ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH"

Transkrypt

1 ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYC Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, Warszawa Semestr zimowy Metody chiralooptyczne ECD eksperyment DFT obliczenia (4S,5R) 2

2 PODZIĘKOWANIA Część rysunków wykorzystanych w niniejszym wykładzie pochodzi za zgodą Autorów z materiałów opracowanych przez prof. Jadwigę Frelek i jej zespół. Prof. Jadwidze Frelek i dr Aleksandrze Butkiewicz składam w tym miejscu podziękowanie za pozwolenie na wykorzystanie tych materiałów w moim wykładzie. Animowane symulacje zjawisk falowych pochodzą ze strony internetowej Andrása Szilágyi ( do odwiedzenia której zachęcam. 3 Metody chiraloptyczne Podstawowe metody chiralooptyczne: 1. Pomiar skręcalności optycznej (polarymetria). 2. Dyspersja skręcalności optycznej (Optical Rotary Dispersion ORD). 3. Elektronowy dichroizm kołowy (Electronic Circular Dichroism ECD lub CD. 4. Wibracyjny dichroizm kołowy (Vibrational Circular Dichroism VCD). Na czym polegają: Współczynniki absorpcji i/lub załamania muszą być różne dla promieniowania elektromagnetycznego kołowo spolaryzowanego w lewo ( L, n L ) i kołowo spolaryzowanego w prawo ( R, n R ) i odwrotnie Do czego służą: 1. Polarymetria: stwierdzenie czynności optycznej związku; dla związków znanych ustalenie czystości optycznej (nadmiaru enancjomerycznego) 2. ORD, ECD, VCD: określanie konfiguracji absolutnej cząsteczek chiralnych na podstawie reguł empirycznych lub za pomocą metod obliczeniowych. 4

3 Polarymetria Jean Baptiste Biot ( ) Skręcalność właściwa substancji w roztworze [α] D to wartość skręcenia płaszczyzny polaryzacji żółtego światła sodowego (589 nm) spolaryzowanego liniowo mierzona w 20 o C dla roztworu o stężeniu 1 g/1 cm 3 na drodze 1 dm. Jeśli z punktu widzenia obserwatora płaszczyzna polaryzacji ulega skręceniu w prawo (zgodnie z ruchem wskazówek zegara), to znak skręcalności jest dodatni, a w przeciwnym przypadku ujemny. Zawsze należy podawać rozpuszczalnik i stężenie. [ ] 20 D l c α kąt skręcenia płaszczyzny polaryzacji w stopniach (z podaniem znaku!) l długość drogi optycznej (w dm) c stężenie substancji (w g/cm 3 ) 5 Polarymetria Konstrukcja polarymetru i sposób pomiaru skręcalności Polarymetr manualny Polarymetr automatyczny 6

4 Typy polaryzacji Liniowa (inaczej: w płaszczyźnie) Kołowa András Szilágyi 7 Polaryzacja liniowa Suma wiązek światła spolaryzowanego kołowo lewoskrętnie i prawoskrętnie (o tej samej długości fali i natężeniu) daje światło spolaryzowane liniowo. Tak więc każda wiązka światła spolaryzowanego liniowo może być traktowana jako suma dwóch wiązek spolaryzowanych kołowo o przeciwnych kierunkach polaryzacji. András Szilágyi 8

5 Zasada działania polarymetrii i ORD n D > n L András Szilágyi W wyniku różnej szybkości rozchodzenia się fal spolaryzowanych kołowo lewoskrętnie i prawoskrętnie w ośrodku o czynności optycznej pojawia się przesunięcie fazowe pomiędzy nimi, skutkujące zmianą płaszczyzny światła spolaryzowanego liniowo, na które te dwie wiązki się składają. Zjawisko to nosi nazwę dwójłomności kołowej. 9 Dyspersja skręcalności optycznej (ORD) Metoda ORD polega na pomiarze zależności kąta skręcania płaszczyzny polaryzacji światła spolaryzowanego liniowo od długości fali. W odróżnieniu od metody ECD nie wymaga obecności w cząsteczce chromoforu. nic_chemistry_(roberts_and_caserio)/19%3a_more_on_stereochemistry/19.09%3a_optical_rotatory_dispersion_ and_circular_dichroism 10

6 Zjawisko dichroizmu kołowego Oddziaływanie promieniowania elektromagnetycznego spolaryzowanego kołowo z absorbującym ośrodkiem chiralnym: wiązki prawo- i lewoskrętne są absorbowane w różnym stopniu. D > L Polaryzacja eliptyczna András Szilágyi 11 Zjawisko dichroizmu kołowego W rzeczywistości zjawiska dichroizmu kołowego i dwójłomności kołowej najczęściej występują równocześnie. D > L n D > n L Polaryzacja eliptyczna + skręcenie płaszczyzny polaryzacji András Szilágyi 12

7 Spektroskopia dichroizmu kołowego Δε Δε = ε L ε R dichroizm kołowy ε L, ε R molowe współczynniki absorpcji dla światła spolaryzowanego kołowo w lewo i kołowo w prawo 13 Spektroskopia dichroizmu kołowego ECD i VCD Spektroskopia elektronowego dichroizmu kołowego (ECD) Pomiar różnicy absorpcji przez próbkę promieniowania elektromagnetycznego spolaryzowanego kołowo prawo- i lewoskrętnie w zakresie nadfioletu i światła widzialnego. Aby pomiar był możliwy cząsteczki badanej substancji muszą być chiralne i absorbować promieniowanie w tym zakresie, czyli posiadać odpowiedni chromofor. Spektroskopia wibracyjnego dichroizmu kołowego (VCD) Pomiar różnicy absorpcji przez próbkę promieniowania elektromagnetycznego spolaryzowanego kołowo prawo- i lewoskrętnie w zakresie podczerwieni. Nie jest wymagana obecność chromoforu (chiralność oczywiście tak!), ale pomiar jest trudniejszy technicznie (bardzo długi). 14

8 Spektroskopia dichroizmu kołowego ECD i VCD Warunki występowania dichroizmu kołowego (CD): chiralność badanego układu obecność odpowiedniego chromoforu Co to jest chromofor: atomy lub grupa atomów, w których zlokalizowane są elektrony biorące udział we wzbudzeniu (najczęściej elektrony i n) definicja klasyczna, dotyczy ECD. fragment cząsteczki zmieniający wskutek wzbudzenia swoje właściwości jak np. polaryzację, rozkład ładunku, geometrię itd. definicja rozszerzona, dotyczy VCD. 15 Spektroskopia dichroizmu kołowego ECD CROMOFORY wewnętrznie chiralne achiralne w chiralnym otoczeniu absorbujące na granicy lub poza zakresem pomiarowym achiralna cząsteczka achiralny chromofor chiralna cząsteczka brak chromoforu chiralna cząsteczka chiralny chromofor chiralna cząsteczka achiralny chromofor brak CD brak CD silne CD słabe CD 16

9 Spektroskopia elektronowego dichroizmu kołowego ECD L R źródło światła monochromator polaryzator modulator próbka detektor Spektropolarymetr ECD Jasco J nm 17 Przykład zastosowania ECD oksacefamy ca. 220 nm 18

10 Podsumowanie Materiał dr A. Butkiewicz Warunki konieczne do aktywności spektralnej DYSPERSJA SKRĘCALNOŚCI OPTYCZNEJ (ORD) chiralny nieracemiczny układ ELEKTRONOWY DICROIZM KOŁOWY (ECD) chiralny nieracemiczny układ obecność chromoforu OSCYLACYJNY DICROIZM KOŁOWY (VCD) chiralny nieracemiczny układ Zakres pomiarowy nm nm cm -1 Uzyskiwane informacje cała cząsteczka otoczenie wokół chromoforu Rozdzielczość niska niska wysoka cała cząsteczka, drgania Stężenie próbki 5-10 mg/ml mg/ml 5-15 mg/0.2 ml Czułość wysoka wysoka niska Czas pomiaru kilka minut kilka minut kilka godzin, ~6-8 h Obliczenia teoretyczne TD-DFT TD-DFT DFT Ustalanie budowy związków organicznych ogólne zasady postępowania 20

11 W jakich sytuacjach napotykamy problem ustalenia lub potwierdzenia budowy związku organicznego? Potwierdzenie struktury znanego związku otrzymanego np. jako substrat do dalszych reakcji. Potwierdzenie struktury związku nieznanego, otrzymanego w wyniku przeprowadzonej reakcji, dla której oczekiwaliśmy określonego przebiegu. Ustalenie struktury związku, który pojawił się jako nieoczekiwany produkt reakcji (ew. udowodnienie, że taki związek jest już znany). Ustalenie struktury związku wyodrębnionego z materiału biologicznego i ew. udowodnienie, że taki związek jest już znany. 21 Identyfikacja związków znanych Temperatura topnienia (dla substancji krystalicznych). Porównanie ze związkiem wzorcowym przy pomocy TLC, GC lub PLC oraz metod spektralnych. Porównanie widm badanego związku z widmami znajdującymi się w bazach danych: widma masowe widma IR widma NMR Dla związków czynnych optycznie: pomiar współczynnika skręcalności światła spolaryzowanego liniowo. 22

12 Bazy widm masowych Bazy komercyjne, dostępne w formie oprogramowania do zainstalowania na własnym komputerze: baza Wiley a wyd. 11 ok. 775 tys. widm EI dla 600 tys. związków (dużo powtórzeń, trafiają się błędy); w IChO jest Wiley w wersji 8; baza NIST wersja 17 ok. 300 tys. widm EI; prawie bez powtórzeń, dużo wyższa jakość widm; zawiera także bazę widm fragmentacyjnych, baza połączona Wiley a i NIST ok. 1 mln. widm EI. Pełna informacja na stronie: Bazy internetowe brak możliwości porównywania widm, wyszukiwanie na podstawie wzoru lub nazwy: ok widm; ok widm x TIC Scan CYTR6.D Chromatogram GC/MS olejku cytrynowego Counts vs. Acquisition Time (min)

13 Chromatogram GC/MS olejku cytrynowego. Składniki zidentyfikowano na podstawie biblioteki widm Wiley a -pinen (96 %) pinen (97 %) 3.17 sabinen (97 %) mircen 3.33 (96 %) limonen (99 %) -terpinen (97 %) 5.82 linalool (97 %) p-cymen (97 %) -terpinolen 6.40 (98 %) 6.66 octan linalylu (91 %) bergamoten (98 %) kariofilen (99 %) bisabolen (95 %) Z-cytral (97 %) terpineol (91 %) geranial (96 %) octan geranylu (91 %) min. Liczby w nawiasach określają w procentach współczynnik zgodności widma zmierzonego i bibliotecznego 25 Identyfikacja składnika olejku cytrynowego RT 3,2 min. 26

14 Identyfikacja składnika olejku cytrynowego RT 3,2 min. 27 Identyfikacja składnika olejku cytrynowego RT 3,2 min. 28

15 Identyfikacja składnika olejku cytrynowego RT 3,2 min Match: 930 R. match: (Text File) + Scan ( min, 10 scans) CYTR6.D Subtract (mainlib) ß-Pinene 100 Match: 893 R. match: Match: 877 R. match: (mainlib) Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl) (mainlib) ß-Phellandrene Bazy widm IR Bazy internetowe (bezpłatne) brak możliwości porównywania widm, wyszukiwanie na podstawie wzoru lub nazwy NIST Webbook: ok widm IR; Baza danych SDBS: ok widm FT-IR. Katalog odczynników firmy Sigma Aldrich: nie wiadomo dokładnie, ile widm; widma (także NMR) są dostępne dla części odczynników oferowanych przez firmę Sigma-Aldrich. 30

16 Widma IR (-)-mentolu ze strony internetowej firmy Sigma Aldrich oraz bazy danych SDBS 31 Bazy danych widm NMR Bazy komercyjne Bazy danych firmy ACD/Labs: bardzo duże bazy widm 1, 13 C, 19 F, 31 P i 15 N NMR dostępne on-line lub off-line; niestety także bardzo drogie. Bazy internetowe (bezpłatne) brak możliwości porównywania widm, wyszukiwanie na podstawie wzoru lub nazwy Baza danych SDBS: ok widm 1 NMR i widm 13 C NMR Katalog odczynników firmy Sigma Aldrich: nie wiadomo dokładnie, ile widm; widma 1 i 13 C NMR są dostępne dla dużej części odczynników oferowanych przez firmę Sigma-Aldrich. Baza danych NMRShiftDB: - ok. 52 tys. widm 1 i 13 C NMR, duże możliwości wyszukiwania, opcja przewidywania widm. 32

17 Widma 1 i 13 C NMR kamfory z bazy SDBS Assign. Shift(ppm) A 2.36 B C 1.96 D E 1.68 F 1.37 G 1.37 J K L TE SIFT VALUES WERE OBTAINED AT 400 MZ. ppm Int. Assign ASSIGNED BY C- COSY. 33 Widma 1 i 13 C NMR kamfory z katalogu odczynników Sigma - Aldrich 34

18 Widmo 13 C kamfory z bazy NMRShiftDB 35 Kolejność zastosowania metod spektralnych podczas identyfikacji związku organicznego 1. MS masa cząsteczkowa (nominalna). Jeśli trzeba, to dokładny pomiar masy dla potwierdzenia wzoru sumarycznego (do dokumentacji) lub dla wyznaczenia wzoru związku nieznanego. 2. IR grupy funkcyjne w cząsteczce. Widmo IR (podstawowe pasma) może być też potrzebne do dokumentacji. 3. NMR ustalenie wzoru strukturalnego (konstytucyjnego) i ew. konfiguracji cząsteczki (jeśli ma diastereoizomery): a) NMR wstępny (np. na Varianie 200 Mz lub 400 Mz) standardowe widma 1 i 13 C. Jeśli to nie wystarczy patrz niżej. b) Pomiary NMR Varian 500 Mz lub 600 Mz jeśli standardowe widma 1 i 13 C są niewystarczające, można wykonać pomiary COSY, SQC, MBC, NOE, NOESY w miarę potrzeb. W szczególnych przypadkach inne pomiary specjalne (np. dla innych jąder niż 1 i 13 C). 4. X-Ray absolutne potwierdzenie struktury cząsteczki. 5. CD ustalenie konfiguracji absolutnej (można też wykorzystać X-Ray ew. korelacje chemiczne). 36

19 Synteza związku nieznanego Reakcja Wydzielanie i oczyszczanie Więcej produktów Rozdział 1 produkt 1 2 n Wykonanie widm Interpretacja Niejednoznaczne Widma zgodne z założoną strukturą Widma niezgodne z założoną strukturą Ustalenie struktury Koniec Jednoznaczne 37 W jakiej formie otrzymujemy wyniki analiz i jakie ma to konsekwencje praktyczne? Widma IR: wydruk; można też otrzymać widmo w formie rysunku w PowerPoincie lub innym programie graficznym. Widma MS: wydruk; można też otrzymać widmo w formie rysunku w PowerPoincie lub innym programie graficznym. Widma NMR: wydruki FID-y do samodzielnej obróbki Konsekwencje: tylko widma NMR można (i warto!) obrabiać samodzielnie. 38

20 Format zapisu danych NMR spektrometrów Varian plik z FID-em folder próbki folder pomiaru w tym pliku jest pełny opis eksperymentu (m. in. sekwencji impulsów, rodzaju detekcji itp.) i wiele innych danych 39 ACD/NMR Processor Academic Edition 40

21 ACD/NMR Processor Academic Edition v. 12 Podstawowe cechy programu ACD/NMR Processor: Możliwość pełnej obróbki widm (w formie FID-ów) zarejestrowanych przy użyciu spektrometrów firm Bruker i Varian: transformacja Fouriera z doborem parametrów, fazowanie, korekcja linii podstawowej, integracja, opisywanie pików itd. Obróbka w pełni automatyczna lub pod kontrolą użytkownika. Obróbka widm 1D i 2D (jedno- i dwuwymiarowych). Znaczne możliwości formatowania wydruków. Możliwość kopiowania widm w formie wektorowej do popularnych programów graficznych i edytorów tekstu. Łatwy w obsłudze, małe wymagania sprzętowe. Obecnie firma ACD Labs zaprzestała dystrybucji tego programu (zastąpił go płatny ACD/Spectrus Processor), ale nie ma przeszkód przynajmniej na razie w dalszym korzystaniu z już zainstalowanych kopii programu ACD/NMR) SpinWorks

22 SpinWorks v dla Windows Autor: Kirk Marat z Uniwersytetu Manitoba Podstawowe cechy programu SpinWorks: Możliwość pełnej obróbki widm (w formie FID-ów) zarejestrowanych przy użyciu spektrometrów firm Bruker i Varian: transformacja Fouriera z doborem parametrów, fazowanie, korekcja linii podstawowej, integracja, opisywanie pików itd. Obróbka widm 1D i 2D (jedno- i dwuwymiarowych). Symulacja widm 1D oraz interaktywne procedury dopasowywania najlepszych parametrów i J do widma eksperymentalnego. Symulacja widm dynamicznych (dla zaawansowanych). Znaczne możliwości formatowania wydruków. Możliwość kopiowania widm w formie wektorowej do popularnych programów graficznych i edytorów tekstu. Łatwy w obsłudze, małe wymagania sprzętowe (poza pamięcią). A w dodatku jest całkowicie darmowy! ftp://davinci.chem.umanitoba.ca/pub/marat/spinworks/ 43 SpinWorks 4.2 ekran główny z FID-em 44

23 SpinWorks 4.2 okno parametrów przetwarzania FID-u 1D 45 SpinWorks

24 SpinWorks 4.2 wydruk widma 1 C 3 47 Standardowa obróbka widma 1 NMR 1. Wczytać plik fid z odpowiedniego folderu 2. Sprawdzić ustawienia na listwie przyciskowej. Kolejne wpisy powinny być następujące: Last constants, Lorentz lub No window, 0.000, Kliknąć przycisk Process z prawej strony ekranu. 4. Obejrzeć widmo. Zakres widma do wyświetlenia wybiera się klikając na obu jego krańcach i następnie klikając przycisk Zoom. Inne sposoby patrz instrukcja. Skalę pionową zmienia się rolką myszy lub żółtymi przyciskami + i Jeśli trzeba, przeprowadzić fazowanie i korekcję linii podstawowej (patrz instrukcja programu). Jeśli eksperyment był wykonany na spektrometrze Bruker 500 Mz, to najprawdopodobniej operacje te nie są konieczne, ponieważ wykonał je wcześniej operator spektrometru i odpowiednie dane zostały zapisane w folderze eksperymentu. Dla widm z Variana jest to konieczne zawsze. 6. Wykonać integrację widma. W tym celu kliknąć przycisk Integrate, a następnie zaznaczać kursorem kolejne grupy pików do integracji. 7. Wykonać procedurę opisu pików (Peak picking). Najpierw należy ustawić minimalną wysokość pików, które zostaną opisane, klikając przycisk PP minimum i ustawiając odpowiednio linię cięcia. 8. Wykonać wydruk widma po uprzednim ustawieniu parametrów (menu Edit, pozycja Plot options and parameters... ), ew. przekopiować widmo do programu graficznego, prezentacyjnego lub edytora tekstu. 48

25 Przykładowe widmo 1 NMR O COO CDCl 3 TMS Obróbka widma 1 NMR do analizy multipletów 1. Punkty 1 5 jak przy obróbce standardowej. 2. Otworzyć okno Edit processing parameters klikając przycisk Edit pars. 3. Ustawić następujące parametry: Size: 128 k, Window function: Lorentz to Gauss (GM), LB = -1.0 z, GF = 0.2. Ostatnie trzy parametry można też zmieniać bezpośrednio na listwie przyciskowej. 4. Wykonać transformację Fouriera (przycisk Process ) 5. Obejrzeć w dużym rozciągnięciu wybrany multiplet, najlepiej z małymi stałymi sprzężenia. Ocenić na podstawie wyglądu widma, czy parametry LB i GF zostały dobrane właściwie. W razie potrzeby można je zmieniać dowolną liczbę razy klikając po każdej zmianie przycisk Process. Uwaga: typowy zakres parametru LB to -0.3 do -1.8, a GF od 0.1 do Wykonać ponownie procedurę opisu pików (Peak picking), kasując najpierw ew. poprzedni opis i zmienić jednostki z ppm na z. 7. Wykonać wydruk widma, ew. przekopiować widmo do programu graficznego, prezentacyjnego lub edytora tekstu. Uwaga: widmo z zawężonymi matematycznie pikami nie nadaje się do integracji! Dlatego najpierw należy przeprowadzić obróbkę standardową. 50

26 Zastosowanie parametrów LB i GF O COO LB = 0, GF = 0 LB = -1.2, GF = 0.3 LB = -1.7, GF = 0.45 PPM Dobieranie optymalnych parametrów LB i GF LB = 0 GF = 0 LB = -1.7 GF = 0.2 LB = -1.2 GF = 0.2 LB = -1.4 GF = 0.4 TMS NO 2 Cl LB = -1.4 GF = 0.25 efekt złego dostrojenia spektrometru parametry optymalne dla tego pomiaru 52

27 Standardowa obróbka widma 13 C NMR 1. Wczytać plik fid z odpowiedniego folderu 2. Sprawdzić ustawienia na listwie przyciskowej. Kolejne wpisy powinny być następujące: Last constants, Lorentz, 1.000, Kliknąć przycisk Process z prawej strony ekranu. 4. Obejrzeć widmo. Jeśli stosunek sygnał/szum jest za niski, można ponownie wykonać transformację Fouriera po zmianie LB na 2 lub nawet 3 z (Uwaga: można w ten sposób zgubić bardzo blisko siebie położone piki). 5. Jeśli trzeba, przeprowadzić fazowanie i korekcję linii podstawowej (patrz instrukcja programu). Jeśli eksperyment był wykonany na spektrometrze Bruker 500 Mz, to najprawdopodobniej operacje te nie są konieczne, ponieważ wykonał je wcześniej operator spektrometru i odpowiednie dane zostały zapisane w folderze eksperymentu. Dla widm z Variana jest to niezbędne zawsze. 6. Wykonać procedurę opisu pików (Peak picking). 7. Wykonać wydruk widma, ew. przekopiować widmo do programu graficznego, prezentacyjnego lub edytora tekstu. 53 Przykładowe widmo 13 C NMR C 3 CDCl 3 54

28 Widma dwuwymiarowe (COSY, SQC, MBC) Przed przystąpieniem do obróbki widm 2D należy mieć przetworzone i zapamiętane na dysku standardowe widmo jednowymiarowe 1 (dla pomiaru COSY) i dodatkowo widmo jednowymiarowe 13 C (dla korelacji C ). Obróbka widm 2D może być znacząco trudniejsza, niż widm jednowymiarowych. Dla osób mniej wprawnych wygodniejszy jest program ACD/NMR, ponieważ w większości przypadków procedury w pełni automatyczne są wystarczająco skuteczne. Należy pamiętać, aby po wykonaniu transformacji Fouriera wczytać widma jednowymiarowe dla osi X i Y. UWAGA: w programie SpinWorks niektóre nowe warianty pomiarów SQC i MBC nie są poprawnie rozpoznawane, w związku z czym niektóre parametry (np. tryb detekcji) trzeba ustawić ręcznie. 55 Widmo 1-1 COSY w programie ACD/NMR Processor 56

29 Widmo 1-1 COSY n-heptynu ACD/NMR C F1 Chemical Shift (ppm) F2 Chemical Shift (ppm) 57 Widmo 1-1 COSY w programie SpinWorks 58

30 Widmo 1-1 COSY n-heptynu - SpinWorks C 3 59 Szacowanie wartości przesunięć chemicznych 1 i 13 C na podstawie inkrementów podstawników Widma 1 NMR Dostępne są dane m. in. dla następujących struktur: C 3 X X C 2 Y X C Y R cis R ortho Z R trans R gem R meta R para Widma 13 C NMR Dostępne są dane m. in. dla następujących struktur: R ipso Y Y Y a Y e C R ortho R meta R para 60

31 Miejsca, gdzie można znaleźć tablice z inkrementami podstawników R.M. Silverstein, F.X. Webster, D.J. Kiemle Spektroskopowe metody identyfikacji związków organicznych PWN Tablice inkrementów podstawników do szacowania przesunięć chemicznych 1 w alkenach R cis R trans R gem C=C = 5,25 + +Z gem + Z cis + Z trans Substituent R Z gem Z cis Z trans 0,00 0,00 0,00 Alkyl 0,45-0,22-0,28 Alkyl (cyclic) 0,69-0,25-0,28 C 2 O 0,64-0,01-0,02 C 2 S 0,71-0,13-0,22 C 2 X (X = F, Cl, Br) 0,70 0,11-0,04 C 2 NR 2 0,58-0,10-0,08 CF 3 0,66 0,61 0,32 C=CR 2 (isolated) 1,00-0,09-0,23 C=CR 2 (conjugated) 1,24 0,02-0,05 C C-R 0,47 0,38 0,12 C N 0,27 0,75 0,55 COO (isolated) 0,97 1,41 0,71 COO (conjugated) 0,80 0,98 0,32 COOR (isolated) 0,80 1,18 0,55 COOR (conjugated) 0,78 1,01 0,46 C(O) 1,02 0,95 1,17 C(O)NR 2 1,37 0,98 0,46 C(O)Cl 1,11 1,46 1,01 C=O (isolated) 1,10 1,12 0,87 C=O (conjugated) 1,06 0,91 0,74 C 2 -C(O)R; C 2 -CN 0,69-0,08-0,06 C 2 -Ar 1,05-0,29-0,32 Ar 1,38 0,36-0,07 Ar (o-subs) 1,65 0,19 0,09 Substituent R Z gem Z cis Z trans F 1,54-0,40-1,02 Cl 1,08 0,18 0,13 Br 1,07 0,45 0,55 I 1,14 0,81 0,88 OR (R, aliphatic) 1,22-1,07-1,21 OR (R, conjugated) 1,21-0,60-1,00 O-C(O)-R 2,11-0,35-0,64 O-P(O)(OEt) 2 0,66 0,88 0,67 SR 1,11-0,29-0,13 S(O)R 1,27 0,67 0,41 S(O)2R 1,55 1,16 0,93 S-CN 0,80 1,17 1,11 SF 5 1,68 0,61 0,49 SePh 1,36 0,17 0,24 Se(O)Ph 1,86 0,97 0,63 Se(O 2 )Ph 1,76 1,49 1,21 NR 2 (R, aliphatic) 0,80-1,26-1,21 NR 2 (R, conjugated) 1,17-0,53-0,99 N=N-Ph 2,39 1,11 0,67 NO 2 1,87 1,30 0,62 N-C(O)R 2,08-0,57-0,72 P(O)(OEt) 2 0,66 0,88 0,67 SiMe 3 0,77 0,37 0,62 GeMe 3 1,28 0,35 0,67 62 The increments R conjugated are to be used instead of R isolated when either the substituent or the double bond is conjugated with further substituents. The increment alkyl(cyclic) is to used when both the substituent and the double bond form part of a ring. (Data for compounds containing 3- and 4-membered rings have not been considered.)

32 Tablice inkrementów podstawników do szacowania przesunięć chemicznych 1 w pochodnych benzenu R ortho R meta R para Ar- = 7,36 + +Z ortho + Z meta + Z para Substituent R Z ortho Z meta Z para 0,00 0,00 0,00 C 3-0,18-0,11-0,21 C(C 3 ) 3 0,02-0,08-0,21 c-propyl -0,33-0,15-0,28 C 2 Cl 0,02-0,01-0,04 C 2 O -0,07-0,07-0,07 CF 3 0,32 0,14 0,20 CCl 3 0,64 0,13 0,10 C=C 2 0,04-0,04-0,12 C=CCOO 0,19 0,04 0,05 C C- 0,15-0,02-0,01 C C-Ph 0,17-0,02-0,03 Ph 0,23 0,07-0,02 COO 0,77 0,11-0,25 C(O)OC 3 0,68 0,08 0,19 C(O)OPh 0,85 0,14 0,27 C(O)N 2 0,46 0,09 0,17 C(O)Cl 0,76 0,16 0,33 C(O)C 3 0,60 0,10 0,20 C(O)C(C 3 ) 3 0,44 0,05 0,05 C(O) 0,53 0,18 0,28 C(NPh) 0,60 0,20 0,20 C(O)Ph 0,45 0,12 0,23 C(O)C(O)Ph 0,62 0,15 0,30 CN 0,29 0,12 0,25 Substituent R Z ortho Z meta Z para F -0,29-0,02-0,23 Cl -0,02-0,07-0,13 Br 0,13-0,13-0,08 I 0,39-0,21 0,00 Ph 0,63-0,01 0,15 O -0,53-0,14-0,43 OC 3-0,45-0,07-0,41 OPh -0,36-0,04-0,28 O-C(O)C 3-0,27-0,02-0,13 O-C(O)Ph -0,14 0,07-0,09 O-SO 2 Me -0,05 0,07-0,01 S -0,08-0,16-0,22 SMe -0,08-0,10-0,24 SPh 0,06-0,09-0,15 SO 2 Cl 0,76 0,35 0,45 N 2-0,71-0,22-0,62 NMe 2-0,66-0,18-0,67 NEt 2-0,68-0,15-0,73 NMe 3+ I - 0,69 0,36 0,31 NC(O)C 3 0,14-0,07-0,27 N-N 2-0,60-0,08-0,55 N=N-Ph 0,67 0,20 0,20 N=O 0,58 0,31 0,37 NO 2 0,87 0,20 0,35 P(O)(OMe) 2 0,48 0,16 0,24 SiMe 3 0,22-0,02-0, Przykładowe obliczenie przesunięć chemicznych 1 na podstawie inkrementów podstawników eksp. 8,13 ppm obl. 7,36 + 0,87 0,13 = 8,10 ppm = 0,03 ppm 2 eksp. 8,23 ppm obl. 7,36 + 0,87 0,02 = 8,21 ppm = 0,02 ppm eksp. 7,50 ppm obl. 7,36 + 0,20 0,07 = 7,49 ppm = 0,01 ppm eksp. 7,67 ppm obl. 7,36 + 0,35 0,02 = 7,69 ppm = - 0,02 ppm 64

33 Obliczanie przesunięć chemicznych 13 C na podstawie inkrementów podstawników Program zawiera ponadto niewielką bazę widm 13 C NMR (ok. 700 widm) Uwaga: program działa tylko w Windows XP i starszych. Jeśli chce się używać na komputerach z nowszymi wersjami Windows należy zainstalować maszynę wirtualną z Windows XP (np. VirtualBox) C-NMR obliczenie widma pochodnej benzenu Cl COO NO dane eksp

34 13C-NMR obliczenie widma mentolu dane eksp O O 67 PCModel v. 8.0 optymalizacja geometrii 68

35 PCModel v. 8.0 obliczenie stałych sprzężenia J eksp. = 10,1 z 10.38z 4.70z J eksp. = 4,2 z 11.16z J eksp. = 10,8 z 69 Avogadro v proste (i darmowe) budowanie cząsteczek 70

36 GaussView v. 5 budowa cząsteczek i wyświetlanie wyników programu Gaussian 71 Obliczanie przesunięć chemicznych 1 i 13 C NMR metodami chemii kwantowej octan winylu obl. 7,37 ppm 7,27 ppm obl. 4,43 ppm O obl. 2,27 ppm 4,57 ppm 2,14 ppm O C 3 4,88 ppm obl. 4,78 ppm zmierzone NMR y = x R² = obliczone Metoda: geometria: B3LYP/6-31G(d) NMR: B3PW91/6-311+G(2d,p) obl. 143,7 ppm 141,1 ppm obl. 166,9 ppm 167,9 ppm O O C 3 20,6 ppm 97,5 ppm obl. 21,3 ppm obl. 95,2 ppm zmierzone C NMR y = x R² = obliczone 72

37 Geom. 1 Obliczanie przesunięć chemicznych 1 i 13 C NMR metodami chemii kwantowej akrylan metylu obl. 6,11 ppm 6,13 ppm obl. 5,79 ppm 5,83 ppm O C3 O 3,76 ppm 6,41 ppm obl. 3,77 ppm obl. 6,46 ppm zmierzone NMR y = x R² = Geom. 2 obl. 129,5 ppm 128,1 ppm 130,7 ppm O obl. 131,9 ppm obl. 164,8 ppm 166,6 ppm O C3 51,5 ppm obl. 50,7 ppm zmierzone obliczone C NMR y = x R² = Metoda: geometria: B3LYP/6-31G(d) NMR: B3PW91/6-311+G(2d,p) G = 0,446 kcal/mol na korzyść Geom. 2 Geom. 1 = 32% Geom. 2 = 68% Wyniki obliczono jako średnie ważone obu konformerów obliczone 73 Obliczenia przesunięć chemicznych w programie Gaussian N C C NMR O C 3 N N 3 C 3 C N N C 3 C 3 3 C Delta exp y = x R 2 = Delta obl NMR 7.00 Delta exp y = x R 2 = Delta obl. 74

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYC Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Listopad 2015 styczeń 2016 Ustalanie budowy związków organicznych

Bardziej szczegółowo

W jakich sytuacjach napotykamy problem ustalenia lub potwierdzenia budowy związku organicznego?

W jakich sytuacjach napotykamy problem ustalenia lub potwierdzenia budowy związku organicznego? ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYC Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Ustalanie budowy związków organicznych ogólne zasady postępowania

Bardziej szczegółowo

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz FIZYKOCEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYC Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Interpretacja widm NMR, IR i MS prostych cząsteczek Czyli

Bardziej szczegółowo

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Ustalanie budowy związków organicznych ogólne zasady

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH ZAAWANSWANE METDY USTALANIA BUDWY ZWIĄZKÓW RGANICZNYC Witold Danikiewicz Instytut Chemii rganicznej PAN ul. Kasprzaka /52, 0-22 Warszawa Interpretacja widm NMR, IR i MS prostych cząsteczek Czyli jak powiązać

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Listopad 2013 styczeń 2014 Program wykładów Wprowadzenie:

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa CZĘŚĆ I PRZEGLĄD METOD SPEKTRALNYCH Program wykładów Wprowadzenie:

Bardziej szczegółowo

SpinWorks. Manual dla studentów III roku Chemii, licencjat - Spektrochemia

SpinWorks. Manual dla studentów III roku Chemii, licencjat - Spektrochemia SpinWorks Program SpinWorks służy do procesowania widm NMR jedno- i dwuwymiarowych. Umożliwia również symulację widm NMR. SpinWorks jest programem darmowym. Można go pobrać ze strony: www.columbia.edu/cu/chemistry/groups/nmr/spinworks.html.

Bardziej szczegółowo

STEREOCHEMIA ORGANICZNA

STEREOCHEMIA ORGANICZNA STERECEMIA RGANICZNA Sławomir Jarosz Wykład 3 antyperiplanarna synperiplanarna synklinalna antyklinalna Konformacja uprzywilejowana s-trans s-cis s-trans s-cis (C=) = 1674 cm -1 (C=) = 1698 cm -1 (C=C)

Bardziej szczegółowo

STEREOCHEMIA ORGANICZNA

STEREOCHEMIA ORGANICZNA STEECEMI GNICZN Sławomir Jarosz Wykład 3 B B B B B B B B enancjomery enancjomery enancjomery enancjomery B S S S B S S B S S B S B B S B S B S S S brót o 180 Centrum pseudoasymetrii Konfiguracja względna

Bardziej szczegółowo

Polarymetr służy do pomiaru skręcenia płaszczyzny polaryzacji światła w substancjach

Polarymetr służy do pomiaru skręcenia płaszczyzny polaryzacji światła w substancjach Polarymetr służy do pomiaru skręcenia płaszczyzny polaryzacji światła w substancjach optycznie czynnych. Zasadniczo składa się on z dwóch filtrów polaryzacyjnych: polaryzator i analizator, z których każdy

Bardziej szczegółowo

spektropolarymetrami;

spektropolarymetrami; Ćwiczenie 12 Badanie własności uzyskanych białek: pomiary dichroizmu kołowego Niejednakowa absorpcja prawego i lewego, kołowo spolaryzowanego promieniowania nazywa się dichroizmem kołowym (ang. circular

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Semestr zimowy 2017/2018 1 Program wykładów Wprowadzenie:

Bardziej szczegółowo

RJC # Alk l a k ny n Ster St eoi er zom eoi er zom y er Slides 1 to 30

RJC # Alk l a k ny n Ster St eoi er zom eoi er zom y er Slides 1 to 30 Alkany Stereoizomery Slides 1 to 30 Centrum asymetryczne (stereogeniczne) Atom węgla o hybrydyzacji sp 3 połączony z czterema róŝnymi podstawnikami tworzy centrum asymetryczne (stereogeniczne). Chiralność

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

Badanie właściwości optycznych roztworów.

Badanie właściwości optycznych roztworów. ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria

Bardziej szczegółowo

PODSTAWY INTERPRETACJI WIDM MASOWYCH. Copyright 2003 Witold Danikiewicz

PODSTAWY INTERPRETACJI WIDM MASOWYCH. Copyright 2003 Witold Danikiewicz PODSTAWY INTERPRETACJI WIDM MASOWYCH 1. Ustalanie masy cząsteczkowej Metody: widmo EI 70 ev i np. 12 ev; łagodne metody jonizacji (FAB, LSIMS, CI, ESI, APCI, MALDI, FI) w celu otrzymania jonu molekularnego.

Bardziej szczegółowo

4. Stereoizomeria. izomery. konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych

4. Stereoizomeria. izomery. konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych 4. Stereoizomeria izomery konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych stereoizomery zbudowane z takich samych atomów atomy połączone w takiej samej sekwencji

Bardziej szczegółowo

7-9. Stereoizomeria. izomery. konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych

7-9. Stereoizomeria. izomery. konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych 7-9. Stereoizomeria izomery konstytucyjne różne szkielety węglowe, różne grupy funkcyjne różne położenia gr. funkcyjnych stereoizomery zbudowane z takich samych atomów atomy połączone w takiej samej sekwencji

Bardziej szczegółowo

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

METODYKA POMIARÓW WIDM ABSORPCJI (WA) NA CARY-300 (Varian) i V-550 (JASCO)

METODYKA POMIARÓW WIDM ABSORPCJI (WA) NA CARY-300 (Varian) i V-550 (JASCO) METODYKA POMIARÓW WIDM ABSORPCJI (WA) NA CARY-300 (Varian) i V-550 (JASCO) Czas od włączenia spektrofotometru Cary-300 do momentu uzyskania stabilnej pracy: ok 30 minut., w przypadku V-550 ok. 3h. WA widmo

Bardziej szczegółowo

Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa

Moduły kształcenia. Efekty kształcenia dla programu kształcenia (kierunku) MK_06 Krystalochemia. MK_01 Chemia fizyczna i jądrowa Matryca efektów kształcenia określa relacje między efektami kształcenia zdefiniowanymi dla programu kształcenia (efektami kierunkowymi) i efektami kształcenia zdefiniowanymi dla poszczególnych modułów

Bardziej szczegółowo

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA ata wykonania: ata oddania: Zwrot do poprawy: ata oddania: ata zliczenia: OCENA Cel ćwiczenia: Celem ćwiczenia

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

Oznaczenia konfiguracji absolutnej związków konformacyjnie labilnych

Oznaczenia konfiguracji absolutnej związków konformacyjnie labilnych Uniwersytet im. Adama Mickiewicza Wydział Chemii Zakład Stereochemii Organicznej Grunwaldzka 6, 60 780 Poznań Poznań, 20 lutego 2012 r. Dr Marcin Kwit Autoreferat Oznaczenia konfiguracji absolutnej związków

Bardziej szczegółowo

Chemia organiczna. Stereochemia. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Chemia organiczna. Stereochemia. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Chemia organiczna Stereochemia Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Chemia organiczna jest nauką, która zajmuje się poszukiwaniem zależności pomiędzy budową cząsteczki a właściwościami

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

Kinetyka reakcji hydrolizy sacharozy katalizowanej przez inwertazę

Kinetyka reakcji hydrolizy sacharozy katalizowanej przez inwertazę Kinetyka reakcji hydrolizy sacharozy katalizowanej przez inwertazę Prowadzący: dr hab. inż. Ilona WANDZIK mgr inż. Sebastian BUDNIOK mgr inż. Marta GREC mgr inż. Jadwiga PASZKOWSKA Miejsce ćwiczenia: sala

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

STEREOCHEMIA ORGANICZNA

STEREOCHEMIA ORGANICZNA STERECEMIA RGANICZNA Sławomir Jarosz Wykład 3 Konfiguracja względna Ułożenie grup (atomów) względem siebie trans cis Konfiguracja absolutna Bezwzględne ułożenie atomów w przestrzeni trans trans cis W jaki

Bardziej szczegółowo

METODYKA POMIARÓW WIDM FLUORESCENCJI (WF) NA MPF-3 (PERKIN-HITACHI)

METODYKA POMIARÓW WIDM FLUORESCENCJI (WF) NA MPF-3 (PERKIN-HITACHI) METODYKA POMIARÓW WIDM FLUORESCENCJI (WF) NA MPF-3 (PERKIN-HITACHI) (Uzupełnieniem do niniejszej metodyki jest instrukcja obsługi spektrofluorymetru MPF-3, która znajduje się do wglądu u prof. dr hab.

Bardziej szczegółowo

Stereochemia Ułożenie atomów w przestrzeni

Stereochemia Ułożenie atomów w przestrzeni Slajd 1 Stereochemia Ułożenie atomów w przestrzeni Slajd 2 Izomery Izomery to różne związki posiadające ten sam wzór sumaryczny izomery izomery konstytucyjne stereoizomery izomery cis-trans izomery zawierające

Bardziej szczegółowo

Polarymetryczne oznaczanie stężenia i skręcalności właściwej substancji optycznie czynnych

Polarymetryczne oznaczanie stężenia i skręcalności właściwej substancji optycznie czynnych Polarymetryczne oznaczanie stężenia i skręcalności właściwej substancji optycznie czynnych Część podstawowa: Zagadnienia teoretyczne: polarymetria, zjawisko polaryzacji, skręcenie płaszczyzny drgań, skręcalność

Bardziej szczegółowo

Ćwiczenie 1. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp. Część teoretyczna.

Ćwiczenie 1. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp. Część teoretyczna. Ćwiczenie 1 Metodyka poprawnych i dokładnych pomiarów absorbancji, wyznaczenie małych wartości absorbancji. Czynniki wpływające na mierzone widma absorpcji i wartości absorbancji dla wybranych długości

Bardziej szczegółowo

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1) h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna

Bardziej szczegółowo

Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji

Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji Zagadnienia: polaryzacja światła, metody otrzymywania światła spolaryzowanego, budowa polarymetru, zjawisko

Bardziej szczegółowo

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem

Bardziej szczegółowo

Poradnik instalacyjny sterownika CDC-ACM Dla systemów Windows

Poradnik instalacyjny sterownika CDC-ACM Dla systemów Windows Poradnik instalacyjny sterownika CDC-ACM Dla systemów Windows Wersja 1.00 Do użytku z wersją sterownika CDC-ACM 1.0 i nowszymi Spis treści 1 Przegląd systemu... 2 Wprowadzenie... 2 2 Instalacja... 3 2.1

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na

Bardziej szczegółowo

Jak analizować widmo IR?

Jak analizować widmo IR? Jak analizować widmo IR? Literatura: W. Zieliński, A. Rajca, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych. WNT. R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spektroskopowe

Bardziej szczegółowo

Promieniowanie podczerwone (ang. infrared IR) obejmuje zakres promieniowania elektromagnetycznego pomiędzy promieniowaniem widzialnym a mikrofalowym.

Promieniowanie podczerwone (ang. infrared IR) obejmuje zakres promieniowania elektromagnetycznego pomiędzy promieniowaniem widzialnym a mikrofalowym. Próby identyfikacji białego cukru buraczanego i trzcinowego dr inż. Maciej Wojtczak Promieniowanie podczerwone Promieniowanie podczerwone (ang. infrared IR) obejmuje zakres promieniowania elektromagnetycznego

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia

Bardziej szczegółowo

Opis programu Konwersja MPF Spis treści

Opis programu Konwersja MPF Spis treści Opis programu Konwersja MPF Spis treści Ogólne informacje o programie...2 Co to jest KonwersjaMPF...2 Okno programu...2 Podstawowe operacje...3 Wczytywanie danych...3 Przegląd wyników...3 Dodawanie widm

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? Podstawowe miary masy i objętości stosowane przy oznaczaniu ilości kwasów nukleinowych : 1g (1) 1l (1) 1mg (1g x 10-3 ) 1ml (1l x 10-3 ) 1μg (1g x 10-6 ) 1μl (1l x 10-6 ) 1ng (1g x 10-9 ) 1pg (1g x 10-12

Bardziej szczegółowo

INADEQUATE-ID I DYNAMICZNY NMR MEZOJONOWYCH. 3-FENYLO-l-TIO-2,3,4-TRIAZOLO-5-METYUDÓW. Wojciech Bocian, Lech Stefaniak

INADEQUATE-ID I DYNAMICZNY NMR MEZOJONOWYCH. 3-FENYLO-l-TIO-2,3,4-TRIAZOLO-5-METYUDÓW. Wojciech Bocian, Lech Stefaniak INADEQUATEID I DYNAMICZNY NMR MEZOJONOWYCH 3FENYLOlTIO2,3,4TRIAZOLO5METYUDÓW Wojciech Bocian, Lech Stefaniak Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01224 Warszawa PL9800994 WSTĘP Struktury

Bardziej szczegółowo

OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC

OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC prof. Marian Kamiński Wydział Chemiczny, Politechnika Gdańska CEL Celem rozdzielania mieszaniny substancji na poszczególne składniki, bądź rozdzielenia tylko wybranych

Bardziej szczegółowo

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu

Bardziej szczegółowo

Notepad++ / PuTTY. Interaktywne środowisko programowania w języku ForthLogic. www.plcmax.pl. Wersja dokumentu P.1. Wersja dokumentu NP1.

Notepad++ / PuTTY. Interaktywne środowisko programowania w języku ForthLogic. www.plcmax.pl. Wersja dokumentu P.1. Wersja dokumentu NP1. F&F Filipowski sp.j. ul. Konstantynowska 79/81 95-200 Pabianice tel/fax 42-2152383, 2270971 e-mail: Hfif@fif.com.pl www.fif.com.pl Notepad++ / PuTTY Interaktywne środowisko programowania w języku ForthLogic

Bardziej szczegółowo

Ćwiczenie 9 Wyznaczanie skręcalności właściwej sacharozy, glukozy i fruktozy (zjawisko inwersji)

Ćwiczenie 9 Wyznaczanie skręcalności właściwej sacharozy, glukozy i fruktozy (zjawisko inwersji) Ćwiczenie 9 Wyznaczanie skręcalności właściwej sacharozy, glukozy i fruktozy (zjawisko inwersji) zęść teoretyczna: Światło to fala elektromagnetyczna, która polega na rozchodzeniu się zmian pola elektrycznego

Bardziej szczegółowo

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych Zwiększenie liczby wysoko wykwalifikowanych absolwentów kierunków ścisłych Uniwersytetu Jagiellońskiego POKL.04.01.02-00-097/09-00 Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Bardziej szczegółowo

- parametry geometryczne badanego związku: współrzędne i typy atomów, ich masy, ładunki, prędkości początkowe itp. (w NAMD plik.

- parametry geometryczne badanego związku: współrzędne i typy atomów, ich masy, ładunki, prędkości początkowe itp. (w NAMD plik. Avogadro Tworzenie i manipulacja modelami związków chemicznych. W symulacjach dynamiki molekularnej kluczowych elementem jest przygotowanie układu do symulacji tzn. stworzyć pliki wejściowe zawierające

Bardziej szczegółowo

Katedra Fizyki i Biofizyki instrukcje do ćwiczeń laboratoryjnych dla kierunku Lekarskiego

Katedra Fizyki i Biofizyki instrukcje do ćwiczeń laboratoryjnych dla kierunku Lekarskiego Ćw. M8 Zjawisko absorpcji i emisji światła w analityce. Pomiar widm absorpcji i stężenia ryboflawiny w roztworach wodnych za pomocą spektrofotometru. Wyznaczanie stężeń substancji w roztworze metodą fluorescencyjną.

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

ul. Ingardena 3, Kraków tel , fax

ul. Ingardena 3, Kraków  tel , fax Wydział Chemii Prof. dr. hab. Małgorzata Barańska Zespół Obrazowania Ramanowskiego ul. Ingardena 3, 30-060 Kraków www.chemia.uj.edu.pl/zor/ tel.+48 12 663 2253, fax.+48 12 634 0515 e-mail: baranska@chemia.uj.edu.pl

Bardziej szczegółowo

Fizykochemiczne metody w kryminalistyce. Wykład 7

Fizykochemiczne metody w kryminalistyce. Wykład 7 Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne

Bardziej szczegółowo

Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia (0310-CH-S2-016)

Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia (0310-CH-S2-016) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia () 1. Informacje ogólne koordynator modułu prof. dr hab. Henryk Flakus rok akademicki 2013/2014

Bardziej szczegółowo

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE Cel ćwiczenia Poznanie podstawowej metody określania biochemicznych parametrów płynów ustrojowych oraz wymagań technicznych stawianych urządzeniu pomiarowemu.

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr

Bardziej szczegółowo

SKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

SKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? SKUTECZNOŚĆ IZOLACJI Wydajność izolacji- ilość otrzymanego kwasu nukleinowego Efektywność izolacji- jakość otrzymanego kwasu nukleinowego w stosunku do ilości Powtarzalność izolacji- zoptymalizowanie procedury

Bardziej szczegółowo

Ćwiczenie 31. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp

Ćwiczenie 31. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp Ćwiczenie 31 Metodyka poprawnych i dokładnych pomiarów widm absorbancji w zakresie UV-VIS. Wpływ monochromatyczności promieniowania i innych parametrów pomiarowych na kształt widm absorpcji i wartości

Bardziej szczegółowo

E (2) nazywa się absorbancją.

E (2) nazywa się absorbancją. 1/6 Celem ćwiczenia jest poznanie zjawiska absorpcji światła przez roztwory, pomiar widma absorpcji przy pomocy spektrofotometru oraz wyliczenie stężenia badanego roztworu. Promieniowanie elektromagnetyczne,

Bardziej szczegółowo

SPEKTROMETRIA FLUORESCENCYJNA CZĄSTECZKOWA. Spektrofluorymetryczne oznaczanie ryboflawiny.

SPEKTROMETRIA FLUORESCENCYJNA CZĄSTECZKOWA. Spektrofluorymetryczne oznaczanie ryboflawiny. SPEKTROMETRIA FLUORESCENCYJNA CZĄSTECZKOWA Spektrofluorymetryczne oznaczanie ryboflawiny. Dr Dorota Sieńko, Zakład Chemii Analitycznej i Analizy Instrumentalnej, Wydział Chemii UMCS w Lublinie A. Cel ćwiczenia:

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Ćwiczenie 1 Zastosowanie statystyki do oceny metod ilościowych Błąd gruby, systematyczny, przypadkowy, dokładność, precyzja, przedział

Bardziej szczegółowo

PROCEDURA USTAWIANIA CZUJNIKÓW

PROCEDURA USTAWIANIA CZUJNIKÓW www.alcaplast.cz PROCEDURA USTAWIANIA CZUJNIKÓW 1. Cechy oprogramowania Oprogramowanie Alca IR służy do ustawiania parametrów czujników podczerwieni M673D spółki ALCAPLAST. Do ustawienia czujnika konieczny

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

Ćwiczenie nr 1 Oznaczanie składu substancji metodą niskorozdzielczej analizy fluorescencyjnej

Ćwiczenie nr 1 Oznaczanie składu substancji metodą niskorozdzielczej analizy fluorescencyjnej Ćwiczenie nr 1 Oznaczanie składu substancji metodą niskorozdzielczej analizy fluorescencyjnej Wydział Fizyki, 2009 r. I Cel ćwiczenia Celem ćwiczenia jest: Zapoznanie się ze zjawiskiem fluorescencji rentgenowskiej

Bardziej szczegółowo

Zmiana rozdzielczości ekranu

Zmiana rozdzielczości ekranu Zmiana rozdzielczości ekranu Ze względu na technologię stosowaną w ekranach ciekłokrystalicznych (LCD) rozdzielczość ekranu jest zawsze stała. Dla najlepszego efektu należy wybrać największą obsługiwaną

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Rejestrator radiowy temperatury Arexx TL-500

Rejestrator radiowy temperatury Arexx TL-500 INSTRUKCJA OBSŁUGI Rejestrator radiowy temperatury Arexx TL-500 Nr produktu 100783 Strona 1 z 8 Spis treści 1. Rejestrator radiowy temperatury 2. Instalacja oprogramowania 3. Instalacja stacji USB 4. Przygotowanie

Bardziej szczegółowo

IR I 11. IDENTYFIKACJA GRUP FUNKCYJNYCH W WIDMACH IR

IR I 11. IDENTYFIKACJA GRUP FUNKCYJNYCH W WIDMACH IR IR I 11. IDENTYFIKACJA GRUP FUNKCYJNYCH W WIDMACH IR Celem ćwiczenia jest zapoznanie się z techniką wykonywania widm związków w postaci pastylek wykonanych z bromku potasu oraz interpretacja otrzymanych

Bardziej szczegółowo

Wysokosprawna chromatografia cieczowa dobór warunków separacji wybranych związków

Wysokosprawna chromatografia cieczowa dobór warunków separacji wybranych związków Wysokosprawna chromatografia cieczowa dobór warunków separacji wybranych związków Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego Opis programu do ćwiczeń Po włączeniu

Bardziej szczegółowo

Proteomika. Spektrometria mas. i jej zastosowanie do badań białek

Proteomika. Spektrometria mas. i jej zastosowanie do badań białek Proteomika Spektrometria mas i jej zastosowanie do badań białek Spektrometria mas (MS) Metoda pozwalająca na pomiar stosunku masy do ładunku jonów (m/z) m/z można przeliczyć na masę jednostką m/z jest

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

Ćwiczenie 74. Zagadnienia kontrolne. 2. Sposoby otrzymywania światła spolaryzowanego liniowo. Inne rodzaje polaryzacji fali świetlnej.

Ćwiczenie 74. Zagadnienia kontrolne. 2. Sposoby otrzymywania światła spolaryzowanego liniowo. Inne rodzaje polaryzacji fali świetlnej. PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Polarymetr Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia 74 Data oddania Data zaliczenia OCENA Ćwiczenie 74 Cel ćwiczenia:

Bardziej szczegółowo

Metody optyczne w medycynie

Metody optyczne w medycynie Metody optyczne w medycynie Podstawy oddziaływania światła z materią E i E t E t = E i e κ ( L) i( n 1)( L) c e c zmiana amplitudy (absorpcja) zmiana fazy (dyspersja) Tylko światło pochłonięte może wywołać

Bardziej szczegółowo

Metody spektroskopowe w identyfikacji związków organicznych. Barbara Guzowska-Świder Zakład Informatyki Chemicznej, PRz

Metody spektroskopowe w identyfikacji związków organicznych. Barbara Guzowska-Świder Zakład Informatyki Chemicznej, PRz Metody spektroskopowe w identyfikacji związków organicznych Barbara Guzowska-Świder Zakład Informatyki Chemicznej, PRz Metody spektralne wykorzystują zjawiska związane z oddziaływaniem materii z promieniowaniem

Bardziej szczegółowo

Instrukcja użytkownika ARSoft-WZ3

Instrukcja użytkownika ARSoft-WZ3 02-699 Warszawa, ul. Kłobucka 8 pawilon 119 tel. 0-22 853-48-56, 853-49-30, 607-98-95 fax 0-22 607-99-50 email: info@apar.pl www.apar.pl Instrukcja użytkownika ARSoft-WZ3 wersja 1.5 1. Opis Aplikacja ARSOFT-WZ3

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Badanie kinetyki inwersji sacharozy

Badanie kinetyki inwersji sacharozy Badanie kinetyki inwersji sacharozy Cel ćwiczenia: Celem ćwiczenia jest wyznaczenie stałej szybkości, energii aktywacji oraz czynnika przedwykładniczego reakcji inwersji sacharozy. Opis metody: Roztwory

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Ćwiczenie 5. Wyznaczanie widm IR i Ramana formaldehydu oraz obliczenia za pomocą pakietu Gaussian 03W

Ćwiczenie 5. Wyznaczanie widm IR i Ramana formaldehydu oraz obliczenia za pomocą pakietu Gaussian 03W Ćwiczenie 5 Wyznaczanie widm IR i Ramana formaldehydu oraz obliczenia za pomocą pakietu Gaussian 03W Co powinieneś umieć przed zajęciami Jak obliczyć energię oscylatora harmonicznego, klasycznego i kwantowego?

Bardziej szczegółowo

PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA

PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA Materia może oddziaływać z promieniowaniem poprzez absorpcję i emisję. Procesy te polegają na pochłonięciu lub wyemitowaniu fotonu przez cząstkę

Bardziej szczegółowo

spektroskopia IR i Ramana

spektroskopia IR i Ramana spektroskopia IR i Ramana oscylacje (wibracje) 3N-6 lub 3N-5 drgań normalnych nie wszystkie drgania obserwuje się w IR - nieaktywne w IR gdy nie zmienia się moment dipolowy - pasma niektórych drgań mają

Bardziej szczegółowo

Temat: Kopiowanie katalogów (folderów) i plików pomiędzy oknami

Temat: Kopiowanie katalogów (folderów) i plików pomiędzy oknami Temat: Kopiowanie katalogów (folderów) i plików pomiędzy oknami Jeśli chcemy skopiować dany plik lub katalog należy kliknąć na ikonę Mój komputer (2 razy), a następnie zaznaczony obiekt np. z dysku C:\

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo