) diagramy związków encji

Bardziej szczegółowo

Wykład 2. Relacyjny model danych

Wykład 2. Relacyjny model danych Wykład 2 Relacyjny model danych Wymagania stawiane modelowi danych Unikanie nadmiarowości danych (redundancji) jedna informacja powinna być wpisana do bazy danych tylko jeden raz Problem powtarzających

Bardziej szczegółowo

Modelowanie danych, projektowanie systemu informatycznego

Modelowanie danych, projektowanie systemu informatycznego Modelowanie danych, projektowanie systemu informatycznego Modelowanie odwzorowanie rzeczywistych obiektów świata rzeczywistego w systemie informatycznym Modele - konceptualne reprezentacja obiektów w uniwersalnym

Bardziej szczegółowo

Projektowanie Systemów Informacyjnych

Projektowanie Systemów Informacyjnych Projektowanie Systemów Informacyjnych Wykład II Encje, Związki, Diagramy związków encji, Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.Widom Copyrights by Arkadiusz Rzucidło

Bardziej szczegółowo

Diagramy związków encji ERD Ćwiczenia w modelowaniu danych

Diagramy związków encji ERD Ćwiczenia w modelowaniu danych Diagramy związków encji ERD Ćwiczenia w modelowaniu danych dr Lidia Stępień wykład 5 ERD ang. Entity-Relationship Diagram Diagram związków encji Proces konstruowania projektu systemu bazy danych. Abstrakcyjna

Bardziej szczegółowo

Technologia informacyjna

Technologia informacyjna Technologia informacyjna Pracownia nr 9 (studia stacjonarne) - 05.12.2008 - Rok akademicki 2008/2009 2/16 Bazy danych - Plan zajęć Podstawowe pojęcia: baza danych, system zarządzania bazą danych tabela,

Bardziej szczegółowo

Bazy danych. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wykład 3: Model związków encji.

Bazy danych. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wykład 3: Model związków encji. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Bazy danych Wykład 3: Model związków encji. dr inż. Magdalena Krakowiak makrakowiak@wi.zut.edu.pl Co to jest model związków encji? Model związków

Bardziej szczegółowo

Diagramy związków encji. Laboratorium. Akademia Morska w Gdyni

Diagramy związków encji. Laboratorium. Akademia Morska w Gdyni Akademia Morska w Gdyni Gdynia 2004 1. Podstawowe definicje Baza danych to uporządkowany zbiór danych umożliwiający łatwe przeszukiwanie i aktualizację. System zarządzania bazą danych (DBMS) to oprogramowanie

Bardziej szczegółowo

Wykład II Encja, atrybuty, klucze Związki encji. Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.

Wykład II Encja, atrybuty, klucze Związki encji. Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J. Bazy Danych Wykład II Encja, atrybuty, klucze Związki encji Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.Widom Copyrights by Arkadiusz Rzucidło 1 Encja Byt pojęciowy

Bardziej szczegółowo

Transformacja modelu ER do modelu relacyjnego

Transformacja modelu ER do modelu relacyjnego Transformacja modelu ER do modelu relacyjnego Wykład przygotował: Robert Wrembel BD wykład 4 (1) 1 Plan wykładu Transformacja encji Transformacja związków Transformacja hierarchii encji BD wykład 4 (2)

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 5. Modelowanie danych. 2009/ Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 5. Modelowanie danych. 2009/ Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 5. Modelowanie danych 1 Etapy tworzenia systemu informatycznego Etapy tworzenia systemu informatycznego - (według CASE*Method) (CASE Computer Aided Systems Engineering ) Analiza wymagań

Bardziej szczegółowo

Bazy danych 1. Wykład 5 Metodologia projektowania baz danych. (projektowanie logiczne)

Bazy danych 1. Wykład 5 Metodologia projektowania baz danych. (projektowanie logiczne) Bazy danych 1 Wykład 5 Metodologia projektowania baz danych (projektowanie logiczne) Projektowanie logiczne przegląd krok po kroku 1. Usuń własności niekompatybilne z modelem relacyjnym 2. Wyznacz relacje

Bardziej szczegółowo

Baza danych. Modele danych

Baza danych. Modele danych Rola baz danych Systemy informatyczne stosowane w obsłudze działalności gospodarczej pełnią funkcję polegającą na gromadzeniu i przetwarzaniu danych. Typowe operacje wykonywane na danych w systemach ewidencyjno-sprawozdawczych

Bardziej szczegółowo

Relacyjny model baz danych, model związków encji, normalizacje

Relacyjny model baz danych, model związków encji, normalizacje Relacyjny model baz danych, model związków encji, normalizacje Wyklad 3 mgr inż. Maciej Lasota mgr inż. Karol Wieczorek Politechnika Świętokrzyska Katedra Informatyki Kielce, 2009 Definicje Operacje na

Bardziej szczegółowo

WYKŁAD 1. Wprowadzenie do problematyki baz danych

WYKŁAD 1. Wprowadzenie do problematyki baz danych WYKŁAD 1 Wprowadzenie do problematyki baz danych WYKŁAD 2 Relacyjny i obiektowy model danych JĘZYK UML (UNIFIED MODELING LANGUAGE) Zunifikowany język modelowania SAMOCHÓD

Bardziej szczegółowo

Diagramu Związków Encji - CELE. Diagram Związków Encji - CHARAKTERYSTYKA. Diagram Związków Encji - Podstawowe bloki składowe i reguły konstrukcji

Diagramu Związków Encji - CELE. Diagram Związków Encji - CHARAKTERYSTYKA. Diagram Związków Encji - Podstawowe bloki składowe i reguły konstrukcji Diagramy związków encji (ERD) 1 Projektowanie bazy danych za pomocą narzędzi CASE Materiał pochodzi ze strony : http://jjakiela.prz.edu.pl/labs.htm Diagramu Związków Encji - CELE Zrozumienie struktury

Bardziej szczegółowo

Definicja bazy danych TECHNOLOGIE BAZ DANYCH. System zarządzania bazą danych (SZBD) Oczekiwania wobec SZBD. Oczekiwania wobec SZBD c.d.

Definicja bazy danych TECHNOLOGIE BAZ DANYCH. System zarządzania bazą danych (SZBD) Oczekiwania wobec SZBD. Oczekiwania wobec SZBD c.d. TECHNOLOGIE BAZ DANYCH WYKŁAD 1 Wprowadzenie do baz danych. Normalizacja. (Wybrane materiały) Dr inż. E. Busłowska Definicja bazy danych Uporządkowany zbiór informacji, posiadający własną strukturę i wartość.

Bardziej szczegółowo

FUNKCJE SZBD. ZSE - Systemy baz danych 1

FUNKCJE SZBD. ZSE - Systemy baz danych 1 FUNKCJE SZBD ZSE - Systemy baz danych 1 System zarządzania bazami danych System zarządzania bazami danych (SZBD, ang. DBMS) jest zbiorem narzędzi stanowiących warstwę pośredniczącą pomiędzy bazą danych

Bardziej szczegółowo

BAZY DANYCH model związków encji. Opracował: dr inż. Piotr Suchomski

BAZY DANYCH model związków encji. Opracował: dr inż. Piotr Suchomski BAZY DANYCH model związków encji Opracował: dr inż. Piotr Suchomski Świat rzeczywisty a baza danych Świat rzeczywisty Diagram związków encji Model świata rzeczywistego Założenia, Uproszczenia, ograniczenia

Bardziej szczegółowo

Bazy danych i usługi sieciowe

Bazy danych i usługi sieciowe Bazy danych i usługi sieciowe Modelowanie związków encji Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) BDiUS w. II Jesień 2014 1 / 28 Modelowanie Modelowanie polega na odwzorowaniu

Bardziej szczegółowo

Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko

Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko Podstawowe pojęcia dotyczące relacyjnych baz danych mgr inż. Krzysztof Szałajko Czym jest baza danych? Co rozumiemy przez dane? Czym jest system zarządzania bazą danych? 2 / 25 Baza danych Baza danych

Bardziej szczegółowo

Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38

Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38 Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem zajęcia 1 dr Jakub Boratyński pok. A38 Program zajęć Bazy danych jako podstawowy element systemów informatycznych wykorzystywanych

Bardziej szczegółowo

TRANSFORMACJA MODELU ER DO MODELU RELACYJNEGO

TRANSFORMACJA MODELU ER DO MODELU RELACYJNEGO TRANSFORMACJA MODELU ER DO MODELU RELACYJNEGO Biologiczne Aplikacje Baz Danych dr inż. Anna Leśniewska alesniewska@cs.put.poznan.pl REPETYTORIUM Schemat bazy danych zbiór schematów relacji Relacja (tabela)

Bardziej szczegółowo

Modelowanie związków encji. Oracle Designer: Diagramy związków encji. Encja (1)

Modelowanie związków encji. Oracle Designer: Diagramy związków encji. Encja (1) Modelowanie związków encji Oracle Designer: Modelowanie związków encji Technika określania potrzeb informacyjnych organizacji. Modelowanie związków encji ma na celu: dostarczenie dokładnego modelu potrzeb

Bardziej szczegółowo

Bazy Danych 2008 Część 1 Egzamin Pisemny

Bazy Danych 2008 Część 1 Egzamin Pisemny Bazy Danych 2008 Część Egzamin Pisemny. Zagadnienia związane z CDM a) Model danych SłuŜy do wyraŝania struktury danych, projektowanego lub istniejącego systemu. Przez strukturę rozumiemy typ danych, powiązania

Bardziej szczegółowo

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM,

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM, Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Oczekiwania? 2 3 Bazy danych Jak przechowywać informacje? Jak opisać rzeczywistość?

Bardziej szczegółowo

Bazy danych. dr inż. Andrzej Macioł

Bazy danych. dr inż. Andrzej Macioł Bazy danych dr inż. Andrzej Macioł http://amber.zarz.agh.edu.pl/amaciol/ Ontologia Dziedzina metafizyki, która para się badaniem i wyjaśnianiem natury jak i kluczowych właściwości oraz relacji rządzących

Bardziej szczegółowo

Krzysztof Kadowski. PL-E3579, PL-EA0312,

Krzysztof Kadowski. PL-E3579, PL-EA0312, Krzysztof Kadowski PL-E3579, PL-EA0312, kadowski@jkk.edu.pl Bazą danych nazywamy zbiór informacji w postaci tabel oraz narzędzi stosowanych do gromadzenia, przekształcania oraz wyszukiwania danych. Baza

Bardziej szczegółowo

Związki pomiędzy tabelami

Związki pomiędzy tabelami Związki pomiędzy tabelami bazy danych. Stosowanie relacji jako nazwy połączenia miedzy tabelami jest tylko grą słów, którą można znaleźć w wielu podręcznikach ( fachowo powinno się używać związku). Związki

Bardziej szczegółowo

PLAN WYKŁADU BAZY DANYCH GŁÓWNE ETAPY PROJEKTOWANIA BAZY MODELOWANIE LOGICZNE

PLAN WYKŁADU BAZY DANYCH GŁÓWNE ETAPY PROJEKTOWANIA BAZY MODELOWANIE LOGICZNE PLAN WYKŁADU Modelowanie logiczne Transformacja ERD w model relacyjny Odwzorowanie encji Odwzorowanie związków Odwzorowanie specjalizacji i generalizacji BAZY DANYCH Wykład 7 dr inż. Agnieszka Bołtuć GŁÓWNE

Bardziej szczegółowo

Systemy baz danych. mgr inż. Sylwia Glińska

Systemy baz danych. mgr inż. Sylwia Glińska Systemy baz danych Wykład 1 mgr inż. Sylwia Glińska Baza danych Baza danych to uporządkowany zbiór danych z określonej dziedziny tematycznej, zorganizowany w sposób ułatwiający do nich dostęp. System zarządzania

Bardziej szczegółowo

2010-10-21 PLAN WYKŁADU BAZY DANYCH MODEL DANYCH. Relacyjny model danych Struktury danych Operacje Integralność danych Algebra relacyjna HISTORIA

2010-10-21 PLAN WYKŁADU BAZY DANYCH MODEL DANYCH. Relacyjny model danych Struktury danych Operacje Integralność danych Algebra relacyjna HISTORIA PLAN WYKŁADU Relacyjny model danych Struktury danych Operacje Integralność danych Algebra relacyjna BAZY DANYCH Wykład 2 dr inż. Agnieszka Bołtuć MODEL DANYCH Model danych jest zbiorem ogólnych zasad posługiwania

Bardziej szczegółowo

Literatura. Bazy danych s.1-1

Literatura. Bazy danych s.1-1 Literatura R.Colette, Bazy danych : od koncepcji do realizacji, PWE 1988, S.Forte, T.Howe, J. Ralston, Access2000, HELION 2001, R.J.Muller, Bazy danych, język UML w modelowaniu danych, MIKOM 2000, M.Muraszkiewicz,

Bardziej szczegółowo

TECHNOLOGIE BAZ DANYCH

TECHNOLOGIE BAZ DANYCH TECHNOLOGIE BAZ DANYCH WYKŁAD 3 Diagramy związków encji. Funkcje agregujące. (Wybrane materiały) Dr inż. E. Busłowska Copyright 2014-2015 E. Busłowska. 1 DIAGRAMY ZWIĄZKÓW ENCJI (DZE) Metoda graficznej

Bardziej szczegółowo

Agnieszka Ptaszek Michał Chojecki

Agnieszka Ptaszek Michał Chojecki Agnieszka Ptaszek Michał Chojecki Krótka historia Twórcą teorii relacyjnych baz danych jest Edgar Frank Codd. Postulaty te zostały opublikowane po raz pierwszy w 1970 roku w pracy A Relational Model of

Bardziej szczegółowo

Model relacyjny bazy danych

Model relacyjny bazy danych Bazy Danych Model relacyjny bazy danych Przygotował: mgr inż. Maciej Lasota Bazy Danych 1 1) Model relacyjny bazy danych Relacyjny model bazy danych pojawił się po raz pierwszy w artykule naukowym Edgara

Bardziej szczegółowo

Baza danych. Baza danych to:

Baza danych. Baza danych to: Baza danych Baza danych to: zbiór danych o określonej strukturze, zapisany na zewnętrznym nośniku (najczęściej dysku twardym komputera), mogący zaspokoić potrzeby wielu użytkowników korzystających z niego

Bardziej szczegółowo

Zaawansowane Modelowanie I Analiza Systemów Informatycznych

Zaawansowane Modelowanie I Analiza Systemów Informatycznych Zaawansowane Modelowanie I Analiza Systemów Informatycznych ORM - Kroki 4 (c.d.) i5 mgr. inż. Tomasz Pieciukiewicz tomasz.pieciukiewicz@gmail.com ORM 7 kroków tworzenia schematu 1. Przekształć przykłady

Bardziej szczegółowo

Normalizacja baz danych

Normalizacja baz danych Wrocławska Wyższa Szkoła Informatyki Stosowanej Normalizacja baz danych Dr hab. inż. Krzysztof Pieczarka Email: krzysztof.pieczarka@gmail.com Normalizacja relacji ma na celu takie jej przekształcenie,

Bardziej szczegółowo

Program wykładu. zastosowanie w aplikacjach i PL/SQL;

Program wykładu. zastosowanie w aplikacjach i PL/SQL; Program wykładu 1 Model relacyjny (10 godz.): podstawowe pojęcia, języki zapytań (algebra relacji, relacyjny rachunek krotek, relacyjny rachunek dziedzin), zależności funkcyjne i postaci normalne (BCNF,

Bardziej szczegółowo

Świat rzeczywisty i jego model

Świat rzeczywisty i jego model 2 Świat rzeczywisty i jego model Świat rzeczywisty (dziedzina problemu) Świat obiektów (model dziedziny) Dom Samochód Osoba Modelowanie 3 Byty i obiekty Byt - element świata rzeczywistego (dziedziny problemu),

Bardziej szczegółowo

Model relacyjny. Wykład II

Model relacyjny. Wykład II Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji

Bardziej szczegółowo

Bazy danych. wprowadzenie teoretyczne. Piotr Prekurat 1

Bazy danych. wprowadzenie teoretyczne. Piotr Prekurat 1 Bazy danych wprowadzenie teoretyczne Piotr Prekurat 1 Baza danych Jest to zbiór danych lub jakichkolwiek innych materiałów i elementów zgromadzonych według określonej systematyki lub metody. Zatem jest

Bardziej szczegółowo

ZSE - Systemy baz danych 1 ZASADY PROJEKTOWANIA BAZ DANYCH

ZSE - Systemy baz danych 1 ZASADY PROJEKTOWANIA BAZ DANYCH ZSE - Systemy baz danych 1 ZASADY PROJEKTOWANIA BAZ DANYCH ZSE - Systemy baz danych 2 rzeczywistość uzyskanie od użytkowników początkowych informacji i wymagań dotyczących przetwarzania danych analiza

Bardziej szczegółowo

Bazy Danych. Model Relacyjny. Krzysztof Regulski WIMiIP, KISiM, regulski@agh.edu.pl B5, pok. 408

Bazy Danych. Model Relacyjny. Krzysztof Regulski WIMiIP, KISiM, regulski@agh.edu.pl B5, pok. 408 Bazy Danych Model Relacyjny Krzysztof Regulski WIMiIP, KISiM, regulski@agh.edu.pl B5, pok. 408 Relacyjny model danych Relacyjny model danych jest obecnie najbardziej popularnym modelem używanym w systemach

Bardziej szczegółowo

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Bazy Danych - Projekt. Zasady przygotowania i oceny projektów

Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Bazy Danych - Projekt. Zasady przygotowania i oceny projektów Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Bazy Danych - Projekt Zasady przygotowania i oceny projektów 1 Cel projektu Celem niniejszego projektu jest zaprojektowanie i implementacja

Bardziej szczegółowo

Bazy danych - wykład wstępny

Bazy danych - wykład wstępny Bazy danych - wykład wstępny Wykład: baza danych, modele, hierarchiczny, sieciowy, relacyjny, obiektowy, schemat logiczny, tabela, kwerenda, SQL, rekord, krotka, pole, atrybut, klucz podstawowy, relacja,

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Technologie baz danych Wykład 4: Diagramy związków encji (ERD). SQL funkcje grupujące. Małgorzata Krętowska Wydział Informatyki Politechnika Białostocka Plan wykładu Diagramy związków encji elementy ERD

Bardziej szczegółowo

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Literatura i inne pomoce Silberschatz A., Korth H., S. Sudarshan: Database

Bardziej szczegółowo

Wykład I. Wprowadzenie do baz danych

Wykład I. Wprowadzenie do baz danych Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles

Bardziej szczegółowo

Model logiczny SZBD. Model fizyczny. Systemy klientserwer. Systemy rozproszone BD. No SQL

Model logiczny SZBD. Model fizyczny. Systemy klientserwer. Systemy rozproszone BD. No SQL Podstawy baz danych: Rysunek 1. Tradycyjne systemy danych 1- Obsługa wejścia 2- Przechowywanie danych 3- Funkcje użytkowe 4- Obsługa wyjścia Ewolucja baz danych: Fragment świata rzeczywistego System przetwarzania

Bardziej szczegółowo

Wprowadzenie do baz danych

Wprowadzenie do baz danych Wprowadzenie do baz danych Bazy danych stanowią obecnie jedno z ważniejszych zastosowań komputerów. Podstawowe zalety komputerowej bazy to przede wszystkim szybkość przetwarzania danych, ilość dostępnych

Bardziej szczegółowo

TECHNIKI MODELOWANIA STRUKTURY INFORMACYJNEJ

TECHNIKI MODELOWANIA STRUKTURY INFORMACYJNEJ TECHNIKI MODELOWANIA STRUKTURY INFORMACYJNEJ 1. Diagram obiektów i związków (DOZ) 2. Szczegółowa specyfikacja obiektów, atrybutów i związków GHJ 1 Metodyki strukturalne IE (Information Engineering) Martin

Bardziej szczegółowo

Bazy danych. Algebra relacji

Bazy danych. Algebra relacji azy danych lgebra relacji Model danych Model danych to spójny zestaw pojęć służący do opisywania danych i związków między nimi oraz do manipulowania danymi i ich związkami, a także do wyrażania więzów

Bardziej szczegółowo

WPROWADZENIE DO BAZ DANYCH

WPROWADZENIE DO BAZ DANYCH 1 Technologie informacyjne WYKŁAD IV WPROWADZENIE DO BAZ DANYCH MAIL: WWW: a.dudek@pwr.edu.pl http://wgrit.ae.jgora.pl/ad Bazy danych 2 Baza danych to zbiór danych o określonej strukturze. zapisany na

Bardziej szczegółowo

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki

Bardziej szczegółowo

Bazy danych. Zasady konstrukcji baz danych

Bazy danych. Zasady konstrukcji baz danych Bazy danych Zasady konstrukcji baz danych Diagram związków encji Cel: Opracowanie modelu logicznego danych Diagram związków encji [ang. Entity-Relationship diagram]: zapewnia efektywne operacje na danych

Bardziej szczegółowo

Transformacja modelu ER do modelu relacyjnego

Transformacja modelu ER do modelu relacyjnego Transformacja modelu ER do modelu relacyjnego Wykład przygotował: Robert Wrembel BD wykład 4 (1) Plan wykładu Transformacja encji Transformacja związków Transformacja hierarchii encji BD wykład 4 (2) Pojęcia

Bardziej szczegółowo

Inżynieria oprogramowania. Wykład 6 Analiza i specyfikowanie wymagań

Inżynieria oprogramowania. Wykład 6 Analiza i specyfikowanie wymagań Inżynieria oprogramowania Wykład 6 Analiza i specyfikowanie wymagań Proces inżynierii wymagań Feasibility Study Feasibility Report Requirements Analysis System Models Requirements Definition Definition

Bardziej szczegółowo

INFORMATYKA GEODEZYJNO- KARTOGRAFICZNA Relacyjny model danych. Relacyjny model danych Struktury danych Operacje Oganiczenia integralnościowe

INFORMATYKA GEODEZYJNO- KARTOGRAFICZNA Relacyjny model danych. Relacyjny model danych Struktury danych Operacje Oganiczenia integralnościowe Relacyjny model danych Relacyjny model danych Struktury danych Operacje Oganiczenia integralnościowe Charakterystyka baz danych Model danych definiuje struktury danych operacje ograniczenia integralnościowe

Bardziej szczegółowo

WPROWADZENIE DO BAZ DANYCH

WPROWADZENIE DO BAZ DANYCH WPROWADZENIE DO BAZ DANYCH Pojęcie danych i baz danych Dane to wszystkie informacje jakie przechowujemy, aby w każdej chwili mieć do nich dostęp. Baza danych (data base) to uporządkowany zbiór danych z

Bardziej szczegółowo

Paweł Kurzawa, Delfina Kongo

Paweł Kurzawa, Delfina Kongo Paweł Kurzawa, Delfina Kongo Pierwsze prace nad standaryzacją Obiektowych baz danych zaczęły się w roku 1991. Stworzona została grupa do prac nad standardem, została ona nazwana Object Database Management

Bardziej szczegółowo

INFORMATYKA GEODEZYJNO- KARTOGRAFICZNA. Modelowanie danych. Model związków-encji

INFORMATYKA GEODEZYJNO- KARTOGRAFICZNA. Modelowanie danych. Model związków-encji Modelowanie danych. Model związków-encji Plan wykładu Wprowadzenie do modelowania i projektowania kartograficznych systemów informatycznych Model związków-encji encje atrybuty encji związki pomiędzy encjami

Bardziej szczegółowo

Zagadnienia (1/3) Data-flow diagramy przepływów danych ERD diagramy związków encji Diagramy obiektowe w UML (ang. Unified Modeling Language)

Zagadnienia (1/3) Data-flow diagramy przepływów danych ERD diagramy związków encji Diagramy obiektowe w UML (ang. Unified Modeling Language) Zagadnienia (1/3) Rola modelu systemu w procesie analizy wymagań (inżynierii wymagań) Prezentacja różnego rodzaju informacji o systemie w zależności od rodzaju modelu. Budowanie pełnego obrazu systemu

Bardziej szczegółowo

Pojęcie bazy danych. Funkcje i możliwości.

Pojęcie bazy danych. Funkcje i możliwości. Pojęcie bazy danych. Funkcje i możliwości. Pojęcie bazy danych Baza danych to: zbiór informacji zapisanych według ściśle określonych reguł, w strukturach odpowiadających założonemu modelowi danych, zbiór

Bardziej szczegółowo

LK1: Wprowadzenie do MS Access Zakładanie bazy danych i tworzenie interfejsu użytkownika

LK1: Wprowadzenie do MS Access Zakładanie bazy danych i tworzenie interfejsu użytkownika LK1: Wprowadzenie do MS Access Zakładanie bazy danych i tworzenie interfejsu użytkownika Prowadzący: Dr inż. Jacek Habel Instytut Technologii Maszyn i Automatyzacji Produkcji Zakład Projektowania Procesów

Bardziej szczegółowo

Relacyjne bazy danych

Relacyjne bazy danych Relacyjne bazy danych W roku 1970 dr Edgar Ted Codd z firmy IBM zaprezentował relacyjny model danych. W modelu tym dane miały być przechowywane w prostych plikach liniowych, które to pliki nazywane są

Bardziej szczegółowo

Bazy danych 1. Wykład 4 Metodologia projektowania baz danych

Bazy danych 1. Wykład 4 Metodologia projektowania baz danych Bazy danych 1 Wykład 4 Metodologia projektowania baz danych Fazy cyklu Ŝycia aplikacji bazodanowych Planowanie bazy danych Definicja systemu Gromadzenie i analiza wymagań Projektowanie bazy danych Konceptualne

Bardziej szczegółowo

Modelowanie klas i obiektów. Jarosław Kuchta Projektowanie Aplikacji Internetowych

Modelowanie klas i obiektów. Jarosław Kuchta Projektowanie Aplikacji Internetowych Modelowanie klas i obiektów Jarosław Kuchta Podstawowe pojęcia (1) Byt, encja (entity) coś co istnieje, posiada własne cechy i wyodrębnioną tożsamość (identity); bytem może być rzecz, osoba, organizacja,

Bardziej szczegółowo

Projektowanie oprogramowania cd. Projektowanie oprogramowania cd. 1/34

Projektowanie oprogramowania cd. Projektowanie oprogramowania cd. 1/34 Projektowanie oprogramowania cd. Projektowanie oprogramowania cd. 1/34 Projektowanie oprogramowania cd. 2/34 Modelowanie CRC Modelowanie CRC (class-responsibility-collaborator) Metoda identyfikowania poszczególnych

Bardziej szczegółowo

Projektowanie baz danych

Projektowanie baz danych Projektowanie baz danych Etapy procesu projektowania BD Określenie celów, jakim ma służyć baza danych (w kontakcie z decydentem z firmy zamawiającej projekt). Sprecyzowanie zakresu dostępnych danych, kategorii

Bardziej szczegółowo

Pojęcie systemu informacyjnego i informatycznego

Pojęcie systemu informacyjnego i informatycznego BAZY DANYCH Pojęcie systemu informacyjnego i informatycznego DANE wszelkie liczby, fakty, pojęcia zarejestrowane w celu uzyskania wiedzy o realnym świecie. INFORMACJA - znaczenie przypisywane danym. SYSTEM

Bardziej szczegółowo

Analiza i projektowanie obiektowe 2017/2018. Wykład 3: Model wiedzy dziedzinowej

Analiza i projektowanie obiektowe 2017/2018. Wykład 3: Model wiedzy dziedzinowej Analiza i projektowanie obiektowe 2017/2018 Wykład 3: Model wiedzy dziedzinowej Jacek Marciniak Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 Plan wykładu 1. Model wiedzy dziedzinowej

Bardziej szczegółowo

Modelowanie związków encji

Modelowanie związków encji Modelowanie związków encji 1. Cel modelowania - tworzenia związków encji Metoda modelowania tworzenie związków encji (ERD) odnosi się do etapów strategii i analizy cyklu życia systemu informacyjnego. Cykl

Bardziej szczegółowo

System zarządzania bazą danych SZBD (ang. DBMS -Database Management System)

System zarządzania bazą danych SZBD (ang. DBMS -Database Management System) Podstawowe pojęcia Baza danych Baza danych jest logicznie spójnym zbiorem danych posiadających określone znaczenie. Precyzyjniej będzie jednak powiedzieć, Ŝe baza danych jest informatycznym odwzorowaniem

Bardziej szczegółowo

KSS: Modelowanie konceptualne przykład

KSS: Modelowanie konceptualne przykład Modelowanie konceptualne model ER KSS: Modelowanie konceptualne przykład Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Model ER służy do nieformalnego przedstawienia modelu systemu rzeczywistego

Bardziej szczegółowo

Bazy Danych i Systemy informacyjne Wykład 7. Piotr Syga

Bazy Danych i Systemy informacyjne Wykład 7. Piotr Syga Bazy Danych i Systemy informacyjne Wykład 7 Piotr Syga 27.11.2017 Wstęp Projektowanie baz bazodanowy komponent aplikacji projektujemy w sposób analogiczny do całej aplikacji ustalamy główne wymagania klienta,

Bardziej szczegółowo

Projektowanie bazy danych przykład

Projektowanie bazy danych przykład Projektowanie bazy danych przykład Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeń wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana

Bardziej szczegółowo

ZARZĄDZANIU. Wykład VI. dr Jan Kazimirski

ZARZĄDZANIU. Wykład VI. dr Jan Kazimirski INFORMATYKA W ZARZĄDZANIU Wykład VI dr Jan Kazimirski jankazim@mac.edu.pl http://www.mac.edu.pl/jankazim MODELOWANIE SYSTEMÓW UML Literatura Joseph Schmuller UML dla każdego, Helion 2001 Perdita Stevens

Bardziej szczegółowo

Projektowanie i wdrażanie systemów informatycznych (materiały do wykładu cz. II)

Projektowanie i wdrażanie systemów informatycznych (materiały do wykładu cz. II) Projektowanie i wdrażanie systemów informatycznych (materiały do wykładu cz. II) Jacek Cichosz www.zssk.pwr.wroc.pl Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska Narzędzia modelowania

Bardziej szczegółowo

Modelowanie obiektowe - Ćw. 3.

Modelowanie obiektowe - Ćw. 3. 1 Modelowanie obiektowe - Ćw. 3. Treść zajęć: Diagramy przypadków użycia. Zasady tworzenia diagramów przypadków użycia w programie Enterprise Architect. Poznane dotychczas diagramy (czyli diagramy klas)

Bardziej szczegółowo

Model relacyjny. Wykład II

Model relacyjny. Wykład II Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji

Bardziej szczegółowo

Księgarnia PWN: Michael J. Hernandez Bazy danych dla zwykłych śmiertelników

Księgarnia PWN: Michael J. Hernandez Bazy danych dla zwykłych śmiertelników Księgarnia PWN: Michael J. Hernandez Bazy danych dla zwykłych śmiertelników Słowo wstępne (13) Przedmowa i podziękowania (drugie wydanie) (15) Podziękowania (15) Przedmowa i podziękowania (pierwsze wydanie)

Bardziej szczegółowo

Faza analizy (modelowania) Faza projektowania

Faza analizy (modelowania) Faza projektowania Faza analizy (modelowania) Faza projektowania Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie: co i przy jakich ograniczeniach system ma robić? Wynikiem tej analizy jest zbiór wymagań

Bardziej szczegółowo

Podstawowy Wykład z Systemów Baz Danych

Podstawowy Wykład z Systemów Baz Danych Bazy Danych Wykład I Wprowadzenie Opracowano na podstawie: Podstawowy Wykład z Systemów Baz Danych, J.D.Ullman, J.Widom Copyrights by Arkadiusz Rzucidło 1 Definicje Baza danych to uporządkowany zbiór danych,

Bardziej szczegółowo

Dane wejściowe. Oracle Designer Generowanie bazy danych. Wynik. Przebieg procesu

Dane wejściowe. Oracle Designer Generowanie bazy danych. Wynik. Przebieg procesu Dane wejściowe Oracle Designer Generowanie bazy danych Diagramy związków encji, a w szczególności: definicje encji wraz z atrybutami definicje związków między encjami definicje dziedzin atrybutów encji

Bardziej szczegółowo

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych Plan wykładu Bazy danych Wykład 9: Przechodzenie od diagramów E/R do modelu relacyjnego. Definiowanie perspektyw. Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - perspektywy

Bardziej szczegółowo

Temat: Modelowanie schematu bazy danych za pomocą diagramów związków encji (Entity Relationship Diagrams ERD)

Temat: Modelowanie schematu bazy danych za pomocą diagramów związków encji (Entity Relationship Diagrams ERD) W y k ł a d II Temat: Modelowanie schematu bazy danych za pomocą diagramów związków encji (Entity Relationship Diagrams ERD) Plan wykładu: Cel modelowania konceptualnego i modelu ER Etapy modelowania konceptualnego

Bardziej szczegółowo

BAZY DANYCH Podstawowe pojęcia

BAZY DANYCH Podstawowe pojęcia BAZY DANYCH Podstawowe pojęcia Wykład 1 dr Lidia Stępień Akademia im. Jana Długosza w Częstochowie L. Stępień (AJD) BD 1 / 26 Literatura 1. L. Banachowski, Bazy danych. Tworzenie aplikacji, Akademicka

Bardziej szczegółowo

zadanie 2 Opracuj schemat bazy danych WypoŜyczalnia samochodów. Uwzględnij informacje o klientach (imię, nazwisko, nr karty kredytowej, firma, ulica,

zadanie 2 Opracuj schemat bazy danych WypoŜyczalnia samochodów. Uwzględnij informacje o klientach (imię, nazwisko, nr karty kredytowej, firma, ulica, Zadanie 1 Opracuj schemat bazy danych Geografia. Uwzględnij wiadomości o państwach (nazwa, ludność, obszar, jednostka monetarna, ustrój, stolica) miastach (nazwa, ludność), morzach (nazwa, obszar), językach

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Bazy danych. Wykład 4: Model SERM. dr inż. Magdalena Krakowiak

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Bazy danych. Wykład 4: Model SERM. dr inż. Magdalena Krakowiak Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Bazy danych Wykład 4: Model SERM dr inż. Magdalena Krakowiak makrakowiak@wi.zut.edu.pl Słabości modelu ERD Wraz ze wzrostem złożoności obiektów

Bardziej szczegółowo

Relacyjne bazy danych. Normalizacja i problem nadmierności danych.

Relacyjne bazy danych. Normalizacja i problem nadmierności danych. Relacyjne bazy danych. Normalizacja i problem nadmierności danych. Robert A. Kłopotek r.klopotek@uksw.edu.pl Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych, UKSW Relacyjne bazy danych Stworzone

Bardziej szczegółowo

Bazy danych TERMINOLOGIA

Bazy danych TERMINOLOGIA Bazy danych TERMINOLOGIA Dane Dane są wartościami przechowywanymi w bazie danych. Dane są statyczne w tym sensie, że zachowują swój stan aż do zmodyfikowania ich ręcznie lub przez jakiś automatyczny proces.

Bardziej szczegółowo

Bazy Danych i Usługi Sieciowe

Bazy Danych i Usługi Sieciowe Bazy Danych i Usługi Sieciowe Model relacyjny Paweł Daniluk Wydział Fizyki Jesień 2011 P. Daniluk (Wydział Fizyki) BDiUS w. III Jesień 2011 1 / 40 Iloczyn kartezjański Iloczyn kartezjański zbiorów A, B

Bardziej szczegółowo

PLAN WYKŁADU BAZY DANYCH ZALEŻNOŚCI FUNKCYJNE

PLAN WYKŁADU BAZY DANYCH ZALEŻNOŚCI FUNKCYJNE PLAN WYKŁADU Zależności funkcyjne Anomalie danych Normalizacja Postacie normalne Zależności niefunkcyjne Zależności złączenia BAZY DANYCH Wykład 5 dr inż. Agnieszka Bołtuć ZALEŻNOŚCI FUNKCYJNE Niech R

Bardziej szczegółowo

Normalizacja relacyjnych baz danych. Sebastian Ernst

Normalizacja relacyjnych baz danych. Sebastian Ernst Normalizacja relacyjnych baz danych Sebastian Ernst Zależności funkcyjne Zależność funkcyjna pomiędzy zbiorami atrybutów X oraz Y oznacza, że każdemu zestawowi wartości atrybutów X odpowiada dokładnie

Bardziej szczegółowo