Metody analizy i prezentacji danych statystycznych Materiały do wykładu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody analizy i prezentacji danych statystycznych Materiały do wykładu"

Transkrypt

1 Metody analizy i prezentacji danych statystycznych Materiały do wykładu Dr Adam Kucharski Spis treści 1 Podstawowe pojęcia statystyczne Populacja i zbiorowość Badanie statystyczne Standaryzacja danych Szeregi statystyczne Graficzna prezentacja danych Analiza szeregu przekrojowego Miary opisujące szereg i jego strukturę Badanie koncentracji Analiza szeregu czasowego Analiza dynamiki Dekompozycja szeregu czasowego Średnia ruchoma Modele trendu Zmienne zero-jedynkowe Wyodrębnianie wahań sezonowych Rodzaje prognoz i ich własności Ocena jakości prognoz ex post Szeregi przekrojowo-czasowe 30

2 1 Podstawowe pojęcia statystyczne 1.1 Populacja i zbiorowość W ramach naszego wykładu będziemy wykorzystywać wiedzę uzyskaną podczas zajęć ze Statystyki. Dlatego na początek przypomnimy sobie pojęcia poznane na tym przedmiocie. Zaczniemy od najbardziej podstawowych. Zbiorowość statystyczna zbiór osób, przedmiotów lub zjawisk podobnych do siebie, ale nie identycznych, poddanych badaniu statystycznemu. Pojedynczy element zbiorowości podlegający bezpośredniemu badaniu to jednostka statystyczna. Populacja generalna tworzą ją wszystkie elementy, będące przedmiotem badania, co do których formułujemy wnioski ogólne. Aby określić ją zgodnie z celem badania wszystkie jednostki muszą być określone pod względem: rzeczowym (co lub kogo badamy); przestrzennym (obszar objęty badaniem); czasowym (okres lub moment objęty badaniem). Populacja próbna podzbiór populacji generalnej, obejmujący elementy wybrane w określony sposób. Wyniki z jej badania uogólnia się na populację generalną. Badanie statystyczne pełne bezpośredniej obserwacji podlegają wszystkie elementy populacji generalnej. Badanie statystyczne częściowe obserwacji podlega tylko część populacji generalnej (tzw. próba). Wyróżnimy następujące rodzaje badań częściowych: reprezentacyjne; monograficzne (badany jest indywidualny przypadek np pojedynczy region bądź firma); ankietowe. Częściej wykonujemy drugi z wymienionych rodzajów badań. Dzieje się tak ponieważ zwykle nie możemy zbadać całości populacji generalnej ze względu na jej liczebność oraz/lub związane z tym koszty. Koszt przeprowadzenia badania częściowego jest niższy a samo badanie trwa krócej. Powtarzając je co jakiś czas zyskujemy szansę uaktualnienia wyników. Badania częściowe wykonujemy również wtedy, gdy jednostki statystyczne ulegają zniszczeniu w trakcie samego badania. Oba rodzaje badań obarczone są błędami, przy czym w badaniu częściowym dodatkowo pojawia się niebezpieczeństwo złego doboru struktury próby 1. Próba musi odnosić się do populacji generalnej z określoną dokładnością. Należy w tym celu spełnić dwa warunki: 1. próba musi być losowa prawdopodobieństwo znalezienia się w próbie powinno być jednakowe dla każdej jednostki; 2. próba powinna być dostatecznie liczna. W badaniach ekonomicznych występuje problem z doborem losowym, dlatego ograniczamy się do pojęcia niezależności jednostek z punktu widzenia wybranych zmiennych. Jednostki statystyczne różnią się między sobą ze względu na tzw. cechy statystyczne. Wyróżnimy następujące ich rodzaje: 1 Tą wadą często obarczone są badania oparte na sondażach telefonicznych. 2 z 32

3 cechy mierzalne warianty cechy wyrażone są za pomocą liczb. Dzielą się one dalej na: skokowe przyjmują skończoną lub przeliczalną liczbę wartości; ciągłe przyjmują dowolną (zależną od dokładności pomiaru) wartość z ustalonego przedziału; cechy niemierzalne warianty wyrażone są w sposób opisowy; cechy quasi-ilościowe (porządkowe) warianty są przedstawione w sposób opisowy, lecz można je uporządkować wg natężenia badanej cechy. 1.2 Badanie statystyczne Postępowanie zmierzające do udzielenia odpowiedzi na postawiony przez nas problem na podstawie materiału statystycznego oraz wykorzystujące stosowne narzędzia tworzy procedurę zwaną badaniem statystycznym. Przeprowadzając badanie tego rodzaju przechodzimy następujące etapy: 1. Przygotowanie badania: określenie celu badania; określenie zbiorowości i jednostki statystycznej; określenie charakteru badania (pełne lub częściowe); określenie sposobu pozyskiwania danych i ich źródeł; przygotowanie materiałów (formularzy, tablic roboczych itd.); przygotowanie planu finansowego; 2. Gromadzenie materiału statystycznego (obserwacja statystyczna), który może pochodzić ze źródeł: pierwotnych (dane zebrane bezpośrednio); wtórnych (dane pochodzą z wcześniejszych opracowań); 3. Grupowanie i prezentacja zebranego materiału przy pomocy tabel i wykresów; 4. Analiza wyników i wyciąganie wniosków. Jeśli chodzi o wtórne źródła danych, to bardzo popularne obecnie jest wykorzystywanie internetu. Dlatego przyjrzymy się kilku wybranym serwisom zawierającym dane statystyczne. Główny Urząd Statystyczny (www.stat.gov.pl) Strona GUS stanowi obfite źródło danych ekonomicznych, demograficznych i innych. Część z nich dostępna jest odpłatnie. Dane udostępniane są w postaci elektronicznych wersji publikacji GUS oraz pogrupowane według kategorii. Pobieżnie omówimy niektóre z nich: Ceny. Handel Znajdują się tu m.in. dane dotyczące inflacji, cen wybranych produktów czy niektóre z tablic Rocznika Statystycznego Handlu Zagranicznego. Ludność Obok elektronicznej wersji Rocznika Demograficznego znajdziemy w tym dziale tablice trwania życia czy strukturę ludności Polski z punktu widzenia różnych kryteriów. Praca. Wynagrodzenia Do pobrania udostępniono dane o pracujących, bezrobociu czy aktywności ekonomicznej ludności. Oprócz tego znajdują się tu informacje na temat wynagrodzeń klasyfikowanych według wybranych kryteriów. 3 z 32

4 Przemysł. Budownictwo. Środki trwałe Dział zawiera m.in. produkcję wybranych wyrobów czy dane na temat budownictwa mieszkaniowego. Rachunki narodowe Jako że rachunki narodowe są podstawą obliczania wartości PKB, właśnie tu znajdziemy dane i informacje merytoryczne związane z tą ważną kategorią ekonomiczną. Środowisko. Energia Dane dotyczące zużycia paliw i energii oraz ochrony środowiska. Warunki życia Dane na temat budżetów gospodarstw domowych, dochodów ludności itp. Opracowania zbiorcze Tutaj znajdują się odnośniki do stron związanych z publikacjami GUS. Warto zajrzeć na przykład do Biuletynu Statystycznego ukazującego się co miesiąc a zawierającego szeregi statystyczne o bardzo różnorodnej tematyce. Urząd publikuje także roczniki statystyczne z wybranych dziedzin, ale w ich przypadku musimy liczyć się z ograniczeniami ilości udostępnianych informacji. Statystyka regionalna Dział ten zawiera m.in. dane i opracowania wykonane przez Wojewódzkie Urzędy Statystyczne. Rodzaj tych danych zależy od konkretnego urzędu. Narodowy Bank Polski (www.nbp.pl) Oficjalna strona NBP zawiera szereg informacji na temat samego banku, jego polityki i wydawanych przepisów prawnych. Znajdują się tam również dane statystyczne m.in. bilans NBP, instrumenty banku centralnego, kursy walut i inne. W dziale Publikacje znajduje się Biuletyn Informacyjny NBP, zawierający wiele cennych danych na temat rynku bankowego i pieniężnego w Polsce. Oprócz tego na stronie znaleźć można analizy przygotowane przez pracowników banku. Dom Maklerski BOŚ S.A. (bossa.pl) oraz Gazeta giełdowa Parkiet (www.parkiet.com) W internecie łatwo znaleźć dane giełdowe. Wymienione powyżej strony zawierają obszerne zbiory danych tak bieżących jak i historycznych. Pobrać należy plik tekstowy przygotowany dla programu Metastock i wczytać go do arkusza kalkulacyjnego przy pomocy odpowiedniego kreatora. Izba Zarządzających Funduszami i Aktywami (www.izfa.pl) Na tej stronie znajdują się dane statystyczne, analizy ekonomiczne i inne informacje związane z funduszami inwestycyjnymi obecnymi na polskim rynku. Zgromadzone dane statystyczne (czy to ze źródeł pierwotnych, czy wtórnych) poddaje się grupowaniu, którego wyróżnimy dwa rodzaje: 1. typologiczne polegające na wyodrębnianiu grup odmiennych jakościowo np pod względem cech terytorialnych bądź rzeczowych; 2. wariancyjnie polegające na porządkowaniu jednostek i łączeniu ich w klasy o odpowiednich wartościach cechy. Jeżeli grupowanie w postaci szeregów nam nie wystarczy, dane można przedstawić przy pomocy tablic wielodzielnych, których szczególnym przypadkiem są tablice dwudzielne (korelacyjne). Oczywiście publikacje o charakterze statystycznym zostały przez autorów pogrupowane, ale niekiedy dane z naszego punktu widzenia okazują się zbyt szczegółowe. W takiej sytuacji możemy dokonać agregacji danych 2 przestrzegając jednak, aby grupować podobne warianty cechy. 2 Z działaniem tego typu mamy do czynienia na przykład tworząc szereg rozdzielczy punktowy z szeregu szczegółowego. 4 z 32

5 1.3 Standaryzacja danych Cechy mierzalne podlegające obserwacji statystycznej zazwyczaj mają miano, które niekiedy utrudnia porównywanie cech ze sobą. Wyjściem w takiej sytuacji może się stać standaryzacja zmiennych. Jednym ze sposobów standaryzacji danych jest podzielenie wszystkich elementów szeregu przez jego wartość maksymalną. Ma to tę zaletę, że dane po przekształceniu zyskują stały punkt odniesienia (wartość jeden). Przykład 1 Rozpatrzmy dostępny na stronie NBP średniomiesięczny kurs euro za pierwsze osiem miesięcy 2008 roku. Tabela 1 zawiera dane przed i po standaryzacji. Tabela 1: Przykład standaryzacji wykorzystującej wartość maks. Miesiąc Kurs EUR Kurs wystand. Styczeń 3, Luty 3,5825 0,9929 Marzec 3,5374 0,9804 Kwiecień 3,4444 0,9547 Maj 3,4069 0,9443 Czerwiec 3,3760 0,9357 Lipiec 3,2600 0,9035 Sierpień 3,2884 0,9114 Średnia 3,4380 0,9529 Odch. stand. 0,1217 0,0337 źródło: obliczenia własne na podst. danych z Postępowanie przedstawione w tabeli 1 przydaje się m.in. podczas przetwarzania danych powstających przy zliczaniu wyników pochodzących z ankiet. 1.4 Szeregi statystyczne Dane liczbowe jakie gromadzimy podczas badania statystycznego najczęściej mają postać szeregów statystycznych. Szereg statystyczny ciąg wielkości statystycznych, uporządkowanych według określonych kryteriów. Podstawowe rodzaje szeregów statystycznych ze względu na sposób prezentacji danych: szczegółowy; rozdzielczy: punktowy; z przedziałami klasowymi. Szeregi rozdzielcze dzielą zbiorowość statystyczną na części (klasy) wg określonej cechy i podają liczebność lub częstość każdej z klas. Zazwyczaj szeregi punktowe buduje się dla cech 5 z 32

