Metody reprezentacji danych w podprzestrzeniach liniowych oraz ich zastosowanie w zadaniach rozpoznawania obrazów twarzy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody reprezentacji danych w podprzestrzeniach liniowych oraz ich zastosowanie w zadaniach rozpoznawania obrazów twarzy"

Transkrypt

1 Metody reprezentacji danych w podprzestrzeniach liniowych oraz ich zastosowanie w zadaniach rozpoznawania obrazów twarzy Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 60

2 Plan wykładu 1.1.Redukcja Redukcjawymiarowości wymiarowości 2.2.Przedstawienie Przedstawieniewybranych wybranychmetod metod oraz orazich ichzastosowań zastosowań 3.3.PCA PCA//KLT, KLT,1D, 1D,2D 2D 4.4.LDA, LDA,1D, 1D,2D 2D 2 / 60

3 Transformacje ortogonalne 1.1.SVD SVD Singular SingularValue ValueDecomposition Decomposition 2.2.DCT, DCT,DFT DFT Discrete DiscreteCosine/Fourier Cosine/FourierTransform Transform 3.PCA/KLT 3.PCA/KLT Principal PrincipalComponent ComponentAnalysis Analysis 4.4.LDA LDA Linear LinearDiscriminant DiscriminantAnalysis Analysis 3 / 60

4 Jak reprezentować obrazy? Dlaczego potrzebujemy metod reprezentacji obrazów? Przekleństwo wymiarowości (ang. Curse of dimensionality) szerokość x wysokość x kanały_koloru Usuwanie szumu Analiza sygnału I wizualizacja Metody reprezentacji W dziedzinie częstotliwości : metody liniowej transformacji DFT, DCT, DST, DWT, Często jako metody kompresji Operacje w podprzestzreniach PCA, ICA, LDA Liniowe transformacje obliczone na podstawie danych Metody ekstrakcji cech Wykrywanie linii I krawędzi Mapy cech uzyskane w wyniku filtracji Transformata Gabora Aktywne kontury (ASM, Snakes) 4 / 60

5 Czym jest podprzestrzeń? (1/2) Problem określenia bazy w niskowymiarowej podprzestrzeni: Aproksymacja wektorów poprzez rzutowanie do nowej, niskowymiarowej podprzestrzeni: (1) Początkowa reprezentacja: x = a1v1 + a2v2 + + an vn w N-wymiarowej przestrzeni space where is a bazą base in the original N-dimensional gdzie v1, v2,, vn jest (2) Niskowymiarowa reprezentacja w podprzestrzeni: xˆ = b1u1 + b2u2 + + bk u K where is a basein K -dimensionalsub-space (K<N) (K<N) bazą wthek-wymiarowej podprzestrzeni gdzie u1, u2,, uk jest Uwaga: jeżeli K=N, wtedy x = x 5 / 60

6 Czym jest podprzestrzeń? (2/2) Przykład (K=N): 6 / 60

7 Analiza Komponentów Głównych PRINCIPAL COMPONENT ANALYSIS (PCA) 7 / 60

8 Motywacja Cele analizy Znalezienie bazy, która ma dużą wariancję w danych Reprezentacja danych z możliwie małą liczbą elementów bazy z niskim MSE 8 / 60

9 Problem klasyfikacji Algorytmy Rozpoznawania Wzorców PCA szuka kierunków, które dobrze rozdzielają klasy nieefektywne klasa A efektywne klasa A klasa B klasa B 9 9 / 60

10 Rozporoszenie Algorytmy Rozpoznawania Wzorców PCA maksymalizuje całkowite rozproszenie Rozproszenie (ang. scatter) Klasa A Klasa B / 60

11 Obliczenie komponentów (PCs) Zakładamy że E[ x] = 0 T T a=x q=q x s 2 = E[a 2 ] - E[a]2 = E[a 2 ] T q = (q q) 1 2 =1 Znaleźć takie q, które maksymalizują to = E[(qT x)(xt q)] = qt E[xxT ]q = qt Rq Komponent (PC) q obliczamy jest za pomocą dekomozycji wartości własnych, np. za pomocą SVD R = QΛQT, Q = [q1, q2,, q j,, qλ m ], Ű Rq j = l j q j = diag[l1, l2,, l j,, lm ] j = 1, 2,, m Rq = l q 11 / 60

12 Redukcja wymiarowości (1/2) Można odrzucić komponenty o mniejszym znaczeniu. Faktycznie, traci się częśc informacji, jednak wartości własne są na tyle małe, że utrata nie jest duża n wymiarów w danych początkowych Oblicza się n wektorów własnychiu wartości własnych wybieramy p wektorów własnych na podstawie największych wartości własnych Docelowa przestrzeń ma p wymiarów 12 / 60

13 Redukcja wymiarowości (2/2) Wariancja Wymiarowość 13 / 60

14 Rekonstrukcja Oryginał q=1 q=2 q=4 q=16 q=32 q=64 q=8 q= / 60

15 Algorytmy Rozpoznawania Wzorców Algorytm Eigenfaces Założenia Kwadratowe obrazy szerokość = wysokość = N M liczba obrazów w bazie danych P liczba osób w bazie danych Opracowane w 1991 przez Turka I Pentlanda Wykorzystuje PCA Stosunkowo prosta Szybka Odporna m.in. na szum 15 / 60

16 Eigenfaces Algorytmy Rozpoznawania Wzorców Baza danych 16 / 60

17 Eigenfaces Algorytmy Rozpoznawania Wzorców Obliczany obraz średni gdzie 17 / 60

18 Eigenfaces Algorytmy Rozpoznawania Wzorców Następnie odejmujemy od obrazów z bazy 18 / 60

19 Eigenfaces Algorytmy Rozpoznawania Wzorców Budujemy macierz N2 na M Macierz kowariancji w wymiarach N2 na N / 60

20 Eigenfaces Algorytmy Rozpoznawania Wzorców Należy znaleźć wartości własne macierzy kowariancji Macierz ta jest duża! Obliczenia są czasochłonne Interesuje nas najwyżej M wartości własnych Zmiejszamy wymiarowość tej macierzy / 60

21 Algorytmy Rozpoznawania Wzorców Eigenfaces Obliczamy macierz o wymiarach M na M Znajdujemy M wartości własnych i wektorów własnych Wektory własne z Cov i L są równoważne Budujemy macierz V z wektorów obliczonych dla L / 60

22 Eigenfaces Algorytmy Rozpoznawania Wzorców Wektory własne z Cov są linową kombinacją w przestrzeni obrazów (twarzy) z wektorami własnymi z L U = AV V to macierz wektorów własnych Wektory własne reprezentują zmienność twarzy / 60

23 Algorytmy Rozpoznawania Wzorców Eigenfaces A: kolekcja twarzy w zbiorze uczącym U: przestrzeń twarzy własnych / 60

24 Eigenfaces Twarze własne dla obrazów z bazy Algorytmy Rozpoznawania Wzorców / 60

25 Eigenfaces Algorytmy Rozpoznawania Wzorców Obliczamy, dla każdej twarzy, jej projekcję w przestrzeni twarzy: Obliczamy próg: dla 25 / 60

26 Algorytmy Rozpoznawania Wzorców Eigenfaces: rozpoznawanie Aby rozpoznać twarz Odejmujemy od niej twarz średnią 26 / 60

27 Eigenfaces : rozpoznawanie Algorytmy Rozpoznawania Wzorców Obliczamy projekcję do przestrzeni twarzy U Obliczamy odległość w przestrzeni twarzy pomiędzy twarzą badaną oraz wszystkimi znanymi (zapamiętanymi w bazie) twarzami dla 27 / 60

28 Eigenfaces : rozpoznawanie Algorytmy Rozpoznawania Wzorców Rekonstrukcja twarzy ze pomocą twarzy własnych Obliczamy odległość badanej twarzy oraz jej rekonstrukcji 28 / 60

29 Eigenfaces : rozpoznawanie Algorytmy Rozpoznawania Wzorców Rozróżniamy pomiędzy następującymi przypadkami: Jeżeli to nie mamy do czynienia z twarzą; odległość pomiędzy badaną twarzą i jej rekonstrukcją jest większa niż próg Jeżeli oraz to jest to nowa twarz oraz Jeżeli to jest to znana twarz, ponieważ odległość badanej twarzy do wszystkich twarzy z bazy jest większa niż próg 29 / 60

30 Eigenfaces problemy Trudności w przypadku rozpoznawania Algorytmy Rozpoznawania Wzorców Różnych orientacji twarzy Róznych opozycji twarzy Różnic w ekspresji Obecności kierunkowego oświetlenia 30 / 60

31 Liniowa Analiza Dyskryminacyjna LINEAR DISCRIMINANT ANALYSIS (LDA) 31 / 60

32 Ograniczenia PCA Czy wymiary o maksymalnej wariancji odpowiadają wymiarom, które chcemy zachować? 32 / 60

33 Linear Discriminant Analysis (1/6) Co jest celem LDA? Przeprowadzić redukcję wymiarowości przy jednoczesnym zachowaniu informacji o separacji klas. Szukać kierunków, wzdłuż których klasy są najlepiej separowalne. Brać pod uwagę dyspersję wewnątrzklasową i międzyklasową. Np. w przypadku rozpoznawania twarzy, daje możliwośc rozróżniania obrazów bardziej w kontekscie ich przynależności do osób niż w kontekście zmian spowodowanych m.in. oświetleniem lub ekspresją. 33 / 60

34 Linear Discriminant Analysis (2/6) Rozrzut wewnątrzklasowy Within-class scatter matrix c ni ĺĺ S w = (Y j - M i )(Y j - M i )T i =1 j =1 c Rozrzut międzyklasowy Between-class scatter matrix ĺ Sb = ( M i - M )( M i - M )T i =1 Macierz po projekcji y =U x T LDA oblicza transformację, która maksymalizuje rozrzut międzyklasowy przy jednoczesnym minimalizowaniu rozrzutu wewnątrzklasowego: S%b U T SbU max = max T % U S wu Sw rezultaty oblicznia wart. własnych! S w-1sb = U LU T S%%b, S w : macierze rozrzutu po rzutowaniu y 34 / 60

35 Linear Discriminant Analysis (3/6) Czy Sw-1 da się zawsze obliczyć? jeżeli Sw jest nieosobliwa, możemy rozwiązać typowy problem wartości własnych poprzez: S w-1sb = U LU T W praktyce, Sw jest zwykle osobliwa ponieważ obrazy są danymi wektorowymi o dużej wymiarowości, podczas gdy licznośc zbioru jest stosunkowo mała (M << N ) Podczas gdy Sb ma najwyżej rząd C-1, maksymalna liczba wektorów własnych z niezerowymi wartościami własnymi jest równa C-1 (t.j., maksymalna wymiarowość podprzestrzeni to C-1) 35 / 60

36 Linear Discriminant Analysis (4/6) Czy Sw-1 da się zawsze obliczyć? Aby rozwiązać ten problem, stusuje się często PCA jako element obróbki dancyh: 1) PCA wstępnie redukuje wymiarowośc danych. 2) LDA jest wykonywane na tak uzyskanych danych: 36 / 60

37 Linear Discriminant Analysis (5/6) PCA LDA D. Swets, J. Weng, "Using Discriminant Eigenfeatures for Image Retrieval", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 8, pp , / 60

38 Linear Discriminant Analysis (6/6) Porównanie PCA (MEF) i LDA (MDF) Wektory MEF (Most Expressive Features) pokazują tendencję PCA do przechowywania informacji takich jak zmiany oświetlenia. Wektory MDF (Most Discriminative Features) cechy te eliminują. D. Swets, J. Weng, "Using Discriminant Eigenfeatures for Image Retrieval", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 8, pp , / 60

39 Algorytmy Rozpoznawania Wzorców Algorytm Fisherfaces Założenia Kwadratowe obrazy szerokość = wysokość = N M liczba obrazów w bazie danych P liczba osób w bazie danych Opracowany w 1997 przez P.Belhumeura i in. Wykorzystuje analizę Fishera = Linear Discriminant Analysis (LDA) Szybsza, w pewnych wypadkach, od Eigenfaces Niższy poziom błędów Działa w przypadku różnego oświetlenia Radzi sobie ze zmianami ekspresji. 39 / 60

40 Fisherfaces Algorytmy Rozpoznawania Wzorców Baza danych 40 / 60

41 Fisherfaces Algorytmy Rozpoznawania Wzorców Obliczany jest obraz średni gdzie 41 / 60

42 Fisherfaces Obliczana jest średnia twarzy dla każdej osoby 42 / 60

43 Fisherfaces Odejmujemy od każdego obrazu 43 / 60

44 Fisherfaces Budujemy macierze rozrzutu S1, S2, S3, S4 i macierz rozrzutu wewnątrzklasowego SW 44 / 60

45 Fisherfaces Międzyklasowa macierz rozrzutu Poszukiwania jest macierz W maksymalizująca 45 / 60

46 Fisherfaces Jeżeli SW jest nieosobliwa ( ): Kolumny W są wektorami własnymi Musmy obliczyć odwrotność SW Musimy mnożyć macierze i obliczyć wektory własne 46 / 60

47 Fisherfaces Jeżeli SW jest nieosobliwa ( Prościej: ): Kolumny W są wektorami własnymi, które spełniają Wartości własne są pierwiastkami Obliczamy wartości własne poprzez 47 / 60

48 Fisherfaces Jeżeli SW jest osobliwa ( Stosujemy najpierw PCA ): Zredukujemy w ten sposób wymiarowość twarzy z N2 do M Uzyskujemy wektory o wymiarze MM Stosujemy LDA 48 / 60

49 Fisherfaces Rzutujemy twarze do przestrzeni cech po LDA Klasyfikacja twarzy polega na Rzutowaniu do przestrzeni LDA Wykorzystaniu klasyfikatora, np. minimalnoodległościowego 49 / 60

50 PCA & Fisher s Linear Discriminant 50 / 60

51 PCA & Fisher s Linear Discriminant 51 / 60

52 Prównanie PCA i LDA Baza danych FERET Eigenfaces 80.0%, Fisherfaces 93.2% 52 / 60

53 Porównanie PCA i LDA Eigenfaces Projekcja do podprzestzreni o mniejszej wymiarowości Bez rozróżnienia pomiędzy zmiannością wewnątrzi pomiędzy-klasową Optymalna dla reprezentacji ale nie dyskryminacji Fisherfaces Znalezienie podprzestzreni, która maksymalizuje stosunek rozrzutu międzyklasowego do wewnątrzklasowego Wspólna miara zmienności wewnątrzklasowej 53 / 60

54 LDA : ograniczenia Algorytmy Rozpoznawania Wzorców Klasyczna metod LDA wymaga przeprowadzania wstępnej redukcji wymiarowości danych, np. za pomocą próbkowania (down-sampling) lub PCA/PCArc. Wymagane jest spełnienie warunku: gdzie K liczba klas obrazów, L-liczba obrazów w klasie, DIM wymiarowośc przestrzeni cech. G. Kukharev, P. Forczmański, Two-Dimensional LDA Approach to Image Compression and Recognition, Computing, Multimedia and Intelligent Techniques, vol.2, no. 1, 2006, s G. Kukharev, P. Forczmański, Face Recognition by Means of Two-Dimensional Direct Linear, Discriminant Analysis Pattern recognition and information processing: PRIP 2005: Proceedings of the Eighth International Conference, Maj, Mińsk, Białoruś 2005, s / 60

55 Algorytmy Rozpoznawania Wzorców 2DLDA/LDArc (1) Rozwiązaniem tego problemu jest zastosowanie metody 2DLDA (LDArc), która zakłada dekompozycję obrazu na zestaw wierszy i kolumn i obliczanie 2 zestawów macierzy kowariancji: 55 / 60

56 2DLDA/LDArc (2) Algorytmy Rozpoznawania Wzorców Dla każdego zestawu obliczane są macierze kowariancji (podobnie do LDA): celem LDA jest maksymalizacja rozrzutu (scatter) międzyklasowego w stosunku do rozrzutu wewnątrzklasowego, co sprowadza się w maksymalizacji wyrażenia: 56 / 60

57 Algorytmy Rozpoznawania Wzorców 2DLDA/LDArc (3) W tym celu obliczane są rozkłady macierzy H: Dające zestawy macierzy wektorów własnych V i wartości własnych Λ dla odpowiednich reprezentacji (wierszowych R i kolumnowych C). 57 / 60

58 2DLDA/LDArc (5) Algorytmy Rozpoznawania Wzorców Przekształcenie LDArc można przedstawić w następujący sposób: Przykładowe wyniki redukcji przedstawiono poniżej: 58 / 60

59 Algorytmy Rozpoznawania Wzorców 2DLDA/LDArc: przykłady G. Kukharev, P. Forczmański, Facial images dimensionality reduction and recognition by means of 2DKLT, Machine Graphics & Vision, vol. 16, no. 3/4, 2007, s / 60

60 Literatura Simon Haykin, Neural Networks A Comprehensive Foundation- 2nd Edition, Prentice Hall Marian Stewart Bartlett, Face Image Analysis by Unsupervised Learning, Kluwer academic publishers A. Hyvärinen, J. Karhunen and E. Oja, Independent Component Analysis,, John Willy & Sons, Inc. D. L. Swets and J. Weng, Using Discriminant Eigenfeatures for Image Retrieval, IEEE Trasaction on Pattern Analysis and and Machine Intelligence, Vol. 18, No. 8, August / 60

10. Redukcja wymiaru - metoda PCA

10. Redukcja wymiaru - metoda PCA Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component

Bardziej szczegółowo

5. Analiza dyskryminacyjna: FLD, LDA, QDA

5. Analiza dyskryminacyjna: FLD, LDA, QDA Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną

Bardziej szczegółowo

Metody reprezentacji danych w podprzestrzeniach liniowych oraz ich zastosowanie w zadaniach rozpoznawania obrazów cyfrowych

Metody reprezentacji danych w podprzestrzeniach liniowych oraz ich zastosowanie w zadaniach rozpoznawania obrazów cyfrowych Metody reprezentacji danych w podprzestrzeniach liniowych oraz ich zastosowanie w zadaniach rozpoznawania obrazów cyfrowych Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1

Bardziej szczegółowo

Rozpoznawanie twarzy za pomocą sieci neuronowych

Rozpoznawanie twarzy za pomocą sieci neuronowych Rozpoznawanie twarzy za pomocą sieci neuronowych Michał Bereta http://torus.uck.pk.edu.pl/~beretam Praktyczna przydatność Bardzo szerokie praktyczne zastosowanie Ochrona Systemy bezpieczeństwa (np. lotniska)

Bardziej szczegółowo

SPOTKANIE 9: Metody redukcji wymiarów

SPOTKANIE 9: Metody redukcji wymiarów Wrocław University of Technology SPOTKANIE 9: Metody redukcji wymiarów Piotr Klukowski* Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.wroc.pl 08.12.2015 *Część slajdów pochodzi z prezentacji dr

Bardziej szczegółowo

Analiza głównych składowych- redukcja wymiaru, wykł. 12

Analiza głównych składowych- redukcja wymiaru, wykł. 12 Analiza głównych składowych- redukcja wymiaru, wykł. 12 Joanna Jędrzejowicz Instytut Informatyki Konieczność redukcji wymiaru w eksploracji danych bazy danych spotykane w zadaniach eksploracji danych mają

Bardziej szczegółowo

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU obraz dr inż. Jacek Naruniec Analiza Składowych Niezależnych (ICA) Independent Component Analysis Dąży do wyznaczenia zmiennych niezależnych z obserwacji Problem opiera

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Klasyfikacja LDA + walidacja

Klasyfikacja LDA + walidacja Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja

Bardziej szczegółowo

Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań

Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań ... Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 Wyłączenie odpowiedzialności

Bardziej szczegółowo

TRANSFORMACJE I JAKOŚĆ DANYCH

TRANSFORMACJE I JAKOŚĆ DANYCH METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING TRANSFORMACJE I JAKOŚĆ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Elementy statystyki wielowymiarowej

Elementy statystyki wielowymiarowej Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

7. Maszyny wektorów podpierajacych SVMs

7. Maszyny wektorów podpierajacych SVMs Algorytmy rozpoznawania obrazów 7. Maszyny wektorów podpierajacych SVMs dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Maszyny wektorów podpierajacych - SVMs Maszyny wektorów podpierających (ang.

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

SPOTKANIE 7: Redukcja wymiarów: PCA, Probabilistic PCA

SPOTKANIE 7: Redukcja wymiarów: PCA, Probabilistic PCA Wrocław University of Technology SPOTKANIE 7: Redukcja wymiarów: PCA, Probabilistic PCA Maciej Zięba Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 18.01.2013 Redukcja wymiarów Zmienne wejściowe

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań

Robert Susmaga. Instytut Informatyki ul. Piotrowo 2 Poznań ... Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7 Wyłączenie odpowiedzialności

Bardziej szczegółowo

NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU

NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU Wojciech Zając Instytut Informatyki

Bardziej szczegółowo

Detekcja punktów zainteresowania

Detekcja punktów zainteresowania Informatyka, S2 sem. Letni, 2013/2014, wykład#8 Detekcja punktów zainteresowania dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów

Bardziej szczegółowo

Analiza składowych głównych

Analiza składowych głównych Analiza składowych głównych Wprowadzenie (1) W przypadku regresji naszym celem jest predykcja wartości zmiennej wyjściowej za pomocą zmiennych wejściowych, wykrycie związku między wielkościami wejściowymi

Bardziej szczegółowo

Rozglądanie się w przestrzeni Iris czyli kręcenie (głową/płaszczyzną) w czterech wymiarach

Rozglądanie się w przestrzeni Iris czyli kręcenie (głową/płaszczyzną) w czterech wymiarach Rozglądanie się w przestrzeni Iris czyli kręcenie (głową/płaszczyzną) w czterech wymiarach maja, 7 Rozglądanie się w D Plan Klasyka z brodą: zbiór danych Iris analiza składowych głównych (PCA), czyli redukcja

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 7 Transformaty i kodowanie. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 7 Transformaty i kodowanie. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 7 Transformaty i kodowanie Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład

Bardziej szczegółowo

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Analiza składników podstawowych - wprowadzenie (Principal Components Analysis

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

Rozpoznawanie płci na podstawie zdjęć twarzy

Rozpoznawanie płci na podstawie zdjęć twarzy Kraków, 2015-06-28 Bartłomiej Bajdo Wojciech Czajkowski Rozpoznawanie płci na podstawie zdjęć twarzy Projekt na przedmiot: Analiza i Przetwarzania Obrazów 1 Cel projektu Celem projektu było napisanie programu,

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki

Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Twierzdzenie: Prawdopodobieostwo, że n obserwacji wybranych

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości

Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości W Filtracja adaptacyjna w dziedzinie częstotliwości Blokowy algorytm LMS (BLMS) N f n+n = f n + α x n+i e(n + i), i= N L Slide e(n + i) =d(n + i) f T n x n+i (i =,,N ) Wprowadźmy nowy indeks: n = kn (

Bardziej szczegółowo

Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner

Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 8

Obliczenia naukowe Wykład nr 8 Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8

ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 1. Sprawdzić, czy następujące podzbiory są podprzestrzeniami liniowymi przestrzeni R n (dla odpowiednich n) (a) {[u, v, 2u, 4v] ; u, v R} R 4, (b) {[u, v,

Bardziej szczegółowo

Modelowanie danych hodowlanych

Modelowanie danych hodowlanych Modelowanie danych hodowlanych 1. Wykład wstępny 2. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami

Bardziej szczegółowo

Transformaty. Kodowanie transformujace

Transformaty. Kodowanie transformujace Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0

Bardziej szczegółowo

Wykład wprowadzający

Wykład wprowadzający Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Wykład wprowadzający dr inż. Michał Grochowski kiss.pg.mg@gmail.com michal.grochowski@pg.gda.pl

Bardziej szczegółowo

Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2

Bardziej szczegółowo

Adrian Horzyk

Adrian Horzyk Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

1 Podobieństwo macierzy

1 Podobieństwo macierzy GAL (Informatyka) Wykład - zagadnienie własne Wersja z dnia 6 lutego 2014 Paweł Bechler 1 Podobieństwo macierzy Definicja 1 Powiemy, że macierze A, B K n,n są podobne, jeżeli istnieje macierz nieosobliwa

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW

MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechniki Łódzkiej MODELOWANIE PRZESTRZENI ZA POMOCĄ MULTIILOCZYNÓW WEKTORÓW Praca zawiera opis kształtowania przestrzeni n-wymiarowej, definiowania orientacji

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska

Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska Algorytmy rozpoznawania obrazów 11. Analiza skupień dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Analiza skupień Określenia: analiza skupień (cluster analysis), klasteryzacja (clustering), klasyfikacja

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

Identyfikacja twarzy z wykorzystaniem Sztucznych Sieci Neuronowych oraz PCA

Identyfikacja twarzy z wykorzystaniem Sztucznych Sieci Neuronowych oraz PCA Identyfikacja twarzy z wykorzystaniem Sztucznych Sieci Neuronowych oraz PCA Michał Pieróg pierogmichal@gmail.com Jakub Jaśkowiec qbajas@gmail.com Abstrakt Identyfikacja twarzy jest zadaniem polegającym

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Skalowanie wielowymiarowe idea

Skalowanie wielowymiarowe idea Skalowanie wielowymiarowe idea Jedną z wad metody PCA jest możliwość używania jedynie zmiennych ilościowych, kolejnym konieczność posiadania pełnych danych z doświadczenia(nie da się użyć PCA jeśli mamy

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ). B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Algebra z Geometria Analityczna Nazwa w języku angielskim : Algebra and Analytic Geometry Kierunek studiów

Bardziej szczegółowo

Rozpoznawanie obiektów z użyciem znaczników

Rozpoznawanie obiektów z użyciem znaczników Rozpoznawanie obiektów z użyciem znaczników Sztuczne znaczniki w lokalizacji obiektów (robotów) Aktywne znaczniki LED do lokalizacji w przestrzeni 2D (do 32): Znaczniki z biblioteki AruCo (do 1024) Id

Bardziej szczegółowo

Algebra liniowa. 1. Macierze.

Algebra liniowa. 1. Macierze. Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Rewolucja cyfrowa i jej skutki Rewolucja cyfrowa - dane cyfrowe: podstawowy rodzaj informacji multimedialnych,

Bardziej szczegółowo

TRANSFORMATA FALKOWA 2D. Oprogramowanie Systemów Obrazowania 2016/2017

TRANSFORMATA FALKOWA 2D. Oprogramowanie Systemów Obrazowania 2016/2017 TRANSFORMATA FALKOWA 2D Oprogramowanie Systemów Obrazowania 2016/2017 Wielorozdzielczość - dekompozycja sygnału w ciąg sygnałów o coraz mniejszej rozdzielczości na wielu poziomach gdzie: s l+1 - aproksymata

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi. Plan wykładu:

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi. Plan wykładu: Rozwiązywanie algebraicznych układów równań liniowych metodami iteracynymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksaci 3. Zbieżność

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

SPOTKANIE 2: Wprowadzenie cz. I

SPOTKANIE 2: Wprowadzenie cz. I Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10

Bardziej szczegółowo

Badania asocjacyjne w skali genomu (GWAS)

Badania asocjacyjne w skali genomu (GWAS) Badania asocjacyjne w skali genomu (GWAS) Część 2 LD, PCA Bioinżynieria, I mgr Bioinformatyczna analiza danych Wykład 3 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Analiza głównych

Bardziej szczegółowo

Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG

Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach

Bardziej szczegółowo

ANALIZA CZYNNIKOWA Przykład 1

ANALIZA CZYNNIKOWA Przykład 1 ANALIZA CZYNNIKOWA... stanowi zespół metod i procedur statystycznych pozwalających na badanie wzajemnych relacji między dużą liczbą zmiennych i wykrywanie ukrytych uwarunkowań, ktore wyjaśniają ich występowanie.

Bardziej szczegółowo

Jądrowe klasyfikatory liniowe

Jądrowe klasyfikatory liniowe Jądrowe klasyfikatory liniowe Waldemar Wołyński Wydział Matematyki i Informatyki UAM Poznań Wisła, 9 grudnia 2009 Waldemar Wołyński () Jądrowe klasyfikatory liniowe Wisła, 9 grudnia 2009 1 / 19 Zagadnienie

Bardziej szczegółowo

Numeryczna algebra liniowa

Numeryczna algebra liniowa Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak podstawowe operacje na wektorach i macierzach, a także rozwiązywanie układów

Bardziej szczegółowo

KLASYFIKACJA. Słownik języka polskiego

KLASYFIKACJA. Słownik języka polskiego KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu

Bardziej szczegółowo

SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY. Autorzy: M. Lewicka, K. Stańczyk

SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY. Autorzy: M. Lewicka, K. Stańczyk SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY Autorzy: M. Lewicka, K. Stańczyk Kraków 2008 Cel pracy projekt i implementacja systemu rozpoznawania twarzy, który na podstawie

Bardziej szczegółowo

2. Empiryczna wersja klasyfikatora bayesowskiego

2. Empiryczna wersja klasyfikatora bayesowskiego Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Zadania z Algebry liniowej 4 Semestr letni 2009

Zadania z Algebry liniowej 4 Semestr letni 2009 Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także

Bardziej szczegółowo

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania

Bardziej szczegółowo