PROGNOZOWANIE SZEREGÓW CZASOWYCH WIELKOŚCI SPRZEDAŻY W ZAKŁADZIE ODLEWNICZYM

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROGNOZOWANIE SZEREGÓW CZASOWYCH WIELKOŚCI SPRZEDAŻY W ZAKŁADZIE ODLEWNICZYM"

Transkrypt

1 40/17 ARCHIWUM ODLEWNICTWA Rok 2005, Rocznik 5, Nr 17 Archives of Foundry Year 2005, Volume 5, Book 17 PAN - Katowice PL ISSN PROGNOZOWANIE SZEREGÓW CZASOWYCH WIELKOŚCI SPRZEDAŻY W ZAKŁADZIE ODLEWNICZYM J. SZYMSZAL 1, G. PUCKA 2, A. GIEREK 3, J. PRZONDZIONO 4 Katedra Technologii Stopów Metali i Kompozytów; Politechnika Śląska, Katowice, ul. Krasińskiego 8 STRESZCZENIE W artykule przedstawiono wybrane metody prognozowania szeregów czasowych ujmujących liczbę sprzedanych odlewów w określonym okresie sprawozdawczym. Wykorzystano metody bazujące na modelach wyznaczonych dzięki zastosowaniu metod analizy regresji i korelacji, autokorelacji i autoregresji oraz statystyki Durbina-Watsona. Przedstawiono również metodę wygładzania szeregu czasowego w oparciu o średnie ruchome oraz wygładzanie wykładnicze wraz z wyznaczeniem miar dokładności prognozy. Keywords: methodology of predicting, time series, logistics 1. WSTĘP Termin prognoza używany jest dość powszechnie w języku codziennym, jednakże omawiając szczegółowo metody prognozowania musimy podać definicję samego pojęcia prognoza. Najczęściej pojęcie to definiujemy jako: zapowiedź, przewidywany skutek czegoś, wysuwany na podstawie specjalistycznych badań w danej dziedzinie [1]. Można zauważyć, że w tej klasycznej definicji pojęcia prognoza występują dwa czynniki: pierwszy to wskazanie co ma być przewidywane (p rognozzowane), drugi zaś, jakie wykorzystać metody by tego dokonać. Interesować nas będzie przyszły popyt na produkty (odlewy) wybranego zakładu odlewniczego. 1 dr inż., 2 dr 3 prof. zw. dr. hab. 4 dr inż., 325

2 Dodajmy, że prognoza popytu jest często traktowana jako równoznaczna z prog - nozą sprzedaży, a w rzeczywistości pomiędzy popytem i sprzedażą zachodzi istotna różnica gdyż wielkość popytu może zostać uznana za niezależną od wielkości oferty producenta, która może być mniejsza lub większa od popytu. W naszym przypadku założymy, że podaż w badanym okresie czasu przewyższała popyt. 2. AUTOKORELACJA I AUTOREGRESJA Autokorelacja i autoregresja należą do technik analizy szeregów czasowych danych charakteryzujących się takimi wahaniami, w których sąsiadujące obserwacje mają z reguły zbliżone wartości, natomiast różnice między obserwacjami odległymi mogą być dość duże. Dodajmy jeszcze, że jeśli wahania szeregu czasowego mają charakter sezonowy, to stosujemy regresję z użyciem flag kategorii, modele AR (wyższych rzędów) lub prowadzimy klasyczną dekompozycję szeregu czasowego [3]. Rozpatrzmy szereg czasowy ujmujący liczbę sprzedanych odlewów [szt.] na przestrzeni 20 miesięcy przez konkretny zakład odlewniczy [2]. Dane wprowadzone do arkusza kalkulacyjnego (Excela) wraz z wykresem ujmującym wielkość sprzedaży w przeciągu badanego okresu (20 miesięcy) przedstawia rys Rys. 1. Szereg czasowy ujmujący wielkość sprzedaży w ciągu 20 miesięcy wraz z wykresem Fig. 1. Time series including sale volume during 20 months with the relevant graph 2.1. Dopasowanie linii prostej Po dokładnym przyjrzeniu się wykresowi przedstawiającego wielkość sprzedaży w badanym okresie czasu (rys. 1) dochodzimy do wniosku, że do naszych danych wielkości sprzedaży można dopasować (wykorzystując metodą analityczną) linię pro stą. Dopasowanie linii prostej przeprowadzimy w Excelu, a do estymacji parametrów tego dopasowania wykorzystamy metodę najmniejszej sumy kwadratów. Do estymacji parametrów liniowej funkcji regresji zastosujemy metodę polegającą na wykorzystaniu narzędzia Regresja, jednego z wielu narzędzi Analizy danych Excela.

3 ARCHIWUM ODLEWNICTWA Po pojawieniu się okna dialogowego Regresja wypełniamy je w sposób pokazany na rys. 2a. Po zatwierdzeniu tego okna poleceniem OK - uzyskujemy wynik analizy regresji i korelacji (rys. 2b). a) b) Rys. 2. Wypełnione okno dialogowe narzędzia Regresja (a) wraz z fragmentem wyników (b) Fig. 2. Completed dialogue window of Regression tool (a) with fragment of results (b) Równanie prostej regresji ma postać: Dopasowana wielkość sprzedaży = 5827,47 + 9,812*miesiąc, z którego wynika, że miesięczny wzrost sprzedaży wynosił ok. 9,8 sztuk. Uzyskana wartość współczynnika determinacji R 2 (komórka E5) pokazuje, że około 84,25% odchyleń wielkości sprzedaży można wytłumaczyć liniowym trendem wzrostu w czasie. Wartość statystyki t (komórka G18) oraz wartość p (komórka H18) wskazują, że istnieje istotna zależność liniowa wielkości sprzedaży od czasu. Dokładna analiza uzyskanej krzywej regresji wyklucza jednak wykorzystanie jej do prognozo-wania wielkości sprzedaży w przyszłych okresach. Jeśli bowiem przeanalizujemy prostą dopasowaną, to zauważa-my, że przyjęte w tym modelu regresji założenie o losowym rozkładzie reszt (czyli ich wzajemnej niezależności) nie jest słuszne. Można to dostrzec na Rozkładzie reszt wygenerowanym przez narzędzie Regresja (rys. 3). Stwierdzamy więc, że następujące po sobie reszty są skorelowane dodatnio. Taki układ reszt nazywamy autokorelacją i analizujemy go za pomocą statystyki Durbina-Watsona. Autokorelacją nazywamy korelację wartości zmiennej z jej wartościami z okresów wcześniejszych. i e Rys. 3. Wykres rozkładu reszt wraz z danymi Fig. 3. Residulas distribution with the relevant data 327

4 2.2. Wyznaczenie statystyki Durbina-Watsona Statystykę Durbina-Watsona (oznaczaną jako d) można stosować do testowania korelacji reszt następujących po sobie w szeregu czasowym. Ma ona następującą formułę [3]: d n 2 ei ei 1 i 2 n 2 ei i 1 We wzorze tym e to błędy losowe (reszty), natomiast i to numer okresu (miesiąca) (rys.3). Aby obliczyć tę statystykę w komórce (np. H25), umieszczamy formułę: =SUMA.XMY.2(F26:F44;F25:F43)/SUMA.KWADRATÓW(F25:F44). Statystyka Durbina-Watsona może przyjmować wartości od 0 do 4. Wartości bliskie zeru wskazują na bardzo silną dodatnią autokorelację, wartość 2 oznacza brak autokorelacji, natomiast wartości bliskie 4 wskazują na silną ujemną autokorelację. Uzyskana wartość 0,9173 świadczy o istnieniu dość istotnej dodatniej autokorelacji reszt. Obecnie przeanalizujmy korelację wartości szeregu czasowego z samym sobą, czyli tzw. autokorelację. Bada się w niej korelację zachodzącą między wartością bieżącą a wartościami poprzednimi. Jeśli wartości poprzedniego okresu nazwiemy wartością wstecz, a czas między wartością aktualną a wartością przeszłą przesunięciem wstecz, to wartości oddalone o jeden odstęp czasowy względem bieżącej wartości nazwiemy: WSTECZ Wyznaczenie modelu autoregresji W przypadku gdy do analizowania danych (które wykazują istotne autoskorelowanie) zastosujemy regresję, to mamy tzw. autoregresję, a uzyskany dzięki tej technice model to tzw. model autoregresji. Model ten możemy wykorzystywać do badania funkcyjnej zależności pomiędzy bieżącą a poprzednimi wartościami danych. Przygotowanie arkusza do wykonania autokorelacji WSTECZ 1 polega na przeniesieniu do nowego arkusza naszych danych pierwotnych, wstawieniu nowej kolumny B, skopiowaniu do tej kolumny wartości sprzedaży od pierwszej do przedostatniej i wykasowaniu wiersza danych dla pierwszego miesiąca (rys. 4). Do wyznaczenia parametrów modelu AR(1), wartości błędu, który da dodatkowe informacje, oraz uzyskania wartości dopasowanych szeregu czasowego użyjemy ponownie narzędzia analitycznego Regresja. Z uzyskanego oszacowania wynika, że równanie prostej regresji AR(1) ma postać: Sprzedaż = 352,15 + 0,9418 *WSTECZ 1 lub Bieżąca Sprzedaż = 352,15 + 0,9418 *Poprzednia sprzedaż. Uzyskana wartość R 2 (komórka F5 - rys. 4) pokazuje, że około 85,3% odchyleń wielkości sprzedaży można wytłumaczyć prostą liniową autoregresją. Wartość standardowego błędu estymacji dla modelu AR(1) wynosi 25,01 (komórka F7- rys. 4). Wartość p<0,05 (komórka I18) wskazuje, że istnieje istotna statystycznie zależność liniowa AR(1). (1) 328

5 ARCHIWUM ODLEWNICTWA Rys. 4. Fragment arkusza z oszacowanymi parametrami modelu AR (1) Fig. 4. Spreadsheet with estimated parameters of AR(1) model W oparciu o uzyskaną zależność liniową możemy dokonać prognozy wielkości sprzedaży w kolejnych miesiącach. Wartość prognozowanej sprzedaży w 21 miesiącu można obliczyć jako: Y 21 = 352,15 + 0,9418* Y 20 Y 21 = 6012,37 W końcowym etapie budujemy wykres szeregu czasowego ukazującego wartości rzeczywiste i dopasowane (rys. 5). Rys. 5. Wykres szeregu czasowego ukazujący wartości rzeczywiste i dopasowane linią AR(1) Fig.5. Graph of time series showing true values and ones fitted by AR(1) line 3. METODY WYGŁADZANIA SZEREGU CZASOWEGO Głównym celem wygładzania jest eliminacja przypadkowych i sezonowych wahań, dzięki czemu można uwidocznić długookresowe zachowanie szeregu czaso - wego. Po wprowadzeniu danych do nowego arkusza kalkulacyjnego wykonujemy wykres przedstawiający wielkość sprzedaży w ciągu badanego okresu (rys. 6). 329

6 Rys. 6. Dane wielkości sprzedaży wraz z wykresem Fig.6. Selling volume data with the relevant graph 3.1. Wykorzystanie średniej ruchomej Metoda, która pozwoli nam w prosty sposób dołączyć do wykresu linię wyrażająca średnią ruchomą, oraz dane do jej wykreślenia polega na zastosowaniu Narzędzie analizy danych - Średnia ruchoma (rys. 7a). Na wstępie do komórek C1 i D1 (rys. 7b) wpisujemy odpowiednio etykiety: Średnia_Ruchoma i Błąd_Std. a) b) Rys. 7. Wypełnione okno dialogowe narzędzia Średnia ruchoma (a) wraz z wynikami (b) Fig. 7. Completed dialogue window of Movable mean tool (a) with the results (b) Po uzyskaniu wyników zauważamy, że Narzędzie analityczne Średnia ruchoma umieszcza w arkuszu nie wyniki, ale formuły. Każda średnia jest obliczana na podstawie czterech wartości: bieżącej i trzech poprzednich (przyjęliśmy Odstęp = 4), a każdy błąd standardowy jest obliczany dla czterech ostatnich wartości (rys. 7b). W uproszczonym prognozowaniu jako prognozę możemy wykorzystać ostatnią średnią ruchomą, tj. 8331,5 (komórka C21 - rys. 7b) z błędem standardowym równym 506,05 (komórka D21 - rys. 7b) jako miarą tolerancji. Aby jednak uzyskać najlepszą prognozę, na tę prognozę powinna zostać nałożona prognoza dotycząca wahań sezonowych. 330

7 ARCHIWUM ODLEWNICTWA 3.2. Wygładzanie wykładnicze Wygładzanie za pomocą średniej ruchomej wykorzystuje określoną liczbę wartości empirycznych. W przypadku szeregu czasowego z wahaniami sezonowymi liczba wartości do obliczenia średniej ruchomej wynika zazwyczaj z długości cyklu. W wygładzaniu wykładniczym szeregu czasowego (zamiast skończonej liczby wartości) bierze się pod uwagę (przynajmniej teoretycznie) wszystkie wartości szeregu. Najczęściej wygładzanie i prognozowanie prowadzimy wykorzystując prostą formułę rekurencyjną: prognoza t+1 = *bieżąca t + (1- )*prognoza t (2) gdzie: to tzw. stała wygładzania (parametr wagowy) - liczba z przedziału od 0 do 1. Prognozę na okres t+1 (prognoza t+1 ) możemy interpretować jako wypukłą kombinację liniową zrealizowanego wyniku bieżąca t. Przypomnijmy, że wypukła kombinacja liniowa dwóch liczb zwraca liczbę leżącą między nimi. Przyjmując zatem stałą wygładzania równą 1, otrzymamy wynik mało różniący się od bieżąca t, gdyż wtedy współczynnik (1- ) będzie bliski 0. Ponieważ stała wygładzania ustalana jest przez prognozującego, jej wybór można interpretować jako wyrażenie stopnia zaufania do powtórzenia się wyniku rzeczywistego. Przy wyborze stałej wygładzania bliskiej 1 prognozujący bardziej ufa realizacjom niż prognozom. Wybór stałej wygładzania bliskiej 0 możemy uznać za wyraz większego zaufania do wyniku prognozy. W celu wyznaczenia prognozy na okres t+1 niezbędne jest dokonywanie prognoz na wszystkie poprzedzające okresy, aby w ostatecznej fazie móc się odwołać do prognozy na okres t. Powyższa procedura wymaga wybrania dwóch wartości: wartości prognozy początkowej prognoza 1 dla naszej prognozy przyjmiemy średnią z pierwszych sześciu wartości empirycznych, właściwej wartości stałej wygładzania - wyznaczymy ją minimalizując wybrany błąd prognozy za pomocą narzędzia Solver. Z przytoczonej formuły wynika, że w wygładzaniu wykładniczym prognoza dla drugiego okresu jest oparta na wartości rzeczywistej z pierwszego okresu. Dodajmy jeszcze, że (1- ), to w Excelu jest tzw. współczynnik tłumienia, który wprowadzamy jako parametr. Czyli aby (stała wygładzania) była równa 0,2, to współczynnik tłumienia (wprowadzony do Excela) powinien być równy 0,8. Po wczytaniu danych wielkości sprzedaży do nowego arkusza do komórek C1 i D1 wpisujemy etykiety odpowiednio: Prognoza i BłądStd (rys. 8b). Nasze dane uzupełniamy o dodanie jednego wiersza (po wierszu nagłówka), i w komórce B2 obliczamy średnią z pierwszych sześciu wartości rzeczywistych szeregu. Wartość tę traktujemy jako początkową wielkość prognozy (rys. 8b). Następnie z menu Narzędzia wybieramy Analiza danych, a następnie Narzędzie analizy: Wygładzanie wykładnicze. Pojawia się okno dialogowe Wygładzania wykładnicze, które wypełniamy jak na rys. 8a. Do wyznaczenia optymalnej wartości stałej wygładzania, wykorzystamy kryterium błędu oparte o pierwiastek kwadratowy ze średniego błędu kwadratowego (RMSE - Root-Mean Square Error) [3]: 331

8 a) Rys. 8. Wypełnione okno dialogowe narzędzia Wygładzanie wykładnicze (a) wraz z wynikami (b) Fig. 8. Completed dialogue window of Exponential smoothing tool (a) with the results (b) 332 gdzie: Z t - wartość rzeczywista w okresie t Z (1) t 1 - prognoza zmiennej Z 1 okres do przodu, w której okresem wyjściowym prognozy jest okres t-1. Po wykorzystaniu narzędzia Solver minimalizującego wartość błędu RMSE stwierdzono, że wartość tego błędu jest najmniejsza (równa ok. 558), gdy a jest równe 0,424. Prognoza popytu na 21 miesiąc jest wtedy równa 8188 [szt.]. 4. PODSUMOWANIE Statystyczna analiza szeregu czasowego jest w obecnym okresie nieodzownym składnikiem działalności przedsiębiorstwa produkcyjnego, gdyż bez niej trudnym staje się utrzymanie i zwiększenie efektywności i konkurencyjności na rynku. LITERATURA [1] Słownik współczesnego języka polskiego. Wyd. WILGA, Warszawa, (1996). [2] Szymszal J., Blacha L.: Wspomaganie decyzji optymalnych w metalurgii i inżynierii materiałowej, Wyd. Pol. Śl., Wyd. II., Gliwice (2005). [3] Aczel A.D.: Statystyka w zarządzaniu. Wyd. Naukowe PWN, Warszawa (2004). METHODOLOGY OF PREDICTING TIME SERIES SALE VOLUME IN FOUNDRY PLANT SUMMARY RMSE n t 1 [ Z Z (1)] t n t 1 2 b) The paper has presented chosen methods of predicting time series embracing number of sold castings during specified reporting period. The methods based on models determined through use of regression and correlation analysis, autocorrelatio n and autoregression as well as Durbin-Watson statistic were applied. Methodology of time series smoothing on the basis of movable means and exponential smoothing with determination of prediction accuracy measures was presented as well. Recenzował: prof. dr hab. inż. Roman Wrona (3)

WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO

WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO 5/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU

Bardziej szczegółowo

J. SZYMSZAL 1, A. GIEREK 2, J. PIĄTKOWSKI 3, J. KLIŚ 4 Politechnika Śląska, 40-019 Katowice, ul. Krasińskiego 8

J. SZYMSZAL 1, A. GIEREK 2, J. PIĄTKOWSKI 3, J. KLIŚ 4 Politechnika Śląska, 40-019 Katowice, ul. Krasińskiego 8 3/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 PROGNOZOWANIE SZEREGU CZASOWEGO WYKAZUJĄCEGO WAHANIA SEZONOWE

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

ZASTOSOWANIE TECHNOLOGII INFORMACYJNEJ DLA PROGNOZOWANIA SPRZEDAŻY WĘGLA JAKO ELEMENT SYSTEMU WSPOMAGANIA ZARZĄDZANIA

ZASTOSOWANIE TECHNOLOGII INFORMACYJNEJ DLA PROGNOZOWANIA SPRZEDAŻY WĘGLA JAKO ELEMENT SYSTEMU WSPOMAGANIA ZARZĄDZANIA ZASTOSOWANIE TECHNOLOGII INFORMACYJNEJ DLA PROGNOZOWANIA SPRZEDAŻY WĘGLA JAKO ELEMENT SYSTEMU WSPOMAGANIA ZARZĄDZANIA Marcin MICHNA Streszczenie: Systemy wspomagania zarządzania, w szczególności systemy

Bardziej szczegółowo

WYKORZYSTANIE KLASYFIKACJI ABC I XYZ DO OPTYMALIZACJI PRODUKCJI W ODLEWNI

WYKORZYSTANIE KLASYFIKACJI ABC I XYZ DO OPTYMALIZACJI PRODUKCJI W ODLEWNI 38/17 ARCHIWUM ODLEWNICTWA Rok 2005, Rocznik 5, Nr 17 Archives of Foundry Year 2005, Volume 5, Book 17 PAN - Katowice PL ISSN 1642-5308 WYKORZYSTANIE KLASYFIKACJI ABC I XYZ DO OPTYMALIZACJI PRODUKCJI W

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny

Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny Analiza sezonowości Wiele zjawisk charakteryzuje się nie tylko trendem i wahaniami przypadkowymi, lecz także pewną sezonowością. Występowanie wahań sezonowych może mieć charakter kwartalny, miesięczny,

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Prognozowanie popytu. mgr inż. Michał Adamczak

Prognozowanie popytu. mgr inż. Michał Adamczak Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

WPŁYW WIELKOŚCI WYDZIELEŃ GRAFITU NA WYTRZYMAŁOŚĆ ŻELIWA SFEROIDALNEGO NA ROZCIĄGANIE

WPŁYW WIELKOŚCI WYDZIELEŃ GRAFITU NA WYTRZYMAŁOŚĆ ŻELIWA SFEROIDALNEGO NA ROZCIĄGANIE 15/12 ARCHIWUM ODLEWNICTWA Rok 2004, Rocznik 4, Nr 12 Archives of Foundry Year 2004, Volume 4, Book 12 PAN Katowice PL ISSN 1642-5308 WPŁYW WIELKOŚCI WYDZIELEŃ GRAFITU NA WYTRZYMAŁOŚĆ ŻELIWA SFEROIDALNEGO

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R

Bardziej szczegółowo

EKONOMICZNE ASPEKTY ZRÓWNANIA KOSZTÓW Z ZYSKIEM WE WSPÓŁCZESNYM ZAKŁADZIE ODLEWNICZYM

EKONOMICZNE ASPEKTY ZRÓWNANIA KOSZTÓW Z ZYSKIEM WE WSPÓŁCZESNYM ZAKŁADZIE ODLEWNICZYM 1/8 ARCHIWUM ODLEWNICTWA Rok 2003, Rocznik 3, Nr 8 Archives of Foundry Year 2003, Volume 3, Book 8 PAN - Katowice PL ISSN 1642-5308 EKONOMICZNE ASPEKTY ZRÓWNANIA KOSZTÓW Z ZYSKIEM WE WSPÓŁCZESNYM ZAKŁADZIE

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Projekt okładki: Aleksandra Olszewska. Redakcja: Leszek Plak. Copyright: Wydawnictwo Placet Wydanie ebook. Wydawca

Projekt okładki: Aleksandra Olszewska. Redakcja: Leszek Plak. Copyright: Wydawnictwo Placet Wydanie ebook. Wydawca 1 Projekt okładki: Aleksandra Olszewska Redakcja: Leszek Plak Copyright: Wydawnictwo Placet 2011 Wydanie ebook Wszelkie prawa zastrzeżone. Publikacja ani jej części nie mogą być w żadnej formie i za pomocą

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Ścieżka rozwoju polskiej gospodarki w latach gospodarki w latach W tym celu wykorzystana zostanie metoda diagramowa,

Ścieżka rozwoju polskiej gospodarki w latach gospodarki w latach W tym celu wykorzystana zostanie metoda diagramowa, Barbara Batóg, Jacek Batóg Uniwersytet Szczeciński Ścieżka rozwoju polskiej gospodarki w latach - W artykule podjęta zostanie próba analizy, diagnozy i prognozy rozwoju polskiej gospodarki w latach -.

Bardziej szczegółowo

Po co w ogóle prognozujemy?

Po co w ogóle prognozujemy? Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym

Bardziej szczegółowo

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006 Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy

Bardziej szczegółowo

Ekonometryczna analiza popytu na wodę

Ekonometryczna analiza popytu na wodę Jacek Batóg Uniwersytet Szczeciński Ekonometryczna analiza popytu na wodę Jednym z czynników niezbędnych dla funkcjonowania gospodarstw domowych oraz realizacji wielu procesów technologicznych jest woda.

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

Istota funkcjonowania przedsiębiorstwa produkcyjnego. dr inż. Andrzej KIJ

Istota funkcjonowania przedsiębiorstwa produkcyjnego. dr inż. Andrzej KIJ Istota funkcjonowania przedsiębiorstwa produkcyjnego dr inż. Andrzej KIJ 1 Popyt rynkowy agregacja krzywych popytu P p2 p1 D1 q1 D2 q2 Q 2 Popyt rynkowy agregacja krzywych popytu P p2 p1 D1 +D2 D1 D2 q1

Bardziej szczegółowo

Przy dokonywaniu analiz ekonomicznych, np. sprzedażowych, bardzo

Przy dokonywaniu analiz ekonomicznych, np. sprzedażowych, bardzo Sprawdź, jak możesz przewidzieć wartość sprzedaży w nadchodzących okresach Prognozowanie w Excelu Systemy informatyczne w zarządzaniu 13/01 Przy dokonywaniu analiz ekonomicznych, np. sprzedażowych, bardzo

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34 Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Praktyczny Excel. 50 praktycznych formuł na każdą okazję

Praktyczny Excel. 50 praktycznych formuł na każdą okazję Praktyczny Excel 50 praktycznych formuł na każdą okazję 3 1 NUMER PRAWNICZY przygotowany przez + OCHRONA DANYCH OSOBOWYCH profesjonalnie i kompleksowo 1 2 + GRATIS 20% GRATIS 30%, tel. 22 518 29 29, email:

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Zad.2. Korelacja - szukanie zależności.

Zad.2. Korelacja - szukanie zależności. Ćw. III. MSExcel obliczenia zarządcze Spis zagadnień: Funkcje statystyczne Funkcje finansowe Tworzenie prognoz Scenariusze >>>Otwórz plik: excel_02.xls> przejdź do arkusza

Bardziej szczegółowo

Arkusz kalkulacyjny Excel

Arkusz kalkulacyjny Excel Arkusz kalkulacyjny Excel Ćwiczenie 1. Sumy pośrednie (częściowe). POMOC DO ĆWICZENIA Dzięki funkcji sum pośrednich (częściowych) nie jest konieczne ręczne wprowadzanie odpowiednich formuł. Dzięki nim

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pcibis@o2.pl 23 marca 2006 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności 2 3 Etapy transformacji

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

LEJNOŚĆ KOMPOZYTÓW NA OSNOWIE STOPU AlMg10 Z CZĄSTKAMI SiC

LEJNOŚĆ KOMPOZYTÓW NA OSNOWIE STOPU AlMg10 Z CZĄSTKAMI SiC 38/9 Archives of Foundry, Year 23, Volume 3, 9 Archiwum Odlewnictwa, Rok 23, Rocznik 3, Nr 9 PAN Katowice PL ISSN 1642-538 LEJNOŚĆ KOMPOZYTÓW NA OSNOWIE STOPU AlMg1 Z CZĄSTKAMI SiC Z. KONOPKA 1, M. CISOWSKA

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne

Bardziej szczegółowo

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe? Prognozowanie Co trzeba wiedzieć korzystając z modelu ARIMA Marta Płonka Predictive Solutions W trzecim już artykule dotyczącym szeregów czasowych przyjrzymy się modelom ARIMA. Dzisiaj skupimy się na metodzie

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

LOGISTYKA. Zapas: definicja. Zapasy: podział

LOGISTYKA. Zapas: definicja. Zapasy: podział LOGISTYKA Zapasy Zapas: definicja Zapas to określona ilość dóbr znajdująca się w rozpatrywanym systemie logistycznym, bieżąco nie wykorzystywana, a przeznaczona do późniejszego przetworzenia lub sprzedaży.

Bardziej szczegółowo

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY STOPÓW Al-Si

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY STOPÓW Al-Si 29/19 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 19 Archives of Foundry Year 2006, Volume 6, Book 19 PAN - Katowice PL ISSN 1642-5308 ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY STOPÓW Al-Si J. PIĄTKOWSKI

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

OPTYMALIZACJA PRODUKCJI ODLEWNI Z WYKORZYSTANIEM SYMULACJI ZDARZEŃ DYSKRETNYCH

OPTYMALIZACJA PRODUKCJI ODLEWNI Z WYKORZYSTANIEM SYMULACJI ZDARZEŃ DYSKRETNYCH OPTYMALIZACJA PRODUKCJI ODLEWNI Z WYKORZYSTANIEM SYMULACJI ZDARZEŃ DYSKRETNYCH Jan SZYMSZAL, Teresa LIS, Marian MALIŃSKI, Krzysztof NOWACKI Streszczenie: W artykule omówiono możliwości wykorzystania symulacji

Bardziej szczegółowo

Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji

Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki. Podstawy Informatyki i algorytmizacji Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy Informatyki i algorytmizacji wykład 1 dr inż. Maria Lachowicz Wprowadzenie Dlaczego arkusz

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

WYKORZYSTANIE ANALIZY WSKAŹNIKÓW ZDOLNOŚCI DO OPTYMALIZACJI PROCESU WYTWARZANIA MASY FORMIERSKIEJ

WYKORZYSTANIE ANALIZY WSKAŹNIKÓW ZDOLNOŚCI DO OPTYMALIZACJI PROCESU WYTWARZANIA MASY FORMIERSKIEJ 168/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (2/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (2/2) PAN Katowice PL ISSN 1642-5308 WYKORZYSTANIE ANALIZY WSKAŹNIKÓW ZDOLNOŚCI DO OPTYMALIZACJI

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY PODEUTEKTYCZNYCH STOPÓW UKŁADU Al-Si

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY PODEUTEKTYCZNYCH STOPÓW UKŁADU Al-Si 53/22 Archives of Foundry, Year 2006, Volume 6, 22 Archiwum Odlewnictwa, Rok 2006, Rocznik 6, Nr 22 PAN Katowice PL ISSN 1642-5308 ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY PODEUTEKTYCZNYCH STOPÓW UKŁADU

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

SPIS TREŚCI. Do Czytelnika... 7

SPIS TREŚCI. Do Czytelnika... 7 SPIS TREŚCI Do Czytelnika.................................................. 7 Rozdział I. Wprowadzenie do analizy statystycznej.............. 11 1.1. Informacje ogólne..........................................

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej. Paweł Cibis

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej. Paweł Cibis Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej Paweł Cibis pcibis@o2.pl 9 marca 2006 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa wzory

Bardziej szczegółowo

Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp

Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp 1 Sugerowany przypis: Chybalski F., Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE, Przegląd Statystyczny, nr 3/2006, Dom Wydawniczy Elipsa, Warszawa 2006, s. 73-82 Propozycja

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo