PROGNOZOWANIE SZEREGÓW CZASOWYCH WIELKOŚCI SPRZEDAŻY W ZAKŁADZIE ODLEWNICZYM

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROGNOZOWANIE SZEREGÓW CZASOWYCH WIELKOŚCI SPRZEDAŻY W ZAKŁADZIE ODLEWNICZYM"

Transkrypt

1 40/17 ARCHIWUM ODLEWNICTWA Rok 2005, Rocznik 5, Nr 17 Archives of Foundry Year 2005, Volume 5, Book 17 PAN - Katowice PL ISSN PROGNOZOWANIE SZEREGÓW CZASOWYCH WIELKOŚCI SPRZEDAŻY W ZAKŁADZIE ODLEWNICZYM J. SZYMSZAL 1, G. PUCKA 2, A. GIEREK 3, J. PRZONDZIONO 4 Katedra Technologii Stopów Metali i Kompozytów; Politechnika Śląska, Katowice, ul. Krasińskiego 8 STRESZCZENIE W artykule przedstawiono wybrane metody prognozowania szeregów czasowych ujmujących liczbę sprzedanych odlewów w określonym okresie sprawozdawczym. Wykorzystano metody bazujące na modelach wyznaczonych dzięki zastosowaniu metod analizy regresji i korelacji, autokorelacji i autoregresji oraz statystyki Durbina-Watsona. Przedstawiono również metodę wygładzania szeregu czasowego w oparciu o średnie ruchome oraz wygładzanie wykładnicze wraz z wyznaczeniem miar dokładności prognozy. Keywords: methodology of predicting, time series, logistics 1. WSTĘP Termin prognoza używany jest dość powszechnie w języku codziennym, jednakże omawiając szczegółowo metody prognozowania musimy podać definicję samego pojęcia prognoza. Najczęściej pojęcie to definiujemy jako: zapowiedź, przewidywany skutek czegoś, wysuwany na podstawie specjalistycznych badań w danej dziedzinie [1]. Można zauważyć, że w tej klasycznej definicji pojęcia prognoza występują dwa czynniki: pierwszy to wskazanie co ma być przewidywane (p rognozzowane), drugi zaś, jakie wykorzystać metody by tego dokonać. Interesować nas będzie przyszły popyt na produkty (odlewy) wybranego zakładu odlewniczego. 1 dr inż., 2 dr 3 prof. zw. dr. hab. 4 dr inż., 325

2 Dodajmy, że prognoza popytu jest często traktowana jako równoznaczna z prog - nozą sprzedaży, a w rzeczywistości pomiędzy popytem i sprzedażą zachodzi istotna różnica gdyż wielkość popytu może zostać uznana za niezależną od wielkości oferty producenta, która może być mniejsza lub większa od popytu. W naszym przypadku założymy, że podaż w badanym okresie czasu przewyższała popyt. 2. AUTOKORELACJA I AUTOREGRESJA Autokorelacja i autoregresja należą do technik analizy szeregów czasowych danych charakteryzujących się takimi wahaniami, w których sąsiadujące obserwacje mają z reguły zbliżone wartości, natomiast różnice między obserwacjami odległymi mogą być dość duże. Dodajmy jeszcze, że jeśli wahania szeregu czasowego mają charakter sezonowy, to stosujemy regresję z użyciem flag kategorii, modele AR (wyższych rzędów) lub prowadzimy klasyczną dekompozycję szeregu czasowego [3]. Rozpatrzmy szereg czasowy ujmujący liczbę sprzedanych odlewów [szt.] na przestrzeni 20 miesięcy przez konkretny zakład odlewniczy [2]. Dane wprowadzone do arkusza kalkulacyjnego (Excela) wraz z wykresem ujmującym wielkość sprzedaży w przeciągu badanego okresu (20 miesięcy) przedstawia rys Rys. 1. Szereg czasowy ujmujący wielkość sprzedaży w ciągu 20 miesięcy wraz z wykresem Fig. 1. Time series including sale volume during 20 months with the relevant graph 2.1. Dopasowanie linii prostej Po dokładnym przyjrzeniu się wykresowi przedstawiającego wielkość sprzedaży w badanym okresie czasu (rys. 1) dochodzimy do wniosku, że do naszych danych wielkości sprzedaży można dopasować (wykorzystując metodą analityczną) linię pro stą. Dopasowanie linii prostej przeprowadzimy w Excelu, a do estymacji parametrów tego dopasowania wykorzystamy metodę najmniejszej sumy kwadratów. Do estymacji parametrów liniowej funkcji regresji zastosujemy metodę polegającą na wykorzystaniu narzędzia Regresja, jednego z wielu narzędzi Analizy danych Excela.

3 ARCHIWUM ODLEWNICTWA Po pojawieniu się okna dialogowego Regresja wypełniamy je w sposób pokazany na rys. 2a. Po zatwierdzeniu tego okna poleceniem OK - uzyskujemy wynik analizy regresji i korelacji (rys. 2b). a) b) Rys. 2. Wypełnione okno dialogowe narzędzia Regresja (a) wraz z fragmentem wyników (b) Fig. 2. Completed dialogue window of Regression tool (a) with fragment of results (b) Równanie prostej regresji ma postać: Dopasowana wielkość sprzedaży = 5827,47 + 9,812*miesiąc, z którego wynika, że miesięczny wzrost sprzedaży wynosił ok. 9,8 sztuk. Uzyskana wartość współczynnika determinacji R 2 (komórka E5) pokazuje, że około 84,25% odchyleń wielkości sprzedaży można wytłumaczyć liniowym trendem wzrostu w czasie. Wartość statystyki t (komórka G18) oraz wartość p (komórka H18) wskazują, że istnieje istotna zależność liniowa wielkości sprzedaży od czasu. Dokładna analiza uzyskanej krzywej regresji wyklucza jednak wykorzystanie jej do prognozo-wania wielkości sprzedaży w przyszłych okresach. Jeśli bowiem przeanalizujemy prostą dopasowaną, to zauważa-my, że przyjęte w tym modelu regresji założenie o losowym rozkładzie reszt (czyli ich wzajemnej niezależności) nie jest słuszne. Można to dostrzec na Rozkładzie reszt wygenerowanym przez narzędzie Regresja (rys. 3). Stwierdzamy więc, że następujące po sobie reszty są skorelowane dodatnio. Taki układ reszt nazywamy autokorelacją i analizujemy go za pomocą statystyki Durbina-Watsona. Autokorelacją nazywamy korelację wartości zmiennej z jej wartościami z okresów wcześniejszych. i e Rys. 3. Wykres rozkładu reszt wraz z danymi Fig. 3. Residulas distribution with the relevant data 327

4 2.2. Wyznaczenie statystyki Durbina-Watsona Statystykę Durbina-Watsona (oznaczaną jako d) można stosować do testowania korelacji reszt następujących po sobie w szeregu czasowym. Ma ona następującą formułę [3]: d n 2 ei ei 1 i 2 n 2 ei i 1 We wzorze tym e to błędy losowe (reszty), natomiast i to numer okresu (miesiąca) (rys.3). Aby obliczyć tę statystykę w komórce (np. H25), umieszczamy formułę: =SUMA.XMY.2(F26:F44;F25:F43)/SUMA.KWADRATÓW(F25:F44). Statystyka Durbina-Watsona może przyjmować wartości od 0 do 4. Wartości bliskie zeru wskazują na bardzo silną dodatnią autokorelację, wartość 2 oznacza brak autokorelacji, natomiast wartości bliskie 4 wskazują na silną ujemną autokorelację. Uzyskana wartość 0,9173 świadczy o istnieniu dość istotnej dodatniej autokorelacji reszt. Obecnie przeanalizujmy korelację wartości szeregu czasowego z samym sobą, czyli tzw. autokorelację. Bada się w niej korelację zachodzącą między wartością bieżącą a wartościami poprzednimi. Jeśli wartości poprzedniego okresu nazwiemy wartością wstecz, a czas między wartością aktualną a wartością przeszłą przesunięciem wstecz, to wartości oddalone o jeden odstęp czasowy względem bieżącej wartości nazwiemy: WSTECZ Wyznaczenie modelu autoregresji W przypadku gdy do analizowania danych (które wykazują istotne autoskorelowanie) zastosujemy regresję, to mamy tzw. autoregresję, a uzyskany dzięki tej technice model to tzw. model autoregresji. Model ten możemy wykorzystywać do badania funkcyjnej zależności pomiędzy bieżącą a poprzednimi wartościami danych. Przygotowanie arkusza do wykonania autokorelacji WSTECZ 1 polega na przeniesieniu do nowego arkusza naszych danych pierwotnych, wstawieniu nowej kolumny B, skopiowaniu do tej kolumny wartości sprzedaży od pierwszej do przedostatniej i wykasowaniu wiersza danych dla pierwszego miesiąca (rys. 4). Do wyznaczenia parametrów modelu AR(1), wartości błędu, który da dodatkowe informacje, oraz uzyskania wartości dopasowanych szeregu czasowego użyjemy ponownie narzędzia analitycznego Regresja. Z uzyskanego oszacowania wynika, że równanie prostej regresji AR(1) ma postać: Sprzedaż = 352,15 + 0,9418 *WSTECZ 1 lub Bieżąca Sprzedaż = 352,15 + 0,9418 *Poprzednia sprzedaż. Uzyskana wartość R 2 (komórka F5 - rys. 4) pokazuje, że około 85,3% odchyleń wielkości sprzedaży można wytłumaczyć prostą liniową autoregresją. Wartość standardowego błędu estymacji dla modelu AR(1) wynosi 25,01 (komórka F7- rys. 4). Wartość p<0,05 (komórka I18) wskazuje, że istnieje istotna statystycznie zależność liniowa AR(1). (1) 328