6 skokowych zaś te z przedziałami klasowymi dla cech ciągłych choć jeśli liczba obserwacji w przypadku cechy skokowej jest duża również w jej wypadku sięga się po przedziały. Podstawowe rodzaje szeregów ze względu na charakter danych: czasowe; przekrojowe; przekrojowo-czasowe. Szeregi szczegółowe najlepiej nadają się do prezentowania niedużych ilości danych. Kiedy ich liczba wzrasta przechodzimy na szeregi rozdzielcze. O ile budowa szeregu punktowego nie budzi wątpliwości, to pojawiają się one już dla szeregu z przedziałami klasowymi. Tworzenie przedziałów może odbywać się w sposób intuicyjny (sama struktura szeregu sugeruje ilość i rozpiętość przedziałów) lub w oparciu o określone procedury. Poniżej znajdują się etapy postępowania, które pozwala zamienić szereg szczegółowy na rozdzielczy z przedziałami klasowymi. 1. Ustalenie liczby klas (k): jeżeli przez n oznaczymy ogólną liczebność szeregu, wówczas liczbę klas można wyznaczyć na podstawie jednego ze wzorów: k n (1) k 1 + 3,322 log n (2) 2. Ustalenie rozpiętości przedziałów: Zazwyczaj przyjmuje się jednakowe rozpiętości przedziałów. Dzięki temu liczebności w poszczególnych klasach są porównywalne. Różne rozpiętości stosujemy, kiedy populacja jest niejednorodna i występuje silna koncentracja obserwacji w jednej z klas. Niech h oznacza rozpiętość przedziału: h x max x min k Wartość h często trzeba przybliżyć. Wykorzystujemy wtedy tzw. przybliżenie z nadmiarem: hk R 3. Ustalanie granic klas: Zwykle jako dolną granicę przyjmuje się x min lub bliską mu wartość. Należy też pamiętać, że dla cech ciągłych dolne granice klas następnych powinny być równe górnym granicom klas poprzednich. Przykład 2 Spróbujmy skonstruować przykładowy szereg rozdzielczy. Z Małego Rocznika Statystycznego 2008 wybraliśmy dane dotyczące głębokości maksymalnej polskich jezior 3, które znalazły się w tabeli 2. Dane obejmują n = 23 jeziora. Na podstawie wzoru (2) ustalamy liczbę klas: R k k 1 + 3,322 log(23) 5,52 Zaokrąglamy wartość k do 6. Następnie ustalamy rozpiętość przedziałów: h 68 2,6 6 10,9 Pamiętając o regule przybliżania z nadmiarem, ustalamy rozpiętość przedziału na 11 m. W ostatnim kroku określamy granice przedziałów, pamiętając o tym, że w naszym przykładzie mamy do czynienia z cechą ciągłą. Jako dolną granicę przyjmiemy 2,5. Efekt końcowy znalazł się w tabeli 3. 3 Jeziora te uporządkowano malejąco wg powierzchni zwierciadła wody (3) 6 z 32

7 Tabela 2: Maksymalna głębokość większych jezior w Polsce Nazwa jeziora Maks. głębokość [m] Nazwa jeziora Maks. głębokość [m] Miedwie 43,8 Dominickie 17,1 Jeziorak Duży 12 Sasek Mały 3,7 Niegocin 39,7 Chełmżyńskie 27,1 Jamno 3,9 Tajno 6,6 Wdzydze Połud. 68 Raduń 25,1 Raduńskie Dolne 35,4 Chłop 23 Gaładuś 54,8 Przytoczno 12,5 Pogubie Wielkie 2,6 Harsz 47 Wdzydze Półn. 18,8 Wielkie 3,7 Ewingi 3 Gremzdy 14,3 Serwy 41,5 Boczne 17 Zdworskie 5 źródło: Mały Rocznik Statystyczny 2008, tabela 14 s. 44 Tabela 3: Struktura większych jezior Polski wg ich głębokości maksymalnej Maks. głębokość [m] 1.5 Graficzna prezentacja danych Liczba jezior 2,5-13,5 9 13,5-24,5 5 24,5-35,5 3 35,5-46,5 3 46,5-57,5 2 57,5-68,5 1 Razem 23 źródło: obliczenia własne Prezentacja danych na wykresie ma wiele zalet. Pozwala na przykład ogarnąć zachowanie się dużej liczby obserwacji. Analiza wykresu pomaga ocenić własności szeregu (np. asymetrię) i dobrać stosowne narzędzia dalszej analizy. Z uwagi na to, że źródła i rodzaje danych oraz cele badań są bardzo różnorodne, istnieje ogromna mnogość rodzajów wykresów. Wymieńmy tylko niektóre: statystyczne: rozkład empiryczny; histogram; wykres ramkowy; prezentujące strukturę lub częstość: wykres kołowy (pierścieniowy); 7 z 32

8 wykres kolumnowy (grupowany lub skumulowany); wykres warstwowy skumulowany; opisujące dekompozycję bądź zależność: punktowy; liniowy o skali równomiernej; liniowy o skali logarytmicznej. Tworząc wykresy warto pamiętać o następujących uwagach: 1. Wykorzystując układ współrzędnych na osi odciętych odkładamy wartości cechy, a na osi rzędnych liczbę wystąpień danego wariantu. 2. Dla szeregów czasowych oś odciętych zawiera interwały czasowe zaś oś rzędnych wielkości zjawisk w kolejnych momentach (okresach) czasu. 3. Skale na obu osiach są od siebie niezależne. 2 Analiza szeregu przekrojowego 2.1 Miary opisujące szereg i jego strukturę Dokonując analizy szeregu statystycznego wskazane jest obliczyć komplet miar opisujących jego strukturę. Oparcie się tylko na jednej lub dwóch nie daje pełnej informacji. Należy przy tym pamiętać o własnościach użytych miar (przykładowo o tym, że miary klasyczne obliczane są ze wszystkich elementów szeregu). Do najważniejszych charakterystyk zaliczymy: średnią arytmetyczną; wariancję (odchylenie standardowe); współczynnik skośności (lub inną miarę asymetrii); dominantę; kwartyle; rozstęp; współczynnik zmienności. Przykład 3 Rozpatrzmy dane na temat liczby ludności zamieszkującej miasta wszystkich 16 województw naszego kraju. Dane pochodzą z tablicy 2 zawartej w publikacji pt. Miasta w liczbach przygotowanej przez Centrum Statystyki Miast Urzędu Statystycznego w Poznaniu, a dostępnej na internetowej stronie GUS. Dla danych z tabeli 4 obliczmy podstawowe miary statystyczne. Z wyników zawartych w tabeli 5 dowiadujemy się, że w polskich miastach na koniec 2006 roku mieszkało średnio 1460,56 tys. osób. Najmniejsza liczba ludności zamieszkiwała miasta województwa opolskiego a największa śląskiego. W połowie województw mieszkało w miastach nie więcej niż 1217,8 tys. osób zaś połowa obserwacji mieści się między 815,33 a 1723,35 tys. osób. Odchylenie standardowe wyniosło 899,05 tys. osób. Wskazuje to na dużą zmienność szeregu, co potwierdza współczynnik zmienności rzędu niemal 62%. 8 z 32

9 Tabela 4: Ludność zamieszkująca w miastach poszczególnych województw. Stan na 31 XII Województwo Ludność miejska [tys.] Dolnośląskie 2042,7 Kujawsko-pomorskie 1267,3 Lubelskie 1013,0 Lubuskie 645,6 Łódzkie 1657,3 Małopolskie 1618,1 Mazowieckie 3346,7 Opolskie 547,8 Podkarpackie 849,9 Podlaskie 711,6 Pomorskie 1477,3 Śląskie 3666,1 Świętokrzyskie 579,8 Warmińsko-mazurskie 855,9 Wielkopolskie 1921,5 Zachodniopomorskie 1168,3 źródło: Miasta w liczbach , Tabela 5: Zestawienie wyników obliczeń dla danych z tabeli 4 Miara Wartość Miara Wartość Średnia aryt. 1460,56 Q 1 815,33 Mediana 1217,8 Q ,35 Wariancja 8, Wsp. zmienności 0,616 Odchyl. stand. 899,05 Rozstęp 3118,3 x min 547,8 Q 3 Q 1 908,03 x max 3666,1 A Q 0,114 źródło: obliczenia własne Naszą uwagę powinna zwrócić również duża różnica pomiędzy średnią a medianą wskazując na silną asymetrię prawostronną. Z uwagi na występowanie najliczniejszego wariantu cechy w skrajnym położeniu nie obliczamy dominanty, a w konsekwencji nie możemy ocenić siły asymetrii przy pomocy miar klasycznych. Dlatego obliczony został pozycyjny współczynnik skośności (A Q ). Wskazuje on na niedużą asymetrię prawostronną. Może to dziwić, gdy spojrzymy na wykres na rysunku 1 gdzie wyraźnie widać silną asymetrię prawostronną. Różnica ta bierze się z faktu, iż A Q mierzy asymetrię 50% środkowych elementów szeregu, a wśród nich nie występują aż tak duże różnice. Analiza wykresu na rysunku 1 (dane o liczbie ludności uporządkowano rosnąco) pozwala znaleźć przyczynę takiego stanu rzeczy. Dwa województwa: mazowieckie i śląskie bardzo wyraźnie odstają pod względem badanej cechy od pozostałych regionów. Poza tym w sześciu wojewódz- 9 z 32

10 Rysunek 1: Ludność zamieszkująca miasta poszczególnych województw źródło: Miasta w liczbach , twach liczba ludności miejskiej znajduje się wyraźnie poniżej miliona osób. Z tego powodu całą analizę należy wykonać oddzielnie dla możliwie jednorodnych grup. Przyjmiemy następujący podział: 1. grupa 1 województwa: opolskie, świętokrzyskie, lubuskie, podlaskie, podkarpackie, warmińskomazurskie; 2. grupa 2 województwa: lubelskie, zachodniopomorskie, kujawsko-pomorskie, pomorskie, małopolskie, łódzkie, wielkopolskie, dolnośląskie; 3. grupa 3 województwa: mazowieckie, śląskie. Tabela 6: Zestawienie wyników dla grupy 1 Miara Wartość Miara Wartość Średnia aryt. 698,43 Q 1 596,25 Mediana 678,6 Q 3 815,33 Wariancja 14577,82 Wsp. zmienności 0,173 Odchyl. stand. 120,74 Rozstęp 308,1 x min 547,8 Q 3 Q 1 219,08 x max 855,9 A Q 0,248 źródło: obliczenia własne 10 z 32

11 Przyjrzyjmy się wynikom otrzymanym dla grupy 1, które znalazły się w tabeli 6. Najbardziej rzuca się w oczy bardzo wyraźny spadek zmienności, podnoszący nasze zaufanie do średniej arytmetycznej. Zmieniła się również siła asymetrii szeregu. Pozostałe dwa przypadki można przeanalizować w podobny sposób. 2.2 Badanie koncentracji Jedną z własności, którą można badać w szeregach jest tzw. koncentracja mierzona m.in. przy pomocy kurtozy. Jednakże zmienne ekonomiczne (takie jak dochód) odznaczają się nierównomiernym rozłożeniem pomiędzy podmioty gospodarcze. Z tego powodu przydatne staje się przeanalizowanie stopnia podziału cechy pomiędzy poszczególne jednostki. Służy do tego współczynnik koncentracji Lorenza. Przyjmuje on wartości z przedziału 0, 1. Wartość 0 oznacza równomierny podział (brak koncentracji) zaś 1 całkowitą koncentrację. Jego wartość przybliżoną można wyznaczyć na podstawie wzoru: K L 1 k i=1 z ski + z sk 1 2 ω i (4) Prześledźmy sposób wyznaczania współczynnika Lorenza przy pomocy przykładu. Przykład 4 Jako źródło danych wykorzystamy Rocznik statystyczny województw 2007 opublikowany na stronie GUS. Zbadamy czy można powiedzieć, że występuje koncentracja PKB w województwach uporządkowanych ze względu na liczbę ludności, oraz jak jest ona silna. Wykorzystamy zagregowane dane znajdujące się w tablicach II A oraz II E. Dane pochodzą z 2005 roku. Tabela 7: PKB a liczba ludności wytwarzane w województwach Województwa wg Liczba PKB liczby ludności [tys.] województw [mln zł] < > Razem źródło: Rocznik statystyczny województw 2007, Stopień koncentracji ilustruje tzw. krzywa koncentracji (krzywa Lorenza). Na osi odciętych zaznaczamy skumulowane odsetki dla województw, a na osi rzędnych skumulowane odsetki dla PKB. Łącząc punkty o współrzędnych (ω ski, z ski ) otrzymujemy wspomnianą krzywą przedstawioną na rysunku 2. Krzywa ta wpisuje się w kwadrat, którego przekątną nazywamy linią równomiernego podziału. W miarę wzrostu koncentracji, krzywa Lorenza oddala się od przekątnej. Rośnie tym samym pole powierzchni powstałej figury (obszar zaznaczony szarym kolorem na rysunku 2). Stosunek owego pola do połowy pola kwadratu określa współczynnik Lorenza. Dla naszego przykładu wartość współczynnika ta wynosi: K L = 1 0,325 = 0, z 32

12 Tabela 8: Obliczenie współczynnika Lorenza Województwa wg Odsetek woj. Odsetek PKB Skumul. odsetki Pole liczby ludności [tys.] ω i z i ω ski z ski figury <2000 0,375 0,165 0,3750 0,165 0, ,375 0,3212 0,7500 0,4862 0, ,125 0,1674 0,8750 0,6536 0, ,0625 0,1327 0,9375 0,7863 0,3250 >5000 0,0625 0, ,0558 Razem 1 1 0,325 źródło: obliczenia własne z ski ω ski Rysunek 2: Krzywa Lorenza dla przykładu z tabeli 8 źródło: obliczenia własne Stwierdzamy więc, że istnieje dość duży stopień koncentracji wytworzonego PKB w województwach. Rzeczywiście, analiza wskaźników struktury z tabeli 8 pozwala zauważyć, że największe udziały wartości PKB występują w dwóch przedziałach: drugim i ostatnim. 3 Analiza szeregu czasowego 3.1 Analiza dynamiki Szeregi przekrojowe ujmują zjawisko w sposób statyczny. Czas, kiedy dokonano obserwacji jest w nich ustalony i niezmienny. Statystyka stosuje również podejście dynamiczne, które opiera się na szeregach czasowych. Podobnie jak szeregi przekrojowe, mogą one być charakteryzowane przez miary przeciętne (najczęściej średnią arytmetyczną) oraz zróżnicowanie (zwykle wariancję, odchylenie standardowe, współczynnik zmienności). Należy przy tym pamiętać, że w przypadku szeregu momentów oblicza się średnią chronologiczną zgodnie ze wzorem: ȳ ch = 0,5y 1 + y y n 1 + 0,5y n n 1 (5) 12 z 32

13 Dla szeregu okresów obliczamy klasyczną wersję tej miary. Szeregi czasowe stanowią również punkt wyjścia dla (omawianych podczas zajęć ze Statystyki opisowej) miar dynamiki. Przypomnijmy, że na bazie indeksów łańcuchowych wyznaczany średnie tempo zmian zjawiska w czasie przy pomocy średniej geometrycznej: ī G = n 1 i n n 1 i n 1 n 2... i 2 1 = n 1 i n 1 (6) Znając średnią geometryczną szeregu czasowego możemy wyznaczyć średniookresowe tempo zmian. T n = ȳ ch 1 (7) Zwróćmy uwagę na to, że średnia geometryczna indeksów łańcuchowych w rzeczywistości pomija wartości zawarte między skrajnymi wyrazami. Ma to duże znaczenie przy interpretacji danych, ponieważ aby podtrzymać jej wiarygodność obserwacje z kolejnych okresów nie powinny się zbytnio różnić. Przykład 5 Sięgnijmy do Biuletynu Statystycznego GUS (www.stat.gov.pl) z lipca W tablicy 11 znajdują się dane kwartalne dotyczące przeciętnego zatrudnienia bez jednostek budżetowych prowadzących działalność w zakresie obrony narodowej i bezpieczeństwa publicznego. Dokonajmy analizy tego szeregu. Tabela 9: Obliczenia dla szeregu danych kwartalnych Przeciętne zatrudnienie [tys.](x t ) Okres X t i t t I-III IV-VI , VII-IX , X-XII , I-III , IV-VI ,0040 Średnia arytm. 7883,8330 Odch. stand. 133,4434 Wsp. zmien. [%] 1,69 Średnia geom. 1,0094 źródło: obliczenia własne na podst. BS GUS nr 07/2008 Niska wartość współczynnika zmienności pozwala stwierdzić, że średnia arytmetyczna dobrze opisuje średni poziom przeciętnego zatrudnienia w analizowanym okresie. Kształtowało się ono na poziomie 7883,8 tys. osób. Znajdujące się w ostatniej kolumnie tabeli 9 indeksy łańcuchowe wskazują na niewielkie zmiany w kolejnych okresach. Uznajemy więc, że średnia geometryczna dobrze opisze średnie tempo zmian, które wyniosło 0,94%. Możemy więc stwierdzić, że między pierwszym kwartałem 2007 a drugim 2008 nie dochodziło do dynamicznych zmian przeciętnego zatrudnienia. 3.2 Dekompozycja szeregu czasowego Inny kierunek analiz zmierza do dzielenia zachowania szeregu czasowego na poszczególne elementy. Szereg taki składa się z pewnych powtarzających się elementów, które można zdekomponować 13 z 32

14 na: Tendencję rozwojową (trend) długookresową skłonność do jednokierunkowych zmian wartości zmiennej. Efekt działania stałego zestawu czynników. Stały (przeciętny) poziom zmiennej występujący w szeregu, w którym brak tendencji rozwojowej. Wartości oscylują wokół pewnego stałego poziomu. Wahania cykliczne długookresowe, rytmiczne wahania wartości zmiennej wokół trendu lub stałego poziomu. Wahania sezonowe wahania mające skłonność do powtarzania się w określonym czasie nie przekraczającym roku. Wahania przypadkowe losowe zmiany zmiennej o zróżnicowanej sile. Wymienione wyżej elementy spotykamy praktycznie w dowolnych konfiguracjach (np. małe wahania losowe, stały poziom zmiennej i wahania sezonowe dla jednego szeregu) czego ilustracją jest rysunek 3. y t (a) y t (b) t t Rysunek 3: Przykłady dekompozycji szeregu czasowego: (a) Wahania przypadkowe i trend liniowy, (b) Wahania sezonowe i stały poziom zmiennej. Wahania przypadkowe można próbować eliminować, zaś trend wyodrębniać z szeregu, używając do tego celu tzw. metod wygładzania, które podzielimy na następujące grupy: 1. metody mechaniczne (np. średnia ruchoma); 2. metody analityczne (funkcje trendu). 3.3 Średnia ruchoma Zaliczana do grupy metod mechanicznych średnia ruchoma, nie wymaga przyjmowania zbyt wielu założeń. Ograniczamy się jedynie do określenia liczby obserwacji, na podstawie których obliczamy średnią ruchomą. Sposoby jej wyznaczania różnią się między sobą. Jeżeli naszym celem jest jedynie wygładzenie szeregu i wyodrębnienie trendu, wówczas obliczamy tzw. średnią scentrowaną. Z kolei dla celów prognostycznych wykorzystuje się wariant wyznaczający średnią wartość dla przyszłych okresów. W obu przypadkach liczbę elementów branych pod uwagę przy obliczaniu średniej nazywamy stałą wygładzania (k). 14 z 32

15 Średnią scentrowaną inaczej wyznacza się dla parzystej a inaczej dla nieparzystej liczby okresów. Załóżmy, że chcemy wygładzić szereg średnią o stałej wygładzania k = 3. Przykładowe wartości otrzymamy stosując wzory: ȳ 2 = y 1 + y 2 + y 3 3 Z kolei dla stałej k = 4 należy zastosować: ȳ 3 = 0,5y 1 + y 2 + y 3 + y 4 + 0,5y 5 4 ȳ n 1 = y n 2 + y n 1 + y n 3 ȳ n 2 = 0,5y n 4 + y n 3 + y n 2 + y n 1 + 0,5y 5 4 Przykład 6 Z tego samego, 7/2008 numeru Biuletynu Statystycznego co w przykładzie poprzednim użyjemy danych zawartych w tablicy 47, a obejmujących produkcję sprzedaną przemysłu ogółem w okresie od maja 2007 do lipca Wygładzony przy pomocy średniej ruchomej scentrowanej o k = 3 szereg znalazł się w tabeli 10. Tabela 10: Produkcja sprzedana przemysłu wygładzanie szeregu Okres Prod. sprzed. Średnia ruchoma Reszty 2007 V 68,2446 [mld zł] k=3 e t 2007 VI 68, ,2008 0, VII 67, ,2543-0, VIII 68, ,3520-0, IX 71, ,8648-1, X 78, ,9691 3, XI 74, ,7987 0, XII 68, ,6797-3, I 72, ,2823 0, II 73, ,2498 0, III 74, ,8364-0, IV 76, ,9981 2, V 71, ,2796-3, VI 74, ,9277 2, VII 72,7829 źródło: obliczenia własne na podst. BS GUS nr 07/2008 Wartości powstałe po użyciu średniej ruchomej pozbawione są części wahań losowych. Jest to tzw. efekt wygładzania, który rośnie ze wzrostem stałej wygładzania. Płacimy za to utratą części obserwacji, tym większą, im silniej wygładzamy szereg. Wpływ k na wygładzenie szeregu na bazie danych z ostatniego przykładu ilustrują wykresy na rysunkach 4 i 5. Uśredniona wartość z oczywistych powodów odbiega od danych rzeczywistych. Między daną rzeczywistą a uśrednioną dla odpowiadających sobie okresów obliczamy różnicę (zwaną resztą i oznaczaną symbolem e t ), co ilustruje ostatnia kolumna tabeli 10. Reszty wyznaczamy więc według wzoru: e t = y t ȳ (k) t (8) 15 z 32

16 gdzie: y t obserwacja rzeczywista w okresie t; ȳ (k) t wartość k-okresowej średniej ruchomej w okresie t. Rysunek 4: Produkcja sprzedana przemysłu wygładzona średnią ruchomą o k =3. źródło: BS GUS nr 07/2008 oraz obliczenia własne Rysunek 5: Produkcja sprzedana przemysłu wygładzona średnią ruchomą o k =5. źródło: BS GUS nr 07/2008 oraz obliczenia własne Analiza reszt pozwala poznać własności wygładzonego szeregu. Na przykład znaczna przewa- 16 z 32

17 ga wartości ujemnych (dodatnich) świadczy o częstym przeszacowywaniu (niedoszacowywaniu) wyników przez średnią ruchomą. Średnia ruchoma w wersji prognostycznej zachowuje wszystkie własności średniej scentrowanej. Inna jest jednak filozofia wyznaczania jej wartości. Na użytek prognozowania przyjmuje się, że wartość zmiennej prognozowanej w okresie prognozy będzie równa średniej arytmetycznej z k poprzednich wartości tej zmiennej. Dla danych z tabeli 10 obliczmy średnią ruchomą trójokresową w wariancie prognostycznym. Przykład 7 Tabela 11: Produkcja sprzedana przemysłu prognozy Okres Prod. sprzed. Średnia ruchoma Reszty 2007 V 68, VI 68, VII 67,8971 [mld zł] k=3 e t 2007 VIII 68, ,2008 0, IX 71, ,2546 3, X 78, ,3520 9, XI 74, ,8648 1, XII 68, ,9691-6, I 72, ,7987-1, II 73, ,6797 1, III 74, ,2823 2, IV 76, ,2498 3, V 71, ,8364-3, VI 74, ,9981 0, VII 72, ,2796-1, VIII 72,9277 źródło: obliczenia własne na podst. BS GUS nr 07/2008 Średnia z tabeli 11 obliczana jest dla tej samej co w poprzednim przykładzie stałej wygładzania i w konsekwencji daje te same wartości. Zmienia się jednak ich sens merytoryczny. Uśredniona na podstawie kilku ostatnich obserwacji wartość staje się prognozą w okresie kolejnym. Przestaje tym samym obowiązywać zasada iż średnia musi znaleźć się w przedziale pomiędzy najmniejszym a największym wyrazem szeregu. W konsekwencji obserwujemy wyższe (co do wartości bezwzględnej) reszty. Plusem jednak takiego postępowania jest to, że możemy wyprognozować poziom zmiennej w okresie, dla którego brak danych. Jak ilustruje to wykres na rysunku 6 sam efekt wygładzenia również ma inny przebieg. Nie uległa jednak zmianie reguła, w myśl której im wyższa stała wygładzania tym silniej usuwane są wahania przypadkowe. Powiemy wtedy, że słabnie wpływ wahań losowych na wartość prognozy. Z uwagi na jakość otrzymywanych prognoz, duże znaczenie ma dekompozycja szeregu czasowego. Użycie średniej ruchomej do szeregu z wyraźnym trendem liniowym doprowadza zawsze do systematycznego przeszacowywania lub niedoszacowywania prognoz. Najlepiej sprawdza się ona w szeregach o stałym poziomie zmiennej, bez wahań sezonowych. 17 z 32

18 Rysunek 6: Produkcja sprzedana przemysłu prognozowana średnią ruchomą o k =3. źródło: BS GUS nr 07/2008 oraz obliczenia własne 3.4 Modele trendu Drugą grupę metod wyodrębniających elementy dekompozycji szeregu czasowego stanowią funkcje trendu. Niektóre szeregi mają skłonność do systematycznych zmian w czasie np. stale rosną lub maleją. Mówimy wówczas, że zawierają trend, który w modelach reprezentuje się przy pomocy sztucznej zmiennej. Zazwyczaj oznacza się ją symbolem t a jako wartości przyjmuje numery kolejnych okresów (t=1, 2, 3,...,n). Zmienna t wprowadzana jest jako argument funkcji matematycznej, służącej objaśnianiu zachowania się zmiennej y t zawierającej kolejne obserwacje szeregu. Najprostszą z możliwych postaci jest funkcja liniowa: y t = α + βt (9) Jej parametry znajdujemy wykorzystując metodę najmniejszych kwadratów lub stosując wzory: n (t t)y t gdzie: β = t=1, α = ȳ β t (10) n (t t) 2 t=1 t = 1 n n t=1 t = n z 32

19 Przykład 8 Ponownie sięgnijmy do Biuletynu Statystycznego nr 7/2008. Wykorzystamy zawarte w tablicy 21 (Aktywa krajowe i zagraniczne) dane na temat zadłużenia netto instytucji rządowych szczebla centralnego. Wyznaczymy dla nich parametry liniowej funkcji trendu. Tabela 12: Wyznaczanie parametrów trendu liniowego Okres Zadłużenie Numer okresu [mld zł] t t t (t t)y t (t t) IX 58, ,5-265,199 20, X 60, ,5-210,805 12, XI 55, ,5-138,758 6, XII 61, ,5-92,909 2, I 58, ,5-29,481 0, II 66, ,5 33,379 0, III 68, ,5 102,198 2, IV 67, ,5 169,610 6, V 69, ,5 244,696 12, VI 75, ,5 339,921 20,25 Suma 152,652 82,5 źródło: obliczenia własne na podst. BS GUS nr 07/2008 Parametry równania linii trendu: β = 152,652 82,5 = 1,85 α = 64,38 1,85 5,5 = 54,2 Gotowe równanie: ŷ t = 54,2 + 1,85t (11) Daszek nad symbolem zmiennej objaśnianej informuje, że mamy do czynienia nie z wartością rzeczywistą a teoretyczną, wyznaczoną na podstawie równania 11. Interpretacja parametrów jest następująca: z okresu na okres zadłużenie netto instytucji centralnych wzrastało średnio o 1,85 mld zł; niezależny od upływu czasu, stały poziom tego zadłużenia wynosił w badanym okresie 54,2 mld zł. Graficzna prezentacja linii trendu znalazła się na wykresie zamieszczonym na rysunku 7. Analizując zachowanie się szeregu stwierdzamy, że liniowa postać funkcji trendu dobrze sprawdza się w tym przypadku. Dopasowanie modelu do danych rzeczywistych sprawdza się przy pomocy współczynnika determinacji (R 2 ): R 2 = n (ŷ t ȳ) 2 t=1 = 1 n (y t ȳ) 2 t=1 n t=1 e 2 t (12) n yt 2 nȳ 2 t=1 19 z 32

20 Rysunek 7: Zadłużenie netto instytucji centralnych a linia trendu źródło: obliczenia własne Współczynnik determinacji przyjmuje wartości z przedziału 0, 1. Im bliżej jedności, tym lepsze dopasowanie modelu do danych rzeczywistych. Wyznaczmy współczynnik R 2 dla naszego przykładu. Obliczenia pomocnicze znajdują się w tabeli 13. Tabela 13: Wyznaczanie współczynnika determinacji Numer okresu Reszty t yt 2 ŷ t e t e 2 t ,10 56,048 2,885 8, ,65 57,899 2,331 5, ,58 59,749-4,246 18, ,44 61,599 0,340 0, ,40 63,450-4,489 20, ,50 65,300 1,457 2, ,97 67,151 0,981 0, ,81 69,001-1,157 1, ,83 70,851-0,938 0, ,99 72,702 2,836 8,04 Suma 41789, ,40 źródło: obliczenia własne 20 z 32

Modelowanie ekonomiczne w zarządzaniu firmami Materiały do wykładu

Modelowanie ekonomiczne w zarządzaniu firmami Materiały do wykładu Modelowanie ekonomiczne w zarządzaniu firmami Materiały do wykładu Dr Adam Kucharski Spis treści 1 Podstawowe pojęcia statystyczne 2 1.1 Populacja i zbiorowość................................. 2 1.2 Badanie

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

Analiza Zmian w czasie

Analiza Zmian w czasie Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Badania Statystyczne

Badania Statystyczne Statystyka Opisowa z Demografią oraz Biostatystyka Badania Statystyczne Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

Podstawowe pojęcia statystyczne

Podstawowe pojęcia statystyczne Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

Wykład 3: Prezentacja danych statystycznych

Wykład 3: Prezentacja danych statystycznych Wykład 3: Prezentacja danych statystycznych Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych statystycznych (inne metody wybierzemy dla danych przekrojowych,

Bardziej szczegółowo

ANALIZA SPRZEDAŻY: - rozproszenia

ANALIZA SPRZEDAŻY: - rozproszenia KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - rozproszenia - koncentracji - sezonowości Spis treści Wstęp... 3 Analiza rozproszenia sprzedaży... 4 Analiza koncentracji sprzedaży...

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Wykład Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych.

Wykład Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych. Wykład 2. 1. Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych. 3. Wykresy: histogram, diagram i ogiwa. Prezentacja materiału statystycznego Przy badaniu struktury zbiorowości punktem

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

Ćwiczenia 13 WAHANIA SEZONOWE

Ćwiczenia 13 WAHANIA SEZONOWE Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009

Bardziej szczegółowo

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski STATYSTYKA OPISOWA Literatura A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii. Wykład 5. Opis struktury zbiorowości 1. Miary asymetrii. 2. Miary koncentracji. Przykład Zbadano stawkę godzinową (w zł) pracowników dwóch branŝ, otrzymując następujące charakterysty ki liczbowe: Stawka

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,

Bardziej szczegółowo

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja

Bardziej szczegółowo

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X) STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości

Bardziej szczegółowo

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA

Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Wykład 2: Grupowanie danych (szeregi statystyczne) + porady dotyczące analizy danych w programie STATISTICA Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych

Bardziej szczegółowo

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci

Bardziej szczegółowo

Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska

Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska Statystyczne metody analizy danych Agnieszka Nowak - Brzezińska SZEREGI STATYSTYCZNE SZEREGI STATYSTYCZNE odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny. Szeregi statystyczne

Bardziej szczegółowo

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr [0]/MEN/008.05.0 klasa TE LP TREŚCI NAUCZANIA NAZWA JEDNOSTKI DYDAKTYCZNEJ Lekcja organizacyjna Zapoznanie

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach. Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:

Bardziej szczegółowo

ANALIZA SPRZEDAŻY: - struktura

ANALIZA SPRZEDAŻY: - struktura KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - struktura - koncentracja - kompleksowa analiza - dynamika Spis treści Wstęp 3 Analiza struktury 4 Analiza koncentracji 7 Kompleksowa

Bardziej szczegółowo

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów Tomasz Gruszczyk Informatyka i Ekonometria I rok, nr indeksu: 156012 Sopot, styczeń

Bardziej szczegółowo

Ćwiczenia 1-2 Analiza rozkładu empirycznego

Ćwiczenia 1-2 Analiza rozkładu empirycznego Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu

Bardziej szczegółowo

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.

Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. 1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004

Bardziej szczegółowo

1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1.

1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1. Spis treści 1. Analiza wskaźnikowa... 3 1.1. Wskaźniki szczegółowe... 3 1.2. Wskaźniki syntetyczne... 53 1.2.1. Zastosowana metodologia rangowania obiektów wielocechowych... 53 1.2.2. Potencjał innowacyjny

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4 KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)

Bardziej szczegółowo

Wykład ze statystyki. Maciej Wolny

Wykład ze statystyki. Maciej Wolny Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:

Bardziej szczegółowo

Po co w ogóle prognozujemy?

Po co w ogóle prognozujemy? Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym

Bardziej szczegółowo

Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii

Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wprowadzenie W przypadku danych liczbowych do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą

Bardziej szczegółowo

Klasówka po szkole podstawowej Historia. Edycja 2006/2007. Raport zbiorczy

Klasówka po szkole podstawowej Historia. Edycja 2006/2007. Raport zbiorczy Klasówka po szkole podstawowej Historia Edycja 2006/2007 Raport zbiorczy Opracowano w: Gdańskiej Fundacji Rozwoju im. Adama Mysiora Informacje ogólne... 3 Raport szczegółowy... 3 Tabela 1. Podział liczby

Bardziej szczegółowo

Opisowa analiza struktury zjawisk statystycznych

Opisowa analiza struktury zjawisk statystycznych Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 36 37 38 39 4 41 42 43 44 45 46 47 48 49

Bardziej szczegółowo

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników

Bardziej szczegółowo

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-

Bardziej szczegółowo

Wykład z dnia 8 lub 15 października 2014 roku

Wykład z dnia 8 lub 15 października 2014 roku Wykład z dnia 8 lub 15 października 2014 roku Istota i przedmiot statystyki oraz demografii. Prezentacja danych statystycznych Znaczenia słowa statystyka Znaczenie I - nazwa zbioru danych liczbowych prezentujących

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ

NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ WAŻNE INFORMACJE: 1. Sprawdzane będą wyłącznie wyniki w oznaczonych polach, nie czytam tego co na marginesie, nie sprawdzam pokreślonych i niedbałych pól. 2. Wyniki proszę podawać z dokładnością do dwóch

Bardziej szczegółowo

Policealna Szkoła Handlowa Rok I Wymiar godzin: 30 jednostek dydaktycznych Nr programu nauczania: 341(06)/SP/MEN/ (technik rachunkowości)

Policealna Szkoła Handlowa Rok I Wymiar godzin: 30 jednostek dydaktycznych Nr programu nauczania: 341(06)/SP/MEN/ (technik rachunkowości) Plan pracy dydaktycznej (jest to wstępna wersja planu, który będzie doskonalony) STATYSTYKA Technikum/Liceum Handlowe dla Dorosłych Klasa I Wymiar godzin: 1 godz. w tygodniu w sem. I i II. (bloki tematyczne:

Bardziej szczegółowo

Analiza zależności liniowych

Analiza zależności liniowych Narzędzie do ustalenia, które zmienne są ważne dla Inwestora Analiza zależności liniowych Identyfikuje siłę i kierunek powiązania pomiędzy zmiennymi Umożliwia wybór zmiennych wpływających na giełdę Ustala

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM Potęgi, pierwiastki i logarytmy 23 h DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA Matematyka z plusem dla szkoły ponadgimnazjalnej 1 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH:

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Plan wynikowy i przedmiotowy system oceniania

Plan wynikowy i przedmiotowy system oceniania Plan wynikowy i przedmiotowy system oceniania Przedmiot: Pracownia ekonomiczna Klasa II Technikum Ekonomiczne Nr programu nauczania: 341[02]/MEN/2008.05.20 (technik ekonomista) Podręcznik: R. Seidel, S.

Bardziej szczegółowo

Struktura terminowa rynku obligacji

Struktura terminowa rynku obligacji Krzywa dochodowości pomaga w inwestowaniu w obligacje Struktura terminowa rynku obligacji Wskazuje, które obligacje są atrakcyjne a których unikać Obrazuje aktualną sytuację na rynku długu i zmiany w czasie

Bardziej szczegółowo

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

4.2. Statystyczne opracowanie zebranego materiału

4.2. Statystyczne opracowanie zebranego materiału 4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

Wiadomości ogólne o ekonometrii

Wiadomości ogólne o ekonometrii Wiadomości ogólne o ekonometrii Materiały zostały przygotowane w oparciu o podręcznik Ekonometria Wybrane Zagadnienia, którego autorami są: Bolesław Borkowski, Hanna Dudek oraz Wiesław Szczęsny. Ekonometria

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Rozstęp Pozycyjne Odchylenie ćwiartkowe Współczynnik zmienności

Rozstęp Pozycyjne Odchylenie ćwiartkowe Współczynnik zmienności Miary zmienności: Miary zmienności Klasyczne Wariancja Odchylenie standardowe Odchylenie przeciętne Współczynnik zmienności Rozstęp Pozycyjne Odchylenie ćwiartkowe Współczynnik zmienności 2 Spróbujmy zastanowić

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA

Bardziej szczegółowo

WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH:

WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH: WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH: Zasada podstawowa: Wykorzystujemy możliwie najmniej skomplikowaną formę wykresu, jeżeli to możliwe unikamy wykresów 3D (zaciemnianie treści), uwaga na kolory

Bardziej szczegółowo

Opracował: mgr inż. Krzysztof Opoczyński. Zamawiający: Generalna Dyrekcja Dróg Krajowych i Autostrad. Warszawa, 2001 r.

Opracował: mgr inż. Krzysztof Opoczyński. Zamawiający: Generalna Dyrekcja Dróg Krajowych i Autostrad. Warszawa, 2001 r. GENERALNY POMIAR RUCHU 2000 SYNTEZA WYNIKÓW Opracował: mgr inż. Krzysztof Opoczyński Zamawiający: Generalna Dyrekcja Dróg Krajowych i Autostrad Warszawa, 2001 r. SPIS TREŚCI 1. Wstęp...1 2. Obciążenie

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA AMFETAMINY Waldemar S. Krawczyk Centralne Laboratorium Kryminalistyczne Komendy Głównej Policji, Warszawa (praca obroniona na Wydziale Chemii Uniwersytetu

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.

Bardziej szczegółowo

Klasówka po gimnazjum biologia. Edycja 2006\2007. Raport zbiorczy

Klasówka po gimnazjum biologia. Edycja 2006\2007. Raport zbiorczy Klasówka po gimnazjum biologia Edycja 2006\2007 Raport zbiorczy Opracowano w: Gdańskiej Fundacji Rozwoju im. Adama Mysiora Informacje ogólne... 3 Raport szczegółowy... 3 Tabela. Podział liczby uczniów

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo