Karty diagnozy osiągnięć ucznia

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Karty diagnozy osiągnięć ucznia"

Transkrypt

1 Karty diagnozy osiągnięć ucznia matematyka - kl. 1-3 gimnazjum na podstawie nowej podstawy programowej kształcenia ogólnego - wyciąg rozporządzeni MEN z dnia 23 grudnia 2008r (wersja dla ucznia do wydrukowania)

2 I. Liczby wymierne dodatnie. Liczby pierwsze i złożone 1) zna def. liczb pierwszych i złożonych; 2) podaje przykłady liczb pierwszych i złożonych; 3) rozpoznaje liczby pierwsze i złożone i uzasadnia swój wybór Rozkład liczb naturalnych na czynniki pierwsze 4) rozkłada liczby dwucyfrowe na czynniki pierwsze Cechy podzielności liczb naturalnych 5) zna cechy podzielności liczb; 6) stosuje cechy podzielności liczb przez 2, 3, 5, 9, 10, 100 Porównywanie różnicowe i ilorazowe liczb 7) wie, jak obliczyć, ile razy jedna liczba jest większa(mniejsza) od drugiej oraz o ile jedna liczba jest większa (mniejsza)od drugiej; 8) stosuje porównywanie różnicowe i ilorazowe liczb w kontekście praktycznym; Obliczenia zegarowe i kalendarzowe 9) stosuje obliczenia zegarowe i kalendarzowe w kontekście praktycznym Cztery działania na ułamkach zwykłych 10) zna regułki dotyczące dodawania, odejmowania, mnożenia i dzielenia ułamków zw. 11) dodaje, odejmuje, mnoży i dzieli ułamki zwykłe Cztery działania na ułamkach dziesiętnych 12) dodaje, odejmuje, mnoży i dzieli ułamki dziesiętne skończone w pamięci, pisemnie, a także z wykorzystaniem kalkulatora Kolejność działań 13) zna kolejność wykonywania działań 14) stosuje kolejność działań do obliczania wartości wielodziałaniowych wyrażeń arytmetycznych, zawierających ułamki zwykłe i dziesiętne Rozwinięcia dziesiętne Ułamki okresowe Przybliżenia dziesiętne 15) zamienia ułamki zwykłe na ułamki dziesiętne (także okresowe), zamienia ułamki dziesiętne skończone na ułamki zwykłe 16) wskazuje okres rozwinięcia dziesiętnego nieskończonego 17) podaje przybliżenie rozwinięcia dziesiętnego z nadmiarem i niedomiarem Zaokrąglanie liczb 18) zna zasady zaokrąglania liczb 19) zaokrągla rozwinięcia dziesiętne liczb 1

3 Szacowanie wyników Zastosowanie działań na ułamkach zwykłych i dziesiętnych 20) szacuje wartości wyrażeń arytmetycznych z zadaną dokładnością 21) stosuje obliczenia na ułamkach zwykłych i dziesiętnych do rozwiązywania problemów w kontekście praktycznym, z zastosowaniem zamiany jednostek: masy, czasu, monetarnych, długości, pola, prędkości itp. Liczby naturalne dodatnie w systemie rzymskim 22) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000); 23) przedstawia liczby zapisane w systemie rzymskim w systemie dziesiątkowym. 24) stosuje liczby w systemie rzymskim do rozwiązywania problemów w kontekście praktycznym Wartość bezwzględna liczby wymiernej 25) oblicza wartość bezwzględną liczby wymiernej 2

4 II. Liczby wymierne (dodatnie i niedodatnie). Liczby dodatnie, ujemne i zero 26) zna symbole zbiorów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, rzeczywistych; 27) potrafi zilustrować zależność między zbiorami liczb za pomocą pętli; 28) wyróżnia wśród liczb wymiernych liczby: naturalne, całkowite, dodatnie, ujemne, przeciwne, odwrotne 29) zna def liczb wymiernych; Oś liczbowa 30) interpretuje (zaznacza) liczby wymierne na osi liczbowej Porządkowanie liczb wymiernych 31) porządkuje liczby wymierne rosnąco lub malejąco Porównywanie liczb wymiernych 32) porównuje liczby wymierne z użyciem symboli >, <, = Cztery działania na liczbach wymiernych 33) dodaje, odejmuje, mnoży i dzieli liczby wymierne 34) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych, zawierających działania na liczbach wymiernych 3

5 III. Potęgi. Potęga o wykładniku naturalnym 35) zna def potęgi; 36) oblicza potęgi liczb wymiernych o wykładnikach naturalnych; 37) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających potęgi o wykładniku naturalnym. 38) stosuje potęgowanie liczb wymiernych o wykładnikach naturalnych do obliczania wartości wyrażeń arytmetycznych; Wzory na potęgowanie: a) Mnożenie potęg o tej samej podstawie 39) zna wzory na potęgowanie; 40) zapisuje w postaci jednej potęgi: iloczyny potęg o takich samych podstawach b) Dzielenie potęg o tej samej podstawie 41) zapisuje w postaci jednej potęgi: ilorazy potęg o takich samych podstawach c) Potęga iloczynu, ilorazu 42) zapisuje w postaci jednej potęgi: iloczyny i ilorazy potęg o takich samych wykładnikach (przy wykładnikach naturalnych) d) Potęga potęgi 43) zapisuje w postaci jednej potęgi potęgę potęgi (przy wykładnikach naturalnych) Notacja wykładnicza 44) zapisuje liczby w notacji wykładniczej, tzn. w postaci, gdzie a, k są liczbami całkowitymi oraz Potęga o wykładniku całkowitym 45) zna definicję potęgi o wykładniku całkowitym; 46) zamienia potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych 47) mnoży i dzieli potęgi o wykładniku całkowitym 48) oblicza wartość wyrażenia zawierającego działania na potęgach o wykładniku całkowitym 4

6 IV. Pierwiastki. Pierwiastek drugiego i trzeciego stopnia z liczb nieujemnych 49) zna def pierwiastka kwadratowego z liczby nieujemnej; 50) oblicza pierwiastki drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych; 51) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających pierwiastki kwadratowe i sześcienne; Przykłady liczb niewymiernych * 52) rozpoznaje liczby niewymierne* Szacowanie liczb niewymiernych * 53) podaje wymierne przybliżenie liczb niewymiernych* Pierwiastek kwadratowy i sześcienny 54) oblicza wartości wyrażeń arytmetycznych, zawierających pierwiastki kwadratowe i sześcienne Wzory na pierwiastkowanie 55) zna wzory na pierwiastkowanie*; Pierwiastek z iloczynu, iloczyn pierwiastków 56) mnoży pierwiastki drugiego i trzeciego stopnia; oblicza pierwiastek z iloczynu Wyłączanie czynnika przed pierwiastek i włączanie czynnika pod pierwiastek 57) wyłącza czynnik przed znak pierwiastka oraz włącza czynnik pod znak pierwiastka Pierwiastek z ilorazu, iloraz pierwiastków 58) dzieli pierwiastki drugiego i trzeciego stopnia; oblicza pierwiastek z ilorazu Usuwanie niewymierności z mianownika ułamka 59) usuwa niewymierność z mianownika w prostych przypadkach, np. Szacowanie wartości wyrażeń zawierających pierwiastki * 60) szacuje wartości liczb zapisanych za pomocą pierwiastka w celu ich porównania* Wartości wyrażeń, zawierających pierwiastki kwadratowe i sześcienne 61) oblicza wartość wyrażenia zawierającego działania na pierwiastkach, stosując wyłączanie czynnika przed pierwiastek lub włączanie czynnika pod pierwiastek oraz szacowanie i zaokrąglanie wyniku 5

7 V. Procenty. Pojęcie procentu i promila 62) wie, co to jest procent / promil; 63) przedstawia część pewnej wielkości jako procent lub promil tej wielkości i odwrotnie (czyli zamienia ułamek na procent / promil i odwrotnie); Obliczanie procentu z danej liczby 64) oblicza procent z danej liczby; Obliczanie liczby z danego jej procentu 65) oblicza liczbę na podstawie danego jej procentu; Obliczanie jakim procentem jednej wielkości jest druga wielkość * 66) oblicza, jakim procentem jednej liczby jest druga liczba* Obliczenia procentowe 67) oblicza ceny po podwyżce lub obniżce o dany procent; 68) odsetki od lokaty; 69) stężenia procentowe roztworów; 70) oblicza próby złota i srebra, 71) wykonuje obliczenia związane z VAT; 72) rozwiązuje zadania dotyczące punktów procentowych; 6

8 VI. Wyrażenia algebraiczne. Budowanie i odczytywanie wyrażeń algebraicznych 73) zna def wyrażenia algebraicznego*; 74) zna pojęcie jednomianu, podaje przykłady jednomianu; 75) wie, na czym polega porządkowanie jednomianu; 76) wie, od czego pochodzi nazwa wyrażenia algebraicznego; Wartość liczbowa wyrażenia algebraicznego 77) oblicza wartości liczbowe wyrażeń algebraicznych Suma algebraiczna. Wyrazy podobne 78) redukuje wyrazy podobne w sumie algebraicznej Dodawanie i odejmowanie sum algebraicznych 79) dodaje i odejmuje sumy algebraiczne Mnożenie sumy algebraicznej przez liczbę 80) mnoży sumę algebraiczną przez liczbę Wyłączanie wspólnego czynnika liczbowego 81) wyłącza wspólny czynnik z wyrazów sumy algebraicznej poza nawias Mnożenie sumy algebraicznej przez jednomian Mnożenie sumy algebraicznej przez sumę 82) mnoży sumę algebraiczną przez jednomian 83) mnoży sumę algebraiczną przez sumę (proste przypadki) Wyłączanie wspólnego czynnika z sumy algebraicznej 84) wyłącza wspólny czynnik z wyrazów sumy algebraicznej poza nawias Zastosowanie wyrażeń algebraicznych 85) opisuje za pomocą wyrażeń algebraicznych związki między różnymi wielkościami 7

9 VII. Równania. Równania pierwszego stopnia z jedną niewiadomą 86) zapisuje związki między wielkościami za pomocą równania pierwszego stopnia z jedną niewiadomą; 87) sprawdza, czy dana liczba spełnia równanie stopnia pierwszego z jedną niewiadomą; 88) wie, co to jest równanie tożsamościowe i potrafi je rozpoznać; 89) wie, co to jest równanie sprzeczne i potrafi je rozpoznać; Rozwiązywanie równań metodą równań równoważnych 90) zna twierdzenia o równaniach równoważnych*; 91) rozwiązuje równania stopnia pierwszego z jedną niewiadomą Proporcja i jej własności 92) zna def proporcji oraz własność proporcji*; 93) rozwiązuje równania w postaci proporcji Przekształcanie wzorów 94) przekształca wzory matematyczne oraz fizyczne; Nierówność pierwszego stopnia z jedną niewiadomą 95) wskazuje na osi liczbowej zbiór liczb spełniających warunek typu:, ; wskazuje na osi liczbowej zbiór liczb spełniających warunek typu: * Rozwiązywanie nierówności * 96) rozwiązuje nierówności stopnia pierwszego z jedną niewiadomą* Zastosowanie równań 97) za pomocą równań opisuje i rozwiązuje zadania osadzone w kontekście praktycznym Zastosowanie nierówności * 98) za pomocą nierówności opisuje i rozwiązuje zadania osadzone w kontekście praktycznym Wielkości wprost i odwrotnie proporcjonalne 99) zapisuje związki między wielkościami wprost proporcjonalnymi i odwrotnie proporcjonalnymi; Układy równań I stopnia z dwiema niewiadomymi 100) sprawdza, czy dana para liczb spełnia układ dwóch równań stopnia pierwszego z dwiema niewiadomymi Rozwiązywanie układów równań 101) rozwiązuje układy równań I stopnia z dwiema niewiadomymi Zastosowanie układów równań 102) zapisuje związki między nieznanymi wielkościami za pomocą układu dwóch równań pierwszego stopnia z dwiema niewiadomymi; 103) rozwiązuje zadania osadzone w kontekście praktycznym 8

10 VIII. Wykresy funkcji. Kartezjański układ współrzędnych 104) zna budowę prostokątnego układu współrzędnych; 105) rysuje układ współrzędnych na płaszczyźnie i wyróżnia w nim ćwiartki Zaznaczanie punktów w układzie współrzędnych 106) zaznacza w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych Odczytywanie współrzędnych punktów w układzie współrzędnych 107) odczytuje współrzędne danych punktów Pojęcie funkcji 108) rozróżnia zależności funkcyjne od innych przyporządkowań; 109) zna def funkcji*; 110) opisuje funkcję słownie, za pomocą tabelki, grafu (wzoru, wykresu, maszynki liczbowej*); 111) rozpoznaje, czy dany wykres jest funkcją*; Funkcja liczbowa i jej wykres 112) oblicza wartości funkcji podanych nieskomplikowanym wzorem i zaznacza punkty należące do jej wykresu Własności funkcji liczbowej 113) odczytuje z wykresu funkcji: wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero 114) określa miejsce zerowe funkcji, wyznacza przedziały liczbowe, dla których funkcja jest: rosnąca, malejąca, stała* Przykłady zależności funkcyjnych 115) odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym) 9

11 IX. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Odczytywanie danych statystycznych Zbieranie i porządkowanie danych statystycznych Przedstawianie danych statystycznych 116) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych (w tym procentowych), wykresów liniowych; 117) wyszukuje, selekcjonuje i porządkuje informacje z dostępnych źródeł 118) przedstawia dane w tabeli, za pomocą diagramu słupkowego lub kołowego (w tym procentowych) Charakterystyki liczbowe danych statystycznych 119) wyznacza średnią arytmetyczną, średnią ważoną*, medianę, modę* i rozstęp* zestawu danych Doświadczenia losowe 120) analizuje proste doświadczenia losowe (np. rzut kostką, rzut monetą, wyciąganie losu) Prawdopodobieństwo zdarzeń w doświadczeniach losowych 121) określa prawdopodobieństwa najprostszych zdarzeń w tych doświadczeniach (prawdopodobieństwo wypadnięcia orła w rzucie monetą, dwójki lub szóstki w rzucie kostką itp.) 10

12 X. Figury płaskie. Podstawowe figury płaskie 122) rozpoznaje i nazywa podstawowe figury płaskie: punkt, prosta, odcinek, (półprosta, płaszczyzna, półpłaszczyzna); Kąty i ich rodzaje 123) zna klasyfikację kątów*; 124) rozpoznaje i nazywa kąty ze względu na ich miarę. Wzajemne położenie prostych i odcinków 125) rysuje proste (i odcinki) prostopadłe i równoległe); Proste równoległe przecięte trzecią prostą 126) zna twierdzenia o kątach: wierzchołkowych, przyległych, odpowiadających* i naprzemianległych*; 127) Stosuje własności kątów wierzchołkowych i przyległych (odpowiadających i naprzemianległych*); Trójkąty i ich rodzaje 128) zna klasyfikację trójkątów (czyli rozpoznaje i nazywa trójkąty ze względu na długości boków oraz ze względu na miary kątów) 129) zna własności trójkątów i korzysta z tych własności; 130) zna twierdzenie o sumie kątów wewnętrznych w trójkącie*; 131) stosuje twierdzenie o sumie kątów w trójkącie; Czworokąty i ich rodzaje 132) zna klasyfikację czworokątów*; 133) zna własności czworokątów*; 134) korzysta z własności kątów i przekątnych w prostokątach, równoległobokach, rombach i w trapezach Obwody i pola wielokątów 135) oblicza pola i obwody trójkątów i czworokątów; 136) zamienia jednostki długości i pola Figury przystające 137) zna def figur przystających*; 138) rozpoznaje wielokąty przystające; 11

13 Cechy przystawania trójkątów 139) zna cechy przystawania trójkątów; 140) stosuje cechy przystawania trójkątów; Inne wielokąty 141) zna def wielokąta foremnego*; 142) rozpoznaje wielokąty foremne i korzysta z ich podstawowych własności Okrąg i koło 143) rysuje cięciwę, średnicę, promień koła i okręgu oraz korzysta z ich własności, rozpoznaje odcinek i wycinek kołowy Długość okręgu 144) oblicza długość okręgu i łuku okręgu; Pole koła 145) oblicza pole koła; Twierdzenie Pitagorasa i twierdzenie odwrotne 146) zna twierdzenie Pitagorasa*; 147) zna twierdzenie odwrotne do twierdzenia Pitagorasa*; 148) stosuje twierdzenie Pitagorasa w zadaniach; 149) stosuje twierdzenie odwrotne to twierdzenia Pitagorasa w zadaniach; Symetralna odcinka 150) zna def symetralnej odcinka oraz własność symetralnej odc.*; 151) rozpoznaje symetralną odcinka i ją konstruuje; Dwusieczna kąta 152) zna def dwusiecznej kata* i jej własności*; 153) rozpoznaje dwusieczną kąta i konstruuje dwusieczną kąta; 154) konstruuje kąty o miarach 60, 30, 45 Kąt środkowy ( i wpisany*) 155) rozpoznaje kąty środkowe (i wpisane*) i oblicza ich miary; Wzajemne położenie prostej i okręgu 156) rozpoznaje wzajemne położenie prostej i okręgu, rozpoznaje styczną do okręgu; 157) konstruuje styczną do okręgu*; Okrąg opisany na trójkącie Okrąg wpisany w trójkąt 158) konstruuje okrąg opisany na trójkącie 159) konstruuje okrąg wpisany w trójkąt 12

14 Pole pierścienia i wycinka kołowego Wielokąty foremne Figury symetryczne względem prostej 160) oblicza pole pierścienia, 161) oblicza ple wycinka kołowego; 162) rozpoznaje wielokąty foremne i korzysta z ich podstawowych własności 163) rozpoznaje figury symetryczne względem prostej; 164) rysuje pary figur symetrycznych względem prostej; 165) odczytuje i zaznacza współrzędne punktów symetrycznych względem osi układu współrzędnych; Oś symetrii figury Figury osiowosymetryczne Figury symetryczne względem punktu 166) rozpoznaje figury, które mają oś symetrii 167) wskazuje oś symetrii figury 168) rozpoznaje pary figur symetrycznych względem punktu; 169) rysuje pary figur symetrycznych względem punktu; 170) odczytuje i zaznacza współrzędne punktów symetrycznych względem środka układu współrzędnych Środek symetrii Figury środkowosymetryczne 171) rozpoznaje figury, które mają środek symetrii 172) wskazuje środek symetrii figury Figury podobne 173) zna def figur podobnych*; 174) rozpoznaje wielokąty podobne; 175) zna 3 cechy podobieństwa trójkątów*; Skala podobieństwa 176) wie, co to jest skala podobieństwa figur*; 177) oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali; 178) oblicza skalę podobieństwa 2 figur; Podobieństwo trójkątów 179) korzysta z własności trójkątów prostokątnych podobnych Stosunek pól wielokątów podobnych 180) oblicza stosunek pól wielokątów podobnych Zastosowanie podobieństwa figur 181) rozwiązuje zadania osadzone w kontekście praktycznym z zastosowaniem własności figur podobnych 13

15 XI. Bryły (graniastosłupy i ostrosłupy) Prostopadłościan i sześcian 182) rozpoznaje wśród graniastosłupów prostopadłościan i sześcian oraz uzasadnia swój wybór Inne graniastosłupy proste 183) rozpoznaje i nazywa graniastosłupy proste Graniastosłupy prawidłowe Pole powierzchni całkowitej graniastosłupa prostego Graniastosłupy prawidłowe 184) rozpoznaje graniastosłupy prawidłowe 185) oblicza pole powierzchni i objętość graniastosłupa prostego 186) zamienia jednostki objętość 187) rozpoznaje graniastosłupy prawidłowe Przekroje graniastosłupów prostych * 188) rysuje przekroje graniastosłupów prostych* Pole powierzchni i objętość graniastosłupa prostego 189) oblicza pole powierzchni i objętość graniastosłupów; zamienia jednostki pola i objętości Ostrosłupy Własności ostrosłupów 190) rozpoznaje i nazywa ostrosłupy prawidłowe oraz ich siatki Przekroje ostrosłupów * 191) rysuje przekroje ostrosłupów* Pole powierzchni ostrosłupa 192) oblicza pole powierzchni ostrosłupów i zamienia jednostki pola Objętość ostrosłupa 193) oblicza objętość ostrosłupa i zamienia jednostki objętości 14

16 XII. Bryły obrotowe. Przykłady brył obrotowych 194) rozpoznaje wśród różnych brył bryły obrotowe i uzasadnia swój wybór Walec, opis i siatka 195) rozpoznaje walce oraz ich siatki Przekroje walca * 196) rysuje przekroje walców* Pole powierzchni całkowitej walca 197) oblicza pole powierzchni walca i zamienia jednostki pola Objętość walca 198) oblicza objętość walca i zamienia jednostki objętości Stożek, opis i siatka 199) rozpoznaje stożki oraz ich siatki Przekroje stożka * 200) rysuje przekroje stożków* Pole powierzchni całkowitej stożka 201) oblicza pole powierzchni stożka i zamienia jednostki pola Objętość stożka 202) oblicza objętość stożka i zamienia jednostki objętości Kula 203) rozpoznaje kule wśród innych brył Przekroje kuli * 204) rysuje przekroje kul* Pole powierzchni kuli 205) oblicza pole powierzchni kuli i zamienia jednostki pola Objętość kuli 206) oblicza objętość kuli i zamienia jednostki objętości Zastosowanie brył obrotowych 207) rozwiązuje zadania osadzone w kontekście praktycznym z zastosowaniem brył obrotowych Prostopadłościan i sześcian 208) rozpoznaje wśród graniastosłupów prostopadłościan i sześcian oraz uzasadnia swój wybór 15

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP

WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP KLASA 1 Główne działy podstawy programowej Liczby wymierne dodatnie Liczby wymierne (dodatnie i niedodatnie) Hasła programowe Cztery działania

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Wymagania edukacyjne klasa druga.

Wymagania edukacyjne klasa druga. Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów Wymagania edukacyjne ogólne 1. Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

Wymagania edukacyjne szczegółowe w Gimnazjum

Wymagania edukacyjne szczegółowe w Gimnazjum Wymagania edukacyjne szczegółowe w Gimnazjum Treści nauczania określone w programie Matematyka wokół nas Gimnazjum zostały rozłożone na trzy lata. Zgodnie z założeniem MEN treści programu nauczania mogą

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej

MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej 1. Cel: Liczby wymierne dodatnie. 1) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000); 2) dodaje,

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

III etap edukacyjny MATEMATYKA

III etap edukacyjny MATEMATYKA III etap edukacyjny MATEMATYKA Cele kształcenia wymagania ogólne I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa języka matematycznego do

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

Przedmiotowe zasady oceniania matematyka

Przedmiotowe zasady oceniania matematyka Gimnazjum nr 1 im. Jana Pawła II w Polkowicach Przedmiotowe zasady oceniania matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Potęgi o wykładnikach naturalnych i całkowitych

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

Wymagania szczegółowe z matematyki klasa 7

Wymagania szczegółowe z matematyki klasa 7 Wymagania szczegółowe z matematyki klasa 7 Dział Szczegółowe wymagania Liczby całkowite (liczby dodatnie, ujemne i zero) - wyróżnia wśród liczb wymiernych liczby naturalne i całkowite oraz liczby pierwsze,

Bardziej szczegółowo

P 2.3. Plan wynikowy z rozkładem materiału klasa 3

P 2.3. Plan wynikowy z rozkładem materiału klasa 3 P 2.3. Plan wynikowy z rozkładem materiału klasa 3 W planie wynikowym wraz z rozkładem materiału dla klasy trzeciej uwzględniono zarówno nowy materiał, zawarty w programie nauczania Matematyka wokół nas

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny

Wymagania edukacyjne na poszczególne oceny Wymaganiach edukacyjne niezbędne do otrzymania przez ucznia klasy I Gimnazjum poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, wynikające z programu nauczania: praca zbiorowa

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI. MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości; WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie

Bardziej szczegółowo

MATEMATYKA KLASA III GIMNAZJUM

MATEMATYKA KLASA III GIMNAZJUM Ogólne wymagania edukacyjne Ocenę celującą otrzymuje uczeń, który: MATEMATYKA KLASA III GIMNAZJUM Potrafi stosować wiadomości w sytuacjach nietypowych (problemowych) Operuje twierdzeniami i je dowodzi

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - gimnazjum

Wymagania edukacyjne z matematyki - gimnazjum Wymagania edukacyjne z matematyki - gimnazjum Skrót postanowień: III etap edukacyjny (kl. I-III gimnazjum) Cele kształcenia (wymagania ogólne): wykorzystanie i tworzenie informacji - uczeń interpretuje

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje ułamki dziesiętne zna kolejność

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3 PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3 W planie wynikowym wraz z rozkładem materiału dla klasy trzeciej uwzględniono zarówno nowy materiał, zawarty w programie nauczania Matematyka wokół nas Gimnazjum

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Okręgowa Komisja Egzaminacyjna w Gdańsku EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Osiągnięcia gimnazjalistów z zakresu matematyki

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE I.LICZBY - zaznacza na osi liczbowej punkty odpowiadające liczbom całkowitym, wymiernym(np. 1 2, 2 1 1 ),

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM

MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM Lp. Temat lekcji Zakres treści Osiągnięcia uczeń: I. LICZBY 1. Oś liczbowa 1. pojęcie osi liczbowej 2. liczby przeciwne 1. zaznacza na osi liczbowej punkty

Bardziej szczegółowo

Wyniki procentowe poszczególnych uczniów

Wyniki procentowe poszczególnych uczniów K la s a IA Próbny egzamin gimnazjalny Wyniki procentowe poszczególnych uczniów 0% 80% 70% 60% 50% 40% 30% Polska (41%) % % 0% nr ucznia 1 2 3 4 5 6 7 8 16 18 1 21 22 24 25 26 27 28 wynik w % 45 65 42

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM PODRĘCZNIK: MATEMATYKA WOKÓŁ NAS KLASA 2 NAUCZYCIEL: BARBARA MIKA Ocena dopuszczająca:

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016

Wymagania edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016 edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016 NAUCZYCIEL: PODRĘCZNIK: mgr Marta Kamińska Liczy się matematyka wyd. WSiP Na lekcjach matematyki

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne Klasa 7

Wymagania na poszczególne oceny szkolne Klasa 7 1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2 KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2 I. LICZBY I DZIAŁANIA Uczeń: Zapisuje liczby z systemu dziesiętnego w zakresie 3000 w systemie rzymskim i odwrotnie. Zaznacza na osi

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum

Wymagania edukacyjne z matematyki dla klasy I gimnazjum Wymagania edukacyjne z matematyki dla klasy I gimnazjum * Aby uczeń otrzymał ocenę wyższą, musi obok wymagań na daną ocenę opanować wiadomości i umiejętności przewidziane na ocenę niższą. Na ocenę dopuszczającą

Bardziej szczegółowo

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI zna pojęcie potęgi o wykładniku naturalnym i oblicza jej wartość zapisuje potęgę w postaci iloczynu zapisuje iloczyn jednakowych czynników w postaci potęgi porównuje potęgi o różnych wykładnikach naturalnych

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując

Bardziej szczegółowo

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJĄCE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014 Program merytoryczny konkursu z matematyki dla gimnazjum I. CELE KONKURSU 1. Wyłanianie uczniów uzdolnionych matematycznie.

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem

WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem Liczby i wyrażenia algebraiczne WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem zna pojęcie notacji wykładniczej umie oszacować wynik działań umie zaokrąglić

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 3a średnia klasy: 22.52 pkt średnia szkoły: 21.93 pkt średnia ogólnopolska: 14.11 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka

Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności matematycznych w

Bardziej szczegółowo

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 2

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 2 PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 2 Opracowanie planu wynikowego wraz z rozkładem materiału nauczania dla klasy drugiej gimnazjum jest zadaniem nieco łatwiejszym niż dla klasy pierwszej. Znamy

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA III FUNKCJE rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porówna ć informacje z kilku wykresów

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum Ułamki i działania 20 h Nazwa modułu I. Ułamki zwykłe

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie I gimnazjum

Kryteria ocen z matematyki w klasie I gimnazjum 1. Zbieranie, porządkowanie i prezentowanie danych 1. Liczby naturalne 1. Cechy podzielności 1. Działania na liczbach naturalnych 1. Algorytmy działań pisemnych odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości

Bardziej szczegółowo

Marcin Binkiewicz Przedmiotowy System Oceniania Matematyki w Gimnazjum MOS Kąt

Marcin Binkiewicz Przedmiotowy System Oceniania Matematyki w Gimnazjum MOS Kąt I. Szczegółowe kryteria oceniania: Marcin Binkiewicz Przedmiotowy System Oceniania Matematyki w Gimnazjum MOS Kąt Stopień celujący otrzymuje uczeń, który: a) posiadł wiedzę i umiejętności znacznie wykraczające

Bardziej szczegółowo

Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej)

Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) Wymagania programowe z matematyki - Klasa 3 obowiązujące w od roku szkolnego 2013/2014 UWAGA! Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) znajomością

Bardziej szczegółowo

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej

Bardziej szczegółowo

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego)

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Ocena DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY Uczeń: Uczeń:

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe - dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe - mnożenie i dzielenie Mnożenie i dzielenie

Bardziej szczegółowo

Osiągnięcia przedmiotowe

Osiągnięcia przedmiotowe 1. Zbieranie, porządkowanie i prezentowanie danych przedstawione w tabelach przedstawione na przedstawiać dane w tabelach przedstawiać dane na przedstawione w tabelach przedstawione na porównywać informacje

Bardziej szczegółowo

Przedmiotowy system oceniania matematyka

Przedmiotowy system oceniania matematyka Gimnazjum nr 1 im. Jana Pawła II w Polkowicach Przedmiotowy system oceniania matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI w klasie 2a w roku szkolnym 2017/18. realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo

KRYTERIA OCENIANIA Z MATEMATYKI w klasie 2a w roku szkolnym 2017/18. realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo RYTERIA OCENIANIA Z MATEMATYI w klasie 2a w roku szkolnym 2017/18 realizowany program nauczania: Matematyka na czasie, 4 godziny tygodniowo wymagania konieczne (ocena 2); P wymagania podstawowe (ocena

Bardziej szczegółowo

Katalog wymagań na poszczególne stopnie szkolne klasa 3

Katalog wymagań na poszczególne stopnie szkolne klasa 3 Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny (MATEMATYKA) 2015/16. MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny

Wymagania programowe na poszczególne oceny (MATEMATYKA) 2015/16. MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Ocenę dopuszczającą otrzymuje uczeń, który: definiuje pojęcie potęgi o wykładniku naturalnym,

Bardziej szczegółowo

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra)

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena

Bardziej szczegółowo