Ćwiczenie 31. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie 31. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp"

Transkrypt

1 Ćwiczenie 31 Metodyka poprawnych i dokładnych pomiarów widm absorbancji w zakresie UV-VIS. Wpływ monochromatyczności promieniowania i innych parametrów pomiarowych na kształt widm absorpcji i wartości absorbancji oraz na błąd ich wyznaczenia. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie spektrofotometru, czynniki wpływające na mierzone widma absorpcji i wyznaczane wartości absorbancji, dobór warunków dla pomiaru widm absorpcji i wyznaczania poprawnych wartości absorbancji, błędy przypadkowe i systematyczne w pomiarach absorbancji. Wstęp Praktycznie wszystkie związki chemiczne niezależnie w jakiej postaci występują (monomerów M, dimerów DM, większych agregatów, czy też kompleksów) absorbują w zakresie UV, λ= nm. Ogromna większość związków absorbuje także w zakresie długofalowym, 300>λ>220 nm, zaś bardzo wiele związków także w zakresie widzialnym λ 350 nm. Obok spektroskopii emisyjnej i spektrometrii mas spektroskopia UV-VIS należy do najczulszych eksperymentalnych metod. Dlatego też spektroskopia UV-VIS jest bardzo powszechnie wykorzystywana w badaniach podstawowych oraz licznych zastosowaniach analitycznych w tym praktycznych, tak w badaniach jakościowych jak i ilościowych. W tym celu stosuje się spektrofotometry pracujące najczęściej w zakresie spektralnym λ= nm (ν= cm -1 ). Korzystając z nich można wykonywać także pomiary w zakresie ultrafioletu próżniowego, = nm, (ν cm -1 ) przedmuchując komorę, w której znajdują się kuwety z próbkami gazowym azotem. Możliwe są też pomiary w zakresie bliskiej podczerwieni (NIR) do 4000 nm (ν-2500 cm -1 ), sięgającym aż do zakresu spektralnego, w którym stosuje się spektrometry IR i Ramana. Ze względu na przywołane wyżej niezwykle cenne zalety spektroskopia UV-VIS jest ona zdecydowanie najczęściej stosowana spośród wszystkich istniejących metod do detekcji w metodzie HPLC, niezastąpionej metodzie analitycznej i badawczej. Praktycznie wszystkie 1

2 chromatografy cieczowe tak HPLC jak i UPLC stosują fotodiodowe spektrometry UV-VIS jako podstawowe, a nierzadko jedyne detektory. Część teoretyczna. bsorbancję próbki, w której absorbuje jeden związek opisuje ilościowo prawo Lamberta- Beera (1): absorbancja skolimowanej wiązki monochromatycznego promieniowania w jednorodnym, izotropowym ośrodku jest proporcjonalna do wartości molowego współczynnika absorpcji (mol -1. cm -1. dm 3 ) i do stężenia c (mol. dm -3 ) badanego związku oraz do długości drogi optycznej (l), na której zachodzi absorpcja. Molowy współczynnik absorpcji (ε), który zależy od długości fali charakteryzuje własności absorpcyjne każdego związku. Ta zależność jest faktycznie widmem absorpcji. Wartość molowego współczynnika absorpcji w zależności od typu przejścia ( *, n *, *, itp.) może zmieniać się w bardzo szerokim zakresie od wartości niewiele większych od zera (np. ε = 10-2 mol -1 dm 3 cm -1, na długofalowym ogonie pasma absorpcji), aż do wartości ~ 10 6 mol -1 dm 3 cm -1, dla przejść w pełni dozwolonych. Jeśli w badanej próbce obecne jest tylko jedno indywiduum (tj. najczęściej pojedyncze cząsteczki badanego związku), to wartość ε nie zależy od stężenia. bsorbancję próbki, w której absorbuje więcej niż jeden związek opisuje prawo addytywności absorbancji (2). c l (1) i (2) Eksperymentalnie wartość absorbancji zgodnie z równaniem (3) jest wyznaczana w oparciu o pomiar intensywności światła przepuszczonego (transmitowanego) przez kuwetę z badanym roztworem, I T, które dotarło do detektora, a którym jest najczęściej fotopowielacz. I o log logt (3) I T gdzie I 0 - intensywność światła padającego na próbkę 2

3 Niezależnie od tego czy pomiar absorbancji odbywa się w spektrofotometrze dwuwiązkowym (jednoczesny pomiar dla próbki i dla odnośnika) czy też jednowiązkowym (kolejno pomiar dla próbki i dla odnośnika) przyjmuje się, że w pomiarach absorpcji spełnione jest równanie 4 IT I 0 I abs (4) zaś I I (1 10 wzb ) (5) abs 0 I abs -liczba kwantów zaabsorbowanych przez badany związek wyznaczona z równania 5 lub z pomiarów aktynometrycznych, Wpływ na wartość I T obok absorpcji promieniowania przez próbkę mają także: odbicie światła (I odb ) na przedniej i tylnej ścianie kuwety z badanym roztworem, absorpcja tego światła przez samą kuwetę (I a-k ), rozpraszanie światła w rozworze (I rozp ) a także absorpcja światła przez rozpuszczalnik (I a-r ) i ewentualne zanieczyszczenia w nim obecne (I a-z ). Tak więc, w rzeczywistych pomiarach absorpcyjnych wartość I T opisuje równanie 6. I T = I 0 -I abs -(I odb +I rozp +I a-k +I a-r +I a-z ) (6) by równanie 4 było spełnione wszystkie wartości w równaniu 6 oprócz I abs muszą być takie same dla próbki i dla odnośnika. Tylko w takich warunkach spełnione jest równanie Lamberta-Beera, a zmierzone wartości ( ) zależą wyłącznie od absorpcji badanego związku. Różnica jakiejkolwiek innej wartości w równaniu 6 dla próbki i odnośnika powoduje systematyczne błędy w pomiarach absorbancji. Wyznaczanie błędu pomiaru absorbacji za pomocą spektrofotometru UV-VIS. Proste spektrofotometry UV-VIS mierzą najczęściej W z błędem Δ=±1x10-3. Dobrej klasy spektrofotometry, np. stosowane do wykonywania tego ćwiczenia z błędem Δ =±1x10-4, zaś spektrometry fotodiodowe stosowane jako detektory w aparatch HPLC i UHPLC z bardzo małym błędem Δ=±(1-2)x

4 Wartości Δ dla każdego spektrofotometru wyznacza się korzystając z wyniku pomiaru linii zerowej spektrofotometru (w komorze pomiarowej nie ma kuwet). Na odpowiednio małym zakresie (najczęściej 1x10-2 ) linia zerowa spektrofotometru ma odpowiednio dużą grubość. Dzięki temu wprost można wyznaczyć wartość Δ (błąd pomiaru dla pojedynczego pomiaru) w całym zakresie długości fali, w którym można mierzyć W. Najmniejsze wartości dla badanej próbki, które można mierzyć na danym spektrofotometrze muszą być co najmniej 2 razy większe od wartości Δ, tj. /Δ 2 (ogólnie S/N 2, gdzie S-wielkość sygnału (signal), N-wielkość szumów (noise). Korzystając z dobrej klasy spektrofotometrów UV-VIS, dla których Δ=±1x10-4 można mierzyć W i (λ) dla próbek, których absorbancja jest bardzo mała. Gdy mierzona (λ)=1x10-3 to błąd wyznaczonej absorbancji wynikający wprost z Δ danego aparatu wynosi Δ/=0.1, tj. 10%; gdy (λ)=1x10-2 a Δ=±1x10-4, to błąd pomiaru wynosi zaledwie 1%. Poprawny pomiar absorbancji () ma bezpośredni wpływ na błąd wyznaczanych wartości molowego współczynnika absorpcji (równanie 7) i stężenia badanego związku w próbce c (równanie 2), wydajność kwantową jego emisji E (równanie 9) i zaniku fotochemicznego, FOT (równanie 10). c l (7) c (8) l Dokładny pomiar absorbancji. W wymienionych wyżej zastosowaniach spektroskopii absorpcyjnej UV-VIS, a także szeregu innych jej zastosowaniach, konieczny jest bardzo dokładny pomiar wartości. Często są to małe absorbancje, <0.1, a nawet Ilościowe pomiary widm absorbcji w szerokim zakresie stężeń, a więc i wartości, (w tym w zakresie małych wartości ) są wykorzystywane także do badania tworzenia dimerów i wyższych merów, oraz kompleksów z rozpuszczalnikiem, czy też z odpowiednio dobranym związkiem (wygaszaczem, sensybilizatorem, surfaktantem, cyklodekstryną, itp.). Liczne są zastosowania badawcze i 4

5 analityczne spektroskopii UV-VIS, w których mierzone są bardzo małe wartości. Nierzadko przyczyną tego mogą być małe wartości molowego współczynnika absorpcji, konieczność użycia małych stężeń, (ze względu na łatwość tworzenia dimerów, a nawet oligomerów, np. dla porfiryn i barwników oraz ich pochodnych), słaba rozpuszczalność badanych związków, a także ich wysoki koszt. Wiarygodny i powtarzalny pomiar małych wartości z błędem poniżej 10% (a nawet 5%) jest możliwy. Wymaga on jednak poznania rzeczywistych możliwości pomiarowych stosowanego spektrofotometru i jego kalibracji, a także wyboru właściwych parametrów pomiaru. Koniecznym warunkiem aby można mierzyć wiarygodne W dla próbek o bardzo małych wartościach (λ) jest także dobre zrozumienie metodyki ilościowych pomiarów absorbancji, czynników które obok rzeczywistej absorbcji mogą istotnie wpływać na mierzoną wartość (patrz równanie 1), jak również stosowania specjalnej procedury pomiarowej. Dzięki temu, że możliwe są poprawne i dokładne pomiary bardzo małych wartości absorbancji, ~ 10-2, można wyznaczać bardzo małe stężenia badanych związków. Dla związku dla którego ε(λ max )=5x10 4 mol -1 dm 3 cm -1, a użyta kuweta (4) ma l=5cm to wartość (λ) max ~10-2 otrzyma się gdy jego stężenie jest bardzo małe i wynosi c=1x10-4 /5x10 4 x5=4x10-8 mol//dm 3. Cele ćwiczenia Ćwiczenie ma charakter metodyczny. Jego celem jest zbadanie jak warunki pomiaru, w szczególności szerokość spektralna (monochromatyczność) promieniowania wpływa na mierzone W, w tym na wartości absorbancji w maksimum pasm ( max ), w minimum pasm ( min ) ich położenie ( max ) i szerokość w połowie wysokości ( 1/2 ), a także na błędy wyznaczonych wartości max. Pomiary będą wykonane dla związków istotnie różniących się kształtem widm, szerokością pasm absorpcji i obecnością w nich struktury oscylacyjnej. Celem ćwiczenia będzie także zbadanie jaki wpływ na dokładność i precyzję pomiaru W oraz na błąd wartości absorbancji, mają czas pomiaru (czas integracji) dla danej długości fali, oraz odległość między najbliższymi długościami fali, dla których mierzy się wartość (λ) (krok pomiaru). Badania wpływu monochromatyczności (szerokości szczeliny monochromatora) oraz czasu pomiaru wartości dla danej długości fali i odległości (kroku) między punktami pomiarowymi będą wykonywane dla roztworu antracenu w cykloheksanie 5

6 ponadto badania wpływu monochromatyczności promieniowania na W będą prowadzone dla roztworu benzofenonu w wodzie. Pasmo w widmie absorpcji tego związku jest szerokie i nie zawiera struktury oscylacyjnej. Do pomiaru W stosowane będą kuwetki o grubości 1cm. Należy podkreślić, że aby wyznaczyć poprawne i dokładne W i wartości (λ) konieczne jest zarówno wyeliminowanie wpływu innych zjawisk niż absorpcja światła na wartość absorbancji (Ćwiczenie 30), jak i dobranie odpowiednich parametrów pomiaru W (Ćwiczenie 31) na stosowanych w ćwiczeniach spektrofotometrach. Część eksperymentalna Pomiary widm absorpcji będą wykonane na spektrofotometrze V-550 (JSCO). Schemat optyczny spektrofotometru V-550 podany jest na Rys. 1. Rys.1 Schemat dwuwiązkowego spektrofotometru UV-VIS na przykładzie V-550 (Jasco). Wartości dla wszystkich zmierzonych W będą wyznaczane dla następujących długości fali : -w maksimach pasm absorpcji, -dla kilku długości fali, dla których wartości wyraźnie się różnią, (ustalonych z prowadzącym ćwiczenie), w tym dla długości fali, dla której ~10-2, -w zakresie długofalowym, w którym nie absorbuje badany związek (2-3 długości fali). 6

7 Dobór warunków pomiaru W, (ustalonych z prowadzącym ćwiczenie), należy określić korzystając z załączonych W badanych związków (pkt. 3) wykonanych w warunkach standardowych: szczelina 1,2-1nm, krok pomiarowy 1nm, czas pomiaru 0.25 s, (fast). nalogicznie, jak w ćwiczeniu 30 w celu uzyskania dokładnych i powtarzalnych wyników pomiarów oraz W, które nie są zniekształcone należy brać pod uwagę kształt W, wyznaczone wartości oraz przebieg linii zerowej w zakresie długofalowym gdzie nie absorbuje badany związek. W wyborze optymalnych parametrów pomiarowych dla V-550 (Jasco) należy kierować się danymi zawartymi w Tabeli na stronie 5 Metodyki pomiarów W. Wykonanie ćwiczenia W ramach ćwiczenia należy zmierzyć kolejno: 1. linię zerową spektrofotometru, 2. W rozpuszczalnika w kuwecie próbki względem pustej kuwety odnośnika, 3. W rozpuszczalnika w kuwecie próbki względem rozpuszczalnika w kuwecie odnośnika, 4. W roztworu badanego związku względem rozpuszczalnika w kuwecie odniesienia, 5. powtórzyć pomiar 4, 6. powtórzyć pomiar 1, 7. powtórzyć pomiar 4. by można określić wpływ poszczególnych parametrów spektrofotometru na mierzone W oraz wyznaczane wartości max, max, wykonać dla poniżej podanych warunków. 1/2 i błędy pomiarów, należy powyższe pomiary antracen w cykloheksanie widmo w czas pomiaru szybkość szczelina krok pomiar zakresie dla jednego pomiaru (nm) (nm) (nm) (s) (nm/min) 1, 2, (fast) , , 1, 2, 5,

8 , 0.5, 1, benzofenon w wodzie pomiar widmo w szybkość szczelina krok czas pomiaru dla zakresie pomiaru (nm) (nm) jednego (s) (nm) (nm/min) 1, 2, , 4, , 5, , (quick), 0.25 (fast) 1 (medium), 4 (slow) 200 Opracowanie wyników W oparciu o przeprowadzone pomiary absorpcyjne dla antracenu i benzofenonu, dla których kształt i szerokość spektralna pasm w W znacznie różnią się, należy wyznaczyć wpływ: szerokości spektralnej promieniowania ( odległości ( ) między długościami fali, dla których mierzy się wartości, 1/2 ), czasu pomiaru (t) wartości dla danej długości fali na: - mierzone wartości max λ, max, min, 1/2 ν, dla 4 pasm wibracyjnych (0,0), (0,1), (0,2) i (0,3) w widmie absorpcji S 0 S 1 antracenu w cykloheksanie, - mierzone wartości dla kilku długości fali (ustalonych z prowadzącym ćwiczenie) dla benzofenonu w wodzie. W celu wyznaczenia poprawnej wartości absorbancji dla antracenu i benzofenonu, dla wybranych długości fali należy wyznaczyć dodatkowo wartości absorbancji ( lz ) dla dwóch długości fali, dla których antracen i benzofenon nie absorbują promieniowania, tzn. wyznaczyć położenie linii zerowej w danym pomiarze W. Dla obu związków może to być 8

9 -400 nm i W obliczeniach poprawnych wartości uwzględnić także mierzone wartości absorbancji dla samego rozpuszczalnika ( R ), (pomiar 3), wynikające z nieidentycznych parametrów stosowanych kuwet. Wyznaczyć średnie wartości śr z pomiarów 4, 5 i 7 i wartości błędu maksymalnego ( max ) korzystając z równań: śr = śr (exp) ( lz + R ) max max śr śr śr śr min max Literatura: [1]-Materiały dotyczące spektroskopii absorpcyjnej dostępne w Internecie na stronie [2]-Zbigniew Kęcki, Podstawy spektroskopii molekularnej, Wydawnictwo Naukowe PWN, Warszawa 1998, [3]-Walenty Szczepaniak, Metody instrumentalne w analizie chemicznej, Wydawnictwo Naukowe PWN, Warszawa 1997, [4]-P. W. tkins, Podstawy chemii fizycznej, Wydawnictwo Naukowe PWN, Warszawa 1999, 9

Ćwiczenie 1. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp. Część teoretyczna.

Ćwiczenie 1. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp. Część teoretyczna. Ćwiczenie 1 Metodyka poprawnych i dokładnych pomiarów absorbancji, wyznaczenie małych wartości absorbancji. Czynniki wpływające na mierzone widma absorpcji i wartości absorbancji dla wybranych długości

Bardziej szczegółowo

METODYKA POMIARÓW WIDM ABSORPCJI (WA) NA CARY-300 (Varian) i V-550 (JASCO)

METODYKA POMIARÓW WIDM ABSORPCJI (WA) NA CARY-300 (Varian) i V-550 (JASCO) METODYKA POMIARÓW WIDM ABSORPCJI (WA) NA CARY-300 (Varian) i V-550 (JASCO) Czas od włączenia spektrofotometru Cary-300 do momentu uzyskania stabilnej pracy: ok 30 minut., w przypadku V-550 ok. 3h. WA widmo

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE Cel ćwiczenia Poznanie podstawowej metody określania biochemicznych parametrów płynów ustrojowych oraz wymagań technicznych stawianych urządzeniu pomiarowemu.

Bardziej szczegółowo

Aparatura do badań spektroskopowych

Aparatura do badań spektroskopowych Aparatura do badań spektroskopowych Spektrofotometr Do rejestracji widm absorpcji używany jest spektrofotometr V-55 (Jasco) i Specord UV-VIS (Zeiss) oraz jeśli to konieczne to także Cary-3 (Varian). Spektrofotometry

Bardziej szczegółowo

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Ćwiczenie 1 Zastosowanie statystyki do oceny metod ilościowych Błąd gruby, systematyczny, przypadkowy, dokładność, precyzja, przedział

Bardziej szczegółowo

Katedra Fizyki i Biofizyki instrukcje do ćwiczeń laboratoryjnych dla kierunku Lekarskiego

Katedra Fizyki i Biofizyki instrukcje do ćwiczeń laboratoryjnych dla kierunku Lekarskiego Ćw. M8 Zjawisko absorpcji i emisji światła w analityce. Pomiar widm absorpcji i stężenia ryboflawiny w roztworach wodnych za pomocą spektrofotometru. Wyznaczanie stężeń substancji w roztworze metodą fluorescencyjną.

Bardziej szczegółowo

Opracował dr inż. Tadeusz Janiak

Opracował dr inż. Tadeusz Janiak Opracował dr inż. Tadeusz Janiak 1 Uwagi dla wykonujących ilościowe oznaczanie metodami spektrofotometrycznymi 3. 3.1. Ilościowe oznaczanie w metodach spektrofotometrycznych Ilościowe określenie zawartości

Bardziej szczegółowo

OZNACZANIE STĘŻENIA BARWNIKÓW W WODZIE METODĄ UV-VIS

OZNACZANIE STĘŻENIA BARWNIKÓW W WODZIE METODĄ UV-VIS OZNACZANE STĘŻENA BARWNKÓW W WODZE METODĄ UV-VS. SPEKTROFOTOMETRA UV-Vis Spektrofotometria w zakresie nadfioletu (ang. ultra-violet UV) i promieniowania widzialnego (ang. visible- Vis), czyli spektrofotometria

Bardziej szczegółowo

POMIARY SPEKTROFOTOMETRYCZNE

POMIARY SPEKTROFOTOMETRYCZNE Laboratorium Elektronicznej Aparatury Medycznej Katedra Inżynierii Biomedycznej Wydział Podstawowych Problemów Techniki Politechnika Wrocławska ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE Cel ćwiczenia

Bardziej szczegółowo

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy)

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy) POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-106 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA Ćwiczenie 3 ANALIZA JAKOŚCIOWA

Bardziej szczegółowo

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s] SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną

Bardziej szczegółowo

SPEKTROSKOPIA SPEKTROMETRIA

SPEKTROSKOPIA SPEKTROMETRIA SPEKTROSKOPIA Spektroskopia to dziedzina nauki, która obejmuje metody badania materii przy użyciu promieniowania elektromagnetycznego, które może być w danym układzie wytworzone (emisja) lub może z tym

Bardziej szczegółowo

ELEMENTY ANALIZY INSTRUMENTALNEJ. SPEKTROFOTOMETRII podstawy teoretyczne

ELEMENTY ANALIZY INSTRUMENTALNEJ. SPEKTROFOTOMETRII podstawy teoretyczne ELEMENTY ANALZY NSTRUMENTALNEJ Ćwiczenie 3 Temat: Spektrofotometria UV/ViS SPEKTROFOTOMETR podstawy teoretyczne SPEKTROFOTOMETRA jest techniką instrumentalną, w której do celów analitycznych wykorzystuje

Bardziej szczegółowo

Atomowa spektrometria absorpcyjna i emisyjna

Atomowa spektrometria absorpcyjna i emisyjna Nowoczesne techniki analityczne w analizie żywności Zajęcia laboratoryjne Atomowa spektrometria absorpcyjna i emisyjna Cel ćwiczenia: Celem ćwiczenia jest oznaczenie zawartości sodu, potasu i magnezu w

Bardziej szczegółowo

Spektroskopia UV-VIS zagadnienia

Spektroskopia UV-VIS zagadnienia Spektroskopia absorbcyjna to dziedzina, która obejmuje metody badania materii przy użyciu promieniowania elektromagnetycznego, które może z tą materią oddziaływać. Spektroskopia UV-VS zagadnienia promieniowanie

Bardziej szczegółowo

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego

Bardziej szczegółowo

Synteza nanocząstek Ag i pomiar widma absorpcyjnego

Synteza nanocząstek Ag i pomiar widma absorpcyjnego Synteza nanocząstek Ag i pomiar widma absorpcyjnego Nanotechnologia jest nową, interdyscyplinarną dziedziną nauki łączącą osiągnięcia różnych nauk (m. in. chemii, biologii, fizyki, mechaniki, inżynierii)

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Odbicie promienia od powierzchni metalu E n 1 Równania Fresnela E θ 1 θ 1 r E = E odb, 0,

Bardziej szczegółowo

3. Badanie kinetyki enzymów

3. Badanie kinetyki enzymów 3. Badanie kinetyki enzymów Przy stałym stężeniu enzymu, a przy zmieniającym się początkowym stężeniu substratu, zmiany szybkości reakcji katalizy, wyrażonej jako liczba moli substratu przetworzonego w

Bardziej szczegółowo

PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2)

PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2) PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Równowaga chemiczna (Fiz2)

Bardziej szczegółowo

ĆWICZENIE 2 WYZNACZANIE WYDAJNOŚCI KWANTOWYCH ORAZ CZASÓW ZANIKU LUMINESCENCJI ZWIĄZKÓW W ROZTWORZE ORAZ CIELE STAŁYM, CZ. II.

ĆWICZENIE 2 WYZNACZANIE WYDAJNOŚCI KWANTOWYCH ORAZ CZASÓW ZANIKU LUMINESCENCJI ZWIĄZKÓW W ROZTWORZE ORAZ CIELE STAŁYM, CZ. II. Laboratorium specjalizacyjne Chemia sądowa ĆWICZENIE 2 WYZNACZANIE WYDAJNOŚCI KWANTOWYCH ORAZ CZASÓW ZANIKU LUMINESCENCJI ZWIĄZKÓW W ROZTWORZE ORAZ CIELE STAŁYM, CZ. II. Zagadnienia: Zjawiska fosforescencji

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH

POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH WSTĘP Spełnianie wymagań jakościowych stawianych przed producentami leków jest kluczowe dla zapewnienia bezpieczeństwa pacjenta.

Bardziej szczegółowo

SPEKTROSKOPIA W PODCZERWIENI - MOŻLIWOŚCI I ZASTOSOWANIA

SPEKTROSKOPIA W PODCZERWIENI - MOŻLIWOŚCI I ZASTOSOWANIA SPEKTROSKOPIA W PODCZERWIENI - MOŻLIWOŚCI I ZASTOSOWANIA Beata Rozum Seminarium Analityczne MS Spektrum 2013 Porównania laboratoryjne, akredytacja, typowe problemy w laboratoriach SPEKTROSKOPIA Oddziaływanie

Bardziej szczegółowo

MIKROSKOP FLUORESCENCYJNY. POMIAR WYDAJNOŚCI KWANTOWEJ FLUORESCENCJI ANTRACENU, PERYLENU ORAZ 9,10-DIFENYLOANTRACENU W ROZTWORZE

MIKROSKOP FLUORESCENCYJNY. POMIAR WYDAJNOŚCI KWANTOWEJ FLUORESCENCJI ANTRACENU, PERYLENU ORAZ 9,10-DIFENYLOANTRACENU W ROZTWORZE Ćwiczenie 1 MIKROSKOP FLUORESCENCYJNY. POMIAR WYDAJNOŚCI KWANTOWEJ FLUORESCENCJI ANTRACENU, PERYLENU ORAZ 9,10-DIFENYLOANTRACENU W ROZTWORZE Zagadnienia: procesy dezaktywacji stanów wzbudzonych (diagram

Bardziej szczegółowo

Analiza spektralna i pomiary spektrofotometryczne

Analiza spektralna i pomiary spektrofotometryczne Analiza spektralna i pomiary spektrofotometryczne Zagadnienia: 1. Absorbcja światła. 2. Współrzędne trójchromatyczne barwy, Prawa Gassmana. 3. Trójkąt barw. Trójkąt nasyceń. 4. Rozpraszanie światła. 5.

Bardziej szczegółowo

BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ

BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ ĆWICZENIE 2 Nukleotydy pirydynowe (NAD +, NADP + ) pełnią funkcję koenzymów dehydrogenaz przenosząc jony

Bardziej szczegółowo

spektroskopia UV Vis (cz. 2)

spektroskopia UV Vis (cz. 2) spektroskopia UV Vis (cz. 2) spektroskopia UV-Vis dlaczego? wiele związków organicznych posiada chromofory, które absorbują w zakresie UV duża czułość: zastosowanie w badaniach kinetyki reakcji spektroskop

Bardziej szczegółowo

Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru

Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną Cel ćwiczenia Celem ćwiczenia jest wyznaczenie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną. Zakres wymaganych

Bardziej szczegółowo

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych Zwiększenie liczby wysoko wykwalifikowanych absolwentów kierunków ścisłych Uniwersytetu Jagiellońskiego POKL.04.01.02-00-097/09-00 Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Bardziej szczegółowo

Oferowany przedmiot zamówienia

Oferowany przedmiot zamówienia Załącznik Nr 1 do oferty Modyfikacja nr 1 SIWZ Postępowanie Nr ZP/50/2011 Oferowany przedmiot zamówienia Lp. Opis Nazwa asortymentu, typ, model, nr katalogowy, nazwa producenta *) Il. szt. I. Spektrofotometr

Bardziej szczegółowo

Deuterowa korekcja tła w praktyce

Deuterowa korekcja tła w praktyce Str. Tytułowa Deuterowa korekcja tła w praktyce mgr Jacek Sowiński jaceksow@sge.com.pl Plan Korekcja deuterowa 1. Czemu służy? 2. Jak to działa? 3. Kiedy włączyć? 4. Jak/czy i co regulować? 5. Jaki jest

Bardziej szczegółowo

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS PROMIENIOWANIE ELEKTROMAGNETYCZNE Promieniowanie X Ultrafiolet Ultrafiolet

Bardziej szczegółowo

SPECYFIKACJA TECHNICZNA PRZEDMIOTU ZAMÓWIENIA

SPECYFIKACJA TECHNICZNA PRZEDMIOTU ZAMÓWIENIA Załącznik Nr 1 do SIWZ Specyfikacja techniczna Nr sprawy: ZP/41/2011 SPECYFIKACJA TECHNICZNA PRZEDMIOTU ZAMÓWIENIA Na dostawę 1 kpl. spektrofotometru UV-VIS z przystawką termostatującą Peltie w ramach

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Oznaczanie chlorków metodą spektrofotometryczną z tiocyjanianem rtęci(ii)

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej

Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie

Bardziej szczegółowo

Laboratorium 4. Określenie aktywności katalitycznej enzymu. Wprowadzenie do metod analitycznych. 1. CZĘŚĆ TEORETYCZNA

Laboratorium 4. Określenie aktywności katalitycznej enzymu. Wprowadzenie do metod analitycznych. 1. CZĘŚĆ TEORETYCZNA Laboratorium 4 Określenie aktywności katalitycznej enzymu. Wprowadzenie do metod analitycznych. Prowadzący: dr inż. Karolina Labus 1. CZĘŚĆ TEORETYCZNA Enzymy to wielkocząsteczkowe, w większości białkowe,

Bardziej szczegółowo

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok WF (kierunek farmacja)

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok WF (kierunek farmacja) Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok WF (kierunek farmacja) Ćwiczenie 1 Zastosowanie statystyki do oceny metod ilościowych Rodzaje błędów w analizie chemicznej, walidacja procedur

Bardziej szczegółowo

m 1, m 2 - masy atomów tworzących wiązanie. Im

m 1, m 2 - masy atomów tworzących wiązanie. Im Dr inż. Grażyna Żukowska Wykorzystanie metod spektroskopii oscylacyjnej do analizy materiałów organicznych i nieorganicznych 1. Informacje podstawowe Spektroskopia Ramana i spektroskopia w podczerwieni

Bardziej szczegółowo

Ćw. 11 wersja testowa Wyznaczanie odległości krytycznej R 0 rezonansowego przeniesienia energii (FRET)

Ćw. 11 wersja testowa Wyznaczanie odległości krytycznej R 0 rezonansowego przeniesienia energii (FRET) Ćw. 11 wersja testowa Wyznaczanie odległości krytycznej R 0 rezonansowego przeniesienia energii (FRET) Wstęp W wyniku absorpcji promieniowania elektromagnetycznego o odpowiedniej długości fali (najczęściej

Bardziej szczegółowo

Wyznaczanie energii dysocjacji molekuły jodu (I 2 )

Wyznaczanie energii dysocjacji molekuły jodu (I 2 ) S1 Wyznaczanie energii dysocjacji molekuły jodu (I 2 ) 1 Cel ćwiczenia Bezpośrednim celem ćwiczenia jest wyznaczenie energii dysocjacji molekuły I 2. W trakcie przygotowywania doświadczenia oraz realizacji

Bardziej szczegółowo

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Granica wykrywalności i granica oznaczalności Dr inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Nazwa zadania: Światełko na tafli wody Mając do dyspozycji fotodiodę, źródło prądu stałego (4,5V bateryjkę), przewody, mikroamperomierz oraz

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO73; INO73 Ćwiczenie Nr Wyznaczanie współczynnika

Bardziej szczegółowo

Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia (0310-CH-S2-016)

Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia (0310-CH-S2-016) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia () 1. Informacje ogólne koordynator modułu prof. dr hab. Henryk Flakus rok akademicki 2013/2014

Bardziej szczegółowo

Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej

Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej Wprowadzenie: Większość lądowych organizmów kręgowych część jonów amonowych NH + 4, produktu rozpadu białek, wykorzystuje w biosyntezie

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

ODPOWIEDZI NA PYTANIA DO TREŚCI SIWZ

ODPOWIEDZI NA PYTANIA DO TREŚCI SIWZ UNIWERSYTET ŚLĄSKI Dział Zamówień Publicznych Ul. Bankowa 12, 40-007 Katowice tel. /032/ 359 1381, fax. /032/ 359 2048 UPGOW Uniwersytet Partnerem Gospodarki Opartej na Wiedzy Katowice dn. 9 października

Bardziej szczegółowo

SPEKTROFOTOMETR UV/Vis T60 firmy PG Instruments

SPEKTROFOTOMETR UV/Vis T60 firmy PG Instruments SPEKTROFOTOMETR UV/Vis T60 firmy PG Instruments PG Instruments wieloletni producent spektrofotometrów oraz systemów ASA przedstawia jeden z najbardziej zaawansowanych w swojej klasie spektrofotometrów

Bardziej szczegółowo

Zakresy promieniowania. Światło o widzialne. długość fali, λ. podczerwień. ultrafiolet. Wektor pola elektrycznego. Wektor pola magnetycznego TV AM/FM

Zakresy promieniowania. Światło o widzialne. długość fali, λ. podczerwień. ultrafiolet. Wektor pola elektrycznego. Wektor pola magnetycznego TV AM/FM Światło o widzialne Zakresy promieniowania ultrafiolet podczerwień Wektor pola elektrycznego Wektor pola magnetycznego TV AM/FM długość fali, λ Podział fal elektromagnetycznych Promieniowanie X Fale wolnozmiennesieci

Bardziej szczegółowo

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru 1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru Wzór związku chemicznego podaje jakościowy jego skład z jakich pierwiastków jest zbudowany oraz liczbę atomów poszczególnych pierwiastków

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

PODSTAWY LABORATORIUM PRZEMYSŁOWEGO. ĆWICZENIE 3a

PODSTAWY LABORATORIUM PRZEMYSŁOWEGO. ĆWICZENIE 3a PODSTAWY LABORATORIUM PRZEMYSŁOWEGO ĆWICZENIE 3a Analiza pierwiastkowa podstawowego składu próbek z wykorzystaniem techniki ASA na przykładzie fosforanów paszowych 1 I. CEL ĆWICZENIA Zapoznanie studentów

Bardziej szczegółowo

SPECYFIKACJA TECHNICZNA ZESTAWU DO ANALIZY TERMOGRAWIMETRYCZNEJ TG-FITR-GCMS ZAŁĄCZNIK NR 1 DO ZAPYTANIA OFERTOWEGO

SPECYFIKACJA TECHNICZNA ZESTAWU DO ANALIZY TERMOGRAWIMETRYCZNEJ TG-FITR-GCMS ZAŁĄCZNIK NR 1 DO ZAPYTANIA OFERTOWEGO SPECYFIKACJA TECHNICZNA ZESTAWU DO ANALIZY TERMOGRAWIMETRYCZNEJ TG-FITR-GCMS ZAŁĄCZNIK NR 1 DO ZAPYTANIA OFERTOWEGO NR 113/TZ/IM/2013 Zestaw ma umożliwiać analizę termiczną próbki w symultanicznym układzie

Bardziej szczegółowo

Zasady wykonania walidacji metody analitycznej

Zasady wykonania walidacji metody analitycznej Zasady wykonania walidacji metody analitycznej Walidacja metod badań zasady postępowania w LOTOS Lab 1. Metody badań stosowane w LOTOS Lab należą do następujących grup: 1.1. Metody zgodne z uznanymi normami

Bardziej szczegółowo

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące

Bardziej szczegółowo

KINETYKA REAKCJI ENZYMATYCZNYCH Wyznaczenie stałej Michaelisa i maksymalnej szybkości reakcji hydrolizy sacharozy katalizowanej przez inwertazę.

KINETYKA REAKCJI ENZYMATYCZNYCH Wyznaczenie stałej Michaelisa i maksymalnej szybkości reakcji hydrolizy sacharozy katalizowanej przez inwertazę. KINETYKA REAKCJI ENZYMATYCZNYCH Wyznaczenie stałej Michaelisa i maksymalnej szybkości reakcji hydrolizy sacharozy katalizowanej przez inwertazę. (Chemia Fizyczna I) Maria Bełtowska-Brzezinska, Karolina

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2307863. (96) Data i numer zgłoszenia patentu europejskiego: 28.07.2009 09790873.

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2307863. (96) Data i numer zgłoszenia patentu europejskiego: 28.07.2009 09790873. RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2307863 (96) Data i numer zgłoszenia patentu europejskiego: 28.07.2009 09790873.5 (13) (51) T3 Int.Cl. G01J 3/44 (2006.01)

Bardziej szczegółowo

PRACOWNIA PODSTAW BIOFIZYKI

PRACOWNIA PODSTAW BIOFIZYKI PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Pomiary zaników fluorescencji wybranych barwników (PB16)

Bardziej szczegółowo

JAK WYZNACZYĆ PARAMETRY WALIDACYJNE W METODACH INSTRUMENTALNYCH

JAK WYZNACZYĆ PARAMETRY WALIDACYJNE W METODACH INSTRUMENTALNYCH JAK WYZNACZYĆ PARAMETRY WALIDACYJNE W METODACH INSTRUMENTALNYCH dr inż. Agnieszka Wiśniewska EKOLAB Sp. z o.o. agnieszka.wisniewska@ekolab.pl DZIAŁALNOŚĆ EKOLAB SP. Z O.O. Akredytowane laboratorium badawcze

Bardziej szczegółowo

Cz. 5. Podstawy instrumentalizacji chromatografii. aparatura chromatograficzna w skali analitycznej i modelowej - -- w części przypomnienie -

Cz. 5. Podstawy instrumentalizacji chromatografii. aparatura chromatograficzna w skali analitycznej i modelowej - -- w części przypomnienie - Chromatografia cieczowa jako technika analityki, przygotowania próbek, wsadów do rozdzielania, technika otrzymywania grup i czystych substancji Cz. 5. Podstawy instrumentalizacji chromatografii aparatura

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

KOLORYMETRYCZNE OZNACZANIE Cd, Mn i Ni

KOLORYMETRYCZNE OZNACZANIE Cd, Mn i Ni KOLORYMETRYCZNE OZNACZANE Cd, Mn i Ni nstrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. l. WSTĘP 1.1. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

ABSORPCYJNA SPEKTORFOTOMETRIA CZĄSTECZKOWA

ABSORPCYJNA SPEKTORFOTOMETRIA CZĄSTECZKOWA BSORPYJN SPEKTORFOTOMETRI ZĄSTEZKOW (Oznaczanie chromu i kobaltu obok siebie) Politechnika Gdańska; opracowała: mgr inż. M. Wasielewska 1 WPROWDZENIE Metody spektroskopowe są to metody opierające się na

Bardziej szczegółowo

Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska

Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska 1.1. Wprowadzenie do spektroskopii UV/VIS Spektroskopia w nadfiolecie, oraz świetle widzialnym UV/VIS

Bardziej szczegółowo

O3. BADANIE WIDM ATOMOWYCH

O3. BADANIE WIDM ATOMOWYCH O3. BADANIE WIDM ATOMOWYCH tekst opracowała: Bożena Janowska-Dmoch Większość źródeł światła emituje promieniowanie elektromagnetyczne złożone z wymieszanych ze sobą fal o wielu częstotliwościach (długościach).

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII LABORATORIUM METROLOGII POMIARY TEMPERATURY NAGRZEWANEGO WSADU Cel ćwiczenia: zapoznanie z metodyką pomiarów temperatury nagrzewanego wsadu stalowego 1 POJĘCIE TEMPERATURY Z definicji, która jest oparta

Bardziej szczegółowo

Metody badań spektroskopowych

Metody badań spektroskopowych Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej Wydział Imię i nazwisko 1. 2. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 71: Dyfrakcja

Bardziej szczegółowo

PRACOWNIA CHEMII. Kinetyka reakcji chemicznych (Fiz1)

PRACOWNIA CHEMII. Kinetyka reakcji chemicznych (Fiz1) PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Kinetyka reakcji chemicznych

Bardziej szczegółowo

Zastosowanie spektrofotometrii w UV w analizie leków. Dr n.farm. Ireneusz Bilichowski

Zastosowanie spektrofotometrii w UV w analizie leków. Dr n.farm. Ireneusz Bilichowski Zastosowanie spektrofotometrii w UV w analizie leków Dr n.farm. Ireneusz Bilichowski 2012 1 Umowny podział zakresów promieniowania elektromagnetycznego 2 Absorpcyjna spektrofotometria w nadfiolecie i świetle

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej

Bardziej szczegółowo

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ Kierowniczka pracowni: dr hab. Magdalena Pecul-Kudelska, (pok. 417), e-mail mpecul@chem.uw.edu.pl, tel 0228220211 wew 501; Spis ćwiczeń i osoby prowadzące 1.

Bardziej szczegółowo

Stanowisko do pomiaru fotoprzewodnictwa

Stanowisko do pomiaru fotoprzewodnictwa Stanowisko do pomiaru fotoprzewodnictwa Kraków 2008 Układ pomiarowy. Pomiar czułości widmowej fotodetektorów polega na pomiarze fotoprądu w funkcji długości padającego na detektor promieniowania. Stanowisko

Bardziej szczegółowo

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.

Bardziej szczegółowo

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Wprowadzenie Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ opracowanie: Barbara Stypuła Celem ćwiczenia jest poznanie roli katalizatora w procesach chemicznych oraz prostego sposobu wyznaczenia wpływu

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA W tym przypadku lasery pozwalają na prowadzenie kontroli stanu sanitarnego Powietrza, Zbiorników wodnych, Powierzchni i pokrycia terenu. Stosowane rodzaje laserów

Bardziej szczegółowo

Ćwiczenie nr 96: Dozymetria promieniowania γ

Ćwiczenie nr 96: Dozymetria promieniowania γ Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 96: Dozymetria

Bardziej szczegółowo

Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych)

Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych) Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych) Metody instrumentalne podział ze względu na uzyskane informację. 1. Analiza struktury; XRD (dyfrakcja

Bardziej szczegółowo

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1)

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1) Przykład sprawozdania z analizy w nawiasach (czerwonym kolorem) podano numery odnośników zawierających uwagi dotyczące kolejnych podpunktów sprawozdania Jan Kowalski grupa B dwójka 7(A) analiza Wynik przeprowadzonej

Bardziej szczegółowo

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej.

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Andrzej Hantz Dyrektor Centrum Metrologii RADWAG Wagi Elektroniczne Pomiary w laboratorium

Bardziej szczegółowo

ĆWICZENIE 11. ANALIZA INSTRUMENTALNA KOLORYMETRIA - OZNACZANIE Cr(VI) METODĄ DIFENYLOKARBAZYDOWĄ. DZIAŁ: Kolorymetria

ĆWICZENIE 11. ANALIZA INSTRUMENTALNA KOLORYMETRIA - OZNACZANIE Cr(VI) METODĄ DIFENYLOKARBAZYDOWĄ. DZIAŁ: Kolorymetria ĆWICZENIE 11 ANALIZA INSTRUMENTALNA KOLORYMETRIA - OZNACZANIE Cr(VI) METODĄ DIFENYLOKARBAZYDOWĄ DZIAŁ: Kolorymetria ZAGADNIENIA Elektronowe widmo absorpcyjne; rodzaje przejść elektronowych w kompleksach

Bardziej szczegółowo

WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA

WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA ĆWICZENIE 32 WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA Cel ćwiczenia: Wyznaczenie stałej Stefana-Boltzmanna metodami jednakowej temperatury i jednakowej mocy. Zagadnienia: ciało doskonale czarne, zdolność

Bardziej szczegółowo

Promieniowanie podczerwone (ang. infrared IR) obejmuje zakres promieniowania elektromagnetycznego pomiędzy promieniowaniem widzialnym a mikrofalowym.

Promieniowanie podczerwone (ang. infrared IR) obejmuje zakres promieniowania elektromagnetycznego pomiędzy promieniowaniem widzialnym a mikrofalowym. Próby identyfikacji białego cukru buraczanego i trzcinowego dr inż. Maciej Wojtczak Promieniowanie podczerwone Promieniowanie podczerwone (ang. infrared IR) obejmuje zakres promieniowania elektromagnetycznego

Bardziej szczegółowo

Wielkości gwiazdowe. Systematyka N.R. Pogsona, który wprowadza zasadę, że różniaca 5 wielkości gwiazdowych to stosunek natężeń równy 100

Wielkości gwiazdowe. Systematyka N.R. Pogsona, który wprowadza zasadę, że różniaca 5 wielkości gwiazdowych to stosunek natężeń równy 100 Wielkości gwiazdowe Ptolemeusz w Almageście 6 wielkości gwiazdowych od 1 do 6 mag. 1830 r, John Herschel wiąże skalę wielkości gwiazdowych z natężeniem globlanym światła gwiazd, mówiąc, że różnicom w wielkościach

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 8 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ. Wykaz przyrządów Transmisyjne siatki dyfrakcyjne (S) : typ A -0 linii na milimetr oraz typ B ; Laser lub inne źródło światła

Bardziej szczegółowo