5 ARCHIWUM ODLEWNICTWA Rys. 4. Fragment arkusza z oszacowanymi parametrami modelu AR (1) Fig. 4. Spreadsheet with estimated parameters of AR(1) model W oparciu o uzyskaną zależność liniową możemy dokonać prognozy wielkości sprzedaży w kolejnych miesiącach. Wartość prognozowanej sprzedaży w 21 miesiącu można obliczyć jako: Y 21 = 352,15 + 0,9418* Y 20 Y 21 = 6012,37 W końcowym etapie budujemy wykres szeregu czasowego ukazującego wartości rzeczywiste i dopasowane (rys. 5). Rys. 5. Wykres szeregu czasowego ukazujący wartości rzeczywiste i dopasowane linią AR(1) Fig.5. Graph of time series showing true values and ones fitted by AR(1) line 3. METODY WYGŁADZANIA SZEREGU CZASOWEGO Głównym celem wygładzania jest eliminacja przypadkowych i sezonowych wahań, dzięki czemu można uwidocznić długookresowe zachowanie szeregu czaso - wego. Po wprowadzeniu danych do nowego arkusza kalkulacyjnego wykonujemy wykres przedstawiający wielkość sprzedaży w ciągu badanego okresu (rys. 6). 329

6 Rys. 6. Dane wielkości sprzedaży wraz z wykresem Fig.6. Selling volume data with the relevant graph 3.1. Wykorzystanie średniej ruchomej Metoda, która pozwoli nam w prosty sposób dołączyć do wykresu linię wyrażająca średnią ruchomą, oraz dane do jej wykreślenia polega na zastosowaniu Narzędzie analizy danych - Średnia ruchoma (rys. 7a). Na wstępie do komórek C1 i D1 (rys. 7b) wpisujemy odpowiednio etykiety: Średnia_Ruchoma i Błąd_Std. a) b) Rys. 7. Wypełnione okno dialogowe narzędzia Średnia ruchoma (a) wraz z wynikami (b) Fig. 7. Completed dialogue window of Movable mean tool (a) with the results (b) Po uzyskaniu wyników zauważamy, że Narzędzie analityczne Średnia ruchoma umieszcza w arkuszu nie wyniki, ale formuły. Każda średnia jest obliczana na podstawie czterech wartości: bieżącej i trzech poprzednich (przyjęliśmy Odstęp = 4), a każdy błąd standardowy jest obliczany dla czterech ostatnich wartości (rys. 7b). W uproszczonym prognozowaniu jako prognozę możemy wykorzystać ostatnią średnią ruchomą, tj. 8331,5 (komórka C21 - rys. 7b) z błędem standardowym równym 506,05 (komórka D21 - rys. 7b) jako miarą tolerancji. Aby jednak uzyskać najlepszą prognozę, na tę prognozę powinna zostać nałożona prognoza dotycząca wahań sezonowych. 330

7 ARCHIWUM ODLEWNICTWA 3.2. Wygładzanie wykładnicze Wygładzanie za pomocą średniej ruchomej wykorzystuje określoną liczbę wartości empirycznych. W przypadku szeregu czasowego z wahaniami sezonowymi liczba wartości do obliczenia średniej ruchomej wynika zazwyczaj z długości cyklu. W wygładzaniu wykładniczym szeregu czasowego (zamiast skończonej liczby wartości) bierze się pod uwagę (przynajmniej teoretycznie) wszystkie wartości szeregu. Najczęściej wygładzanie i prognozowanie prowadzimy wykorzystując prostą formułę rekurencyjną: prognoza t+1 = *bieżąca t + (1- )*prognoza t (2) gdzie: to tzw. stała wygładzania (parametr wagowy) - liczba z przedziału od 0 do 1. Prognozę na okres t+1 (prognoza t+1 ) możemy interpretować jako wypukłą kombinację liniową zrealizowanego wyniku bieżąca t. Przypomnijmy, że wypukła kombinacja liniowa dwóch liczb zwraca liczbę leżącą między nimi. Przyjmując zatem stałą wygładzania równą 1, otrzymamy wynik mało różniący się od bieżąca t, gdyż wtedy współczynnik (1- ) będzie bliski 0. Ponieważ stała wygładzania ustalana jest przez prognozującego, jej wybór można interpretować jako wyrażenie stopnia zaufania do powtórzenia się wyniku rzeczywistego. Przy wyborze stałej wygładzania bliskiej 1 prognozujący bardziej ufa realizacjom niż prognozom. Wybór stałej wygładzania bliskiej 0 możemy uznać za wyraz większego zaufania do wyniku prognozy. W celu wyznaczenia prognozy na okres t+1 niezbędne jest dokonywanie prognoz na wszystkie poprzedzające okresy, aby w ostatecznej fazie móc się odwołać do prognozy na okres t. Powyższa procedura wymaga wybrania dwóch wartości: wartości prognozy początkowej prognoza 1 dla naszej prognozy przyjmiemy średnią z pierwszych sześciu wartości empirycznych, właściwej wartości stałej wygładzania - wyznaczymy ją minimalizując wybrany błąd prognozy za pomocą narzędzia Solver. Z przytoczonej formuły wynika, że w wygładzaniu wykładniczym prognoza dla drugiego okresu jest oparta na wartości rzeczywistej z pierwszego okresu. Dodajmy jeszcze, że (1- ), to w Excelu jest tzw. współczynnik tłumienia, który wprowadzamy jako parametr. Czyli aby (stała wygładzania) była równa 0,2, to współczynnik tłumienia (wprowadzony do Excela) powinien być równy 0,8. Po wczytaniu danych wielkości sprzedaży do nowego arkusza do komórek C1 i D1 wpisujemy etykiety odpowiednio: Prognoza i BłądStd (rys. 8b). Nasze dane uzupełniamy o dodanie jednego wiersza (po wierszu nagłówka), i w komórce B2 obliczamy średnią z pierwszych sześciu wartości rzeczywistych szeregu. Wartość tę traktujemy jako początkową wielkość prognozy (rys. 8b). Następnie z menu Narzędzia wybieramy Analiza danych, a następnie Narzędzie analizy: Wygładzanie wykładnicze. Pojawia się okno dialogowe Wygładzania wykładnicze, które wypełniamy jak na rys. 8a. Do wyznaczenia optymalnej wartości stałej wygładzania, wykorzystamy kryterium błędu oparte o pierwiastek kwadratowy ze średniego błędu kwadratowego (RMSE - Root-Mean Square Error) [3]: 331

8 a) Rys. 8. Wypełnione okno dialogowe narzędzia Wygładzanie wykładnicze (a) wraz z wynikami (b) Fig. 8. Completed dialogue window of Exponential smoothing tool (a) with the results (b) 332 gdzie: Z t - wartość rzeczywista w okresie t Z (1) t 1 - prognoza zmiennej Z 1 okres do przodu, w której okresem wyjściowym prognozy jest okres t-1. Po wykorzystaniu narzędzia Solver minimalizującego wartość błędu RMSE stwierdzono, że wartość tego błędu jest najmniejsza (równa ok. 558), gdy a jest równe 0,424. Prognoza popytu na 21 miesiąc jest wtedy równa 8188 [szt.]. 4. PODSUMOWANIE Statystyczna analiza szeregu czasowego jest w obecnym okresie nieodzownym składnikiem działalności przedsiębiorstwa produkcyjnego, gdyż bez niej trudnym staje się utrzymanie i zwiększenie efektywności i konkurencyjności na rynku. LITERATURA [1] Słownik współczesnego języka polskiego. Wyd. WILGA, Warszawa, (1996). [2] Szymszal J., Blacha L.: Wspomaganie decyzji optymalnych w metalurgii i inżynierii materiałowej, Wyd. Pol. Śl., Wyd. II., Gliwice (2005). [3] Aczel A.D.: Statystyka w zarządzaniu. Wyd. Naukowe PWN, Warszawa (2004). METHODOLOGY OF PREDICTING TIME SERIES SALE VOLUME IN FOUNDRY PLANT SUMMARY RMSE n t 1 [ Z Z (1)] t n t 1 2 b) The paper has presented chosen methods of predicting time series embracing number of sold castings during specified reporting period. The methods based on models determined through use of regression and correlation analysis, autocorrelatio n and autoregression as well as Durbin-Watson statistic were applied. Methodology of time series smoothing on the basis of movable means and exponential smoothing with determination of prediction accuracy measures was presented as well. Recenzował: prof. dr hab. inż. Roman Wrona (3)

WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO

WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO 5/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU

Bardziej szczegółowo

J. SZYMSZAL 1, A. GIEREK 2, J. PIĄTKOWSKI 3, J. KLIŚ 4 Politechnika Śląska, 40-019 Katowice, ul. Krasińskiego 8

J. SZYMSZAL 1, A. GIEREK 2, J. PIĄTKOWSKI 3, J. KLIŚ 4 Politechnika Śląska, 40-019 Katowice, ul. Krasińskiego 8 3/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 PROGNOZOWANIE SZEREGU CZASOWEGO WYKAZUJĄCEGO WAHANIA SEZONOWE

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest

Bardziej szczegółowo

ZASTOSOWANIE TECHNOLOGII INFORMACYJNEJ DLA PROGNOZOWANIA SPRZEDAŻY WĘGLA JAKO ELEMENT SYSTEMU WSPOMAGANIA ZARZĄDZANIA

ZASTOSOWANIE TECHNOLOGII INFORMACYJNEJ DLA PROGNOZOWANIA SPRZEDAŻY WĘGLA JAKO ELEMENT SYSTEMU WSPOMAGANIA ZARZĄDZANIA ZASTOSOWANIE TECHNOLOGII INFORMACYJNEJ DLA PROGNOZOWANIA SPRZEDAŻY WĘGLA JAKO ELEMENT SYSTEMU WSPOMAGANIA ZARZĄDZANIA Marcin MICHNA Streszczenie: Systemy wspomagania zarządzania, w szczególności systemy

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

WPŁYW WIELKOŚCI WYDZIELEŃ GRAFITU NA WYTRZYMAŁOŚĆ ŻELIWA SFEROIDALNEGO NA ROZCIĄGANIE

WPŁYW WIELKOŚCI WYDZIELEŃ GRAFITU NA WYTRZYMAŁOŚĆ ŻELIWA SFEROIDALNEGO NA ROZCIĄGANIE 15/12 ARCHIWUM ODLEWNICTWA Rok 2004, Rocznik 4, Nr 12 Archives of Foundry Year 2004, Volume 4, Book 12 PAN Katowice PL ISSN 1642-5308 WPŁYW WIELKOŚCI WYDZIELEŃ GRAFITU NA WYTRZYMAŁOŚĆ ŻELIWA SFEROIDALNEGO

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

Po co w ogóle prognozujemy?

Po co w ogóle prognozujemy? Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

Projekt okładki: Aleksandra Olszewska. Redakcja: Leszek Plak. Copyright: Wydawnictwo Placet Wydanie ebook. Wydawca

Projekt okładki: Aleksandra Olszewska. Redakcja: Leszek Plak. Copyright: Wydawnictwo Placet Wydanie ebook. Wydawca 1 Projekt okładki: Aleksandra Olszewska Redakcja: Leszek Plak Copyright: Wydawnictwo Placet 2011 Wydanie ebook Wszelkie prawa zastrzeżone. Publikacja ani jej części nie mogą być w żadnej formie i za pomocą

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Ścieżka rozwoju polskiej gospodarki w latach gospodarki w latach W tym celu wykorzystana zostanie metoda diagramowa,

Ścieżka rozwoju polskiej gospodarki w latach gospodarki w latach W tym celu wykorzystana zostanie metoda diagramowa, Barbara Batóg, Jacek Batóg Uniwersytet Szczeciński Ścieżka rozwoju polskiej gospodarki w latach - W artykule podjęta zostanie próba analizy, diagnozy i prognozy rozwoju polskiej gospodarki w latach -.

Bardziej szczegółowo

Przy dokonywaniu analiz ekonomicznych, np. sprzedażowych, bardzo

Przy dokonywaniu analiz ekonomicznych, np. sprzedażowych, bardzo Sprawdź, jak możesz przewidzieć wartość sprzedaży w nadchodzących okresach Prognozowanie w Excelu Systemy informatyczne w zarządzaniu 13/01 Przy dokonywaniu analiz ekonomicznych, np. sprzedażowych, bardzo

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

OPTYMALIZACJA PRODUKCJI ODLEWNI Z WYKORZYSTANIEM SYMULACJI ZDARZEŃ DYSKRETNYCH

OPTYMALIZACJA PRODUKCJI ODLEWNI Z WYKORZYSTANIEM SYMULACJI ZDARZEŃ DYSKRETNYCH OPTYMALIZACJA PRODUKCJI ODLEWNI Z WYKORZYSTANIEM SYMULACJI ZDARZEŃ DYSKRETNYCH Jan SZYMSZAL, Teresa LIS, Marian MALIŃSKI, Krzysztof NOWACKI Streszczenie: W artykule omówiono możliwości wykorzystania symulacji

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

Zad.2. Korelacja - szukanie zależności.

Zad.2. Korelacja - szukanie zależności. Ćw. III. MSExcel obliczenia zarządcze Spis zagadnień: Funkcje statystyczne Funkcje finansowe Tworzenie prognoz Scenariusze >>>Otwórz plik: excel_02.xls> przejdź do arkusza

Bardziej szczegółowo

Arkusz kalkulacyjny Excel

Arkusz kalkulacyjny Excel Arkusz kalkulacyjny Excel Ćwiczenie 1. Sumy pośrednie (częściowe). POMOC DO ĆWICZENIA Dzięki funkcji sum pośrednich (częściowych) nie jest konieczne ręczne wprowadzanie odpowiednich formuł. Dzięki nim

Bardziej szczegółowo

Istota funkcjonowania przedsiębiorstwa produkcyjnego. dr inż. Andrzej KIJ

Istota funkcjonowania przedsiębiorstwa produkcyjnego. dr inż. Andrzej KIJ Istota funkcjonowania przedsiębiorstwa produkcyjnego dr inż. Andrzej KIJ 1 Popyt rynkowy agregacja krzywych popytu P p2 p1 D1 q1 D2 q2 Q 2 Popyt rynkowy agregacja krzywych popytu P p2 p1 D1 +D2 D1 D2 q1

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe? Prognozowanie Co trzeba wiedzieć korzystając z modelu ARIMA Marta Płonka Predictive Solutions W trzecim już artykule dotyczącym szeregów czasowych przyjrzymy się modelom ARIMA. Dzisiaj skupimy się na metodzie

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY STOPÓW Al-Si

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY STOPÓW Al-Si 29/19 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 19 Archives of Foundry Year 2006, Volume 6, Book 19 PAN - Katowice PL ISSN 1642-5308 ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY STOPÓW Al-Si J. PIĄTKOWSKI

Bardziej szczegółowo

WYKORZYSTANIE ANALIZY WSKAŹNIKÓW ZDOLNOŚCI DO OPTYMALIZACJI PROCESU WYTWARZANIA MASY FORMIERSKIEJ

WYKORZYSTANIE ANALIZY WSKAŹNIKÓW ZDOLNOŚCI DO OPTYMALIZACJI PROCESU WYTWARZANIA MASY FORMIERSKIEJ 168/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (2/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (2/2) PAN Katowice PL ISSN 1642-5308 WYKORZYSTANIE ANALIZY WSKAŹNIKÓW ZDOLNOŚCI DO OPTYMALIZACJI

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pcibis@o2.pl 23 marca 2006 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności 2 3 Etapy transformacji

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY PODEUTEKTYCZNYCH STOPÓW UKŁADU Al-Si

ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY PODEUTEKTYCZNYCH STOPÓW UKŁADU Al-Si 53/22 Archives of Foundry, Year 2006, Volume 6, 22 Archiwum Odlewnictwa, Rok 2006, Rocznik 6, Nr 22 PAN Katowice PL ISSN 1642-5308 ANALIZA KRZEPNIĘCIA I BADANIA MIKROSTRUKTURY PODEUTEKTYCZNYCH STOPÓW UKŁADU

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej. Paweł Cibis

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej. Paweł Cibis Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej Paweł Cibis pcibis@o2.pl 9 marca 2006 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa wzory

Bardziej szczegółowo

APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI

APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI Łukasz MACH Streszczenie: W artykule przedstawiono wybrane aspekty prognozowania czynników istotnie określających sytuację na

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

ANALIZA TECHNICZNA RYNKÓW FINANSOWYCH

ANALIZA TECHNICZNA RYNKÓW FINANSOWYCH POLITECHNIKA OPOLSKA WYDZIAŁ ZARZĄDZANIA I INŻYNIERII PRODUKCJI ANALIZA TECHNICZNA RYNKÓW FINANSOWYCH ARKADIUSZ SKOWRON OPOLE 2007 Arkadiusz Skowron Analiza techniczna rynków finansowych 1 ANALIZA TECHNICZNA

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Jerzy Stefanowski, Instytut Informatyki Politechnika Poznańska 2010/11. Cel studium przypadku: Studium poświęcone

Bardziej szczegółowo

Analiza zależności liniowych

Analiza zależności liniowych Narzędzie do ustalenia, które zmienne są ważne dla Inwestora Analiza zależności liniowych Identyfikuje siłę i kierunek powiązania pomiędzy zmiennymi Umożliwia wybór zmiennych wpływających na giełdę Ustala

Bardziej szczegółowo

Metoda Johansena objaśnienia i przykłady

Metoda Johansena objaśnienia i przykłady Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian

Bardziej szczegółowo

MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE

MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 254 263 MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE Agnieszka Tłuczak Zakład Ekonometrii i Metod Ilościowych, Wydział Ekonomiczny

Bardziej szczegółowo

SPIS TREŚCI. Do Czytelnika... 7

SPIS TREŚCI. Do Czytelnika... 7 SPIS TREŚCI Do Czytelnika.................................................. 7 Rozdział I. Wprowadzenie do analizy statystycznej.............. 11 1.1. Informacje ogólne..........................................

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji

Bardziej szczegółowo

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej.

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Temat: WYKRYWANIE ODCHYLEO W DANYCH Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Przykładem Box Plot wygodną metodą

Bardziej szczegółowo

Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp

Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE. 1. Wstęp 1 Sugerowany przypis: Chybalski F., Propozycja modelu prognostycznego dla wartości jednostek rozrachunkowych OFE, Przegląd Statystyczny, nr 3/2006, Dom Wydawniczy Elipsa, Warszawa 2006, s. 73-82 Propozycja

Bardziej szczegółowo

A.Światkowski. Wroclaw University of Economics. Working paper

A.Światkowski. Wroclaw University of Economics. Working paper A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:

Bardziej szczegółowo

Ekonometria. Regresja liniowa, dobór postaci analitycznej, transformacja liniowa. Paweł Cibis 24 marca 2007

Ekonometria. Regresja liniowa, dobór postaci analitycznej, transformacja liniowa. Paweł Cibis 24 marca 2007 Regresja liniowa, dobór postaci analitycznej, transformacja liniowa Paweł Cibis pawel@cibis.pl 24 marca 2007 1 Regresja liniowa 2 Metoda aprioryczna Metoda heurystyczna Metoda oceny wzrokowej rozrzutu

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej:

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej: Metoda analizy macierzy współczynników korelacji Idea metody sprowadza się do wyboru takich zmiennych objaśniających, które są silnie skorelowane ze zmienną objaśnianą i równocześnie słabo skorelowane

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

ASPEKTY PODEJMOWANIA DECYZJI MAKE OR BUY ORAZ WYZNACZANIE PUNKTU ZRÓWNANIA KOSZTÓW Z ZYSKIEM W PRODUKCJI ODLEWNICZEJ

ASPEKTY PODEJMOWANIA DECYZJI MAKE OR BUY ORAZ WYZNACZANIE PUNKTU ZRÓWNANIA KOSZTÓW Z ZYSKIEM W PRODUKCJI ODLEWNICZEJ 39/17 ARCHIWUM ODLEWNICTWA Rok 2005, Rocznik 5, Nr 17 Archives of Foundry Year 2005, Volume 5, Book 17 PAN - Katowice PL ISSN 1642-5308 ASPEKTY PODEJMOWANIA DECYZJI MAKE OR BUY ORAZ WYZNACZANIE PUNKTU

Bardziej szczegółowo

Prognozowanie liczby pacjentów poradni ortopedycznej

Prognozowanie liczby pacjentów poradni ortopedycznej Zeszyty Naukowe Metody analizy danych Uniwersytet Ekonomiczny w Krakowie 876 Kraków 2011 Studia Doktoranckie Wydziału Zarządzania Prognozowanie liczby pacjentów poradni ortopedycznej 1. Wprowadzenie W

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału Problem przydziału Przykład Firma KARMA zamierza w okresie letnim przeprowadzić konserwację swoich urządzeń; mieszalników,

Bardziej szczegółowo

Analiza metod prognozowania kursów akcji

Analiza metod prognozowania kursów akcji Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl

Bardziej szczegółowo

BADANIA SKURCZU LINIOWEGO W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA STOPU AlSi 6.9

BADANIA SKURCZU LINIOWEGO W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA STOPU AlSi 6.9 25/19 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 19 Archives of Foundry Year 2006, Volume 6, Book 19 PAN - Katowice PL ISSN 1642-5308 BADANIA SKURCZU LINIOWEGO W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA STOPU

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K. Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą

Bardziej szczegółowo

Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz.

Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz. 14.12.2005 r. Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz. 2 3.2. Implementacja w Excelu (VBA for

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

Tabele przestawne tabelą przestawną. Sprzedawcy, Kwartały, Wartości. Dane/Raport tabeli przestawnej i wykresu przestawnego.

Tabele przestawne tabelą przestawną. Sprzedawcy, Kwartały, Wartości. Dane/Raport tabeli przestawnej i wykresu przestawnego. Tabele przestawne Niekiedy istnieje potrzeba dokonania podsumowania zawartości bazy danych w formie dodatkowej tabeli. Tabelę taką, podsumowującą wybrane pola bazy danych, nazywamy tabelą przestawną. Zasady

Bardziej szczegółowo

BADANIA SKURCZU LINIOWEGO W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA STOPU AlSi 5.4

BADANIA SKURCZU LINIOWEGO W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA STOPU AlSi 5.4 9/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 BADANIA SKURCZU LINIOWEGO W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA

Bardziej szczegółowo

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU Tomasz Demski, StatSoft Polska Sp. z o.o. Wprowadzenie Jednym z elementów walidacji metod pomiarowych jest sprawdzenie liniowości

Bardziej szczegółowo

Analiza szeregów czasowych bezrobocia i inflacji w Danii

Analiza szeregów czasowych bezrobocia i inflacji w Danii Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych

Bardziej szczegółowo

MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY***

MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY*** ZAGADNIENIA TECHNICZNO-EKONOMICZNE Tom 48 Zeszyt 3 2003 Joanna Chrabołowska*, Joanicjusz Nazarko** MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY*** W artykule przedstawiono metodykę budowy modeli ARIMA oraz ich

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

PROGRAM OPTYMALIZACJI PLANU PRODUKCJI

PROGRAM OPTYMALIZACJI PLANU PRODUKCJI Strona 1 PROGRAM OPTYMALIZACJI PLANU PRODUKCJI Program autorski opracowany przez Sławomir Dąbrowski ul. SIENKIEWICZA 3 m. 18 26-220 STĄPORKÓW tel: 691-961-051 email: petra.art@onet.eu, sla.dabrowscy@onet.eu

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo