CNC SINUMERIK 828D/840D sl Efektywna technologia obróbki gwintów

Wielkość: px
Rozpocząć pokaz od strony:

Download "CNC SINUMERIK 828D/840D sl Efektywna technologia obróbki gwintów"

Transkrypt

1 CNC SINUMERIK 828D/840D sl Efektywna technologia obróbki gwintów Niniejszy tekst jest kontynuacją cyklu artykułów na temat Programowania technologicznego opublikowanych we wcześniejszych wydaniach miesięcznika Mechanik (nr 7/2014, s. 524, nr 5 6/2014, s. 630, nr 3/2014, s. 154, nr 5 6/2013, s. 356), w których opisano zaawansowane funkcje sterowań numerycznych SINUMERIK 828D/840D sl. W artykule zostanie omówiony sposób działania poszczególnych cykli i poleceń do obróbki gwintów oraz zostaną przytoczone przykłady programów technologicznych do zrealizowania na układach sterowania SINUMERIK 828D/840D sl. Polecenia te skategoryzowano według technologii, w której się je stosuje. Tekst zawiera szereg przydatnych informacji wynikających z praktyki przemysłowej. Dla poszczególnych poleceń opracowano w aplikacji SinuTrain 4.5 przykładowe programy obróbki danego gwintu. Wraz z rozwojem sprzętowym sterowań numerycznych i współpracujących z nimi elementów wykonawczych (silników, przekształtników częstotliwości) następuje postęp technologii (bazy wiedzy) zaimplementowanej w sterowaniach. Przykładem takiej ewolucji są m.in.: gotowe cykle do technologii frezowania, toczenia, szlifowania i wycinania, nowe sposoby tworzenia programów technologicznych (nakładki ShopTurn, ShopMill, CAD/CAM), różne strategie wybierania naddatku, wsparcie technologa w zakresie doboru parametrów algorytmów regulacji do różnych faz obróbki (zgrubna, wykończeniowa cykl 832). W układach sterowania SINUMERIK 828D/840D sl w zakresie różnych technologii obróbki gwintów zawarto dotychczasową wiedzę i doświadczenia w postaci biblioteki podstawowych poleceń i gotowych cykli obróbkowych. Dotyczy to zarówno gwintowania gwintownikami, jak i nacinania gwintów nożami tokarskimi oraz frezowania frezami do gwintów. Różnorodność sposobów obróbki wynika z zastosowanej technologii, wyboru narzędzi do wykonywania danego gwintu oraz możliwości obrabiarki. Celem artykułu jest przybliżenie poleceń służących do obróbki gwintów wraz z ich przyporządkowaniem do konkretnych technologii. W pierwszej części tekstu zostaną zaprezentowane główne polecenia, a w drugiej gotowe cykle obróbkowe. Gwintowanie otworów Podstawowymi narzędziami do wykonywania gwintów w otworach, zwłaszcza o niewielkich rozmiarach, są gwintowniki. W przypadku gwintowania głównym zadaniem układu sterowania jest zapewnienie skojarzenia obrotów wrzeciona i posuwu danej osi, przekładających się na odpowiedni skok gwintu (skok gwintownika). Proces ten może być realizowany w mniej lub bardziej dokładny sposób. W pierwszym przypadku należy zadbać o to, aby narzędzie było mocowane w oprawce kompensacyjnej, natomiast w drugim narzędzie może być mocowane na sztywno. Przy zastosowaniu mocowania gwintownika w oprawce kompensacyjnej często programuje się skok gwintu mniejszy od rzeczywistego skoku gwintownika, np. o 0,01 mm. Pozwala to zniwelować ugięcie oprawki w momencie rozpoczęcia gwintowania wywołane siłami skrawania. Pierwszym poleceniem służącym do gwintowania otworów jest instrukcja gwintowania otworu bez synchronizacji G63. Umożliwia ona wykonanie gwintu na obrabiarkach z wrzecionem bez enkodera określającego jego pozycję kątową. Istotą obróbki za pomocą instrukcji G63 jest takie skojarzenie obrotów wrzeciona S (obr/min) i prędkości posuwu narzędzia F (mm/min), aby uzyskać gwint o zadanym skoku P (mm/obr). Można tutaj wykorzystać równanie: F = S P (1) W tym celu w bloku poprzedzającym blok z funkcją G63 programuje się dla narzędzia za pomocą polecenia G1 posuw po torze F. Polecenie G63 działa blokowo, a po nim znów aktywne są zaprogramowane wcześniej polecenia G0, G1, G2 itd. Aby zapobiec zniszczeniu narzędzia podczas działania instrukcji G63, pokrętła korekcyjne posuwu F i prędkości obrotowej wrzeciona S są zablokowane na 100%. Ponadto sam gwintownik musi być umieszczony w oprawce kompensacyjnej, która wyrównuje różnice pomiędzy powyższym skojarzeniem posuwu F i prędkości obrotowej wrzeciona S a rzeczywistym skokiem gwintownika. W przypadku polecenia G63 należy określić kierunek obrotów wrzeciona dla ruchu gwintowania oraz ruchu wycofania. Poniżej przedstawiono napisany w aplikacji SinuTrain 4.5 przykładowy program wykonania gwintu metrycznego zwykłego M14 (skok P = 2 mm). Współrzędne punktu odniesienia ( ) dla wykonywanego gwintu wynoszą: X0 Y0 Z0, natomiast głębokość gwintu: Z1 = 50. WORKPIECE(,,, BOX,112,0,-100,-80, -100,-100,100,100) G17 G90 G0 X0 Y0 Z300 G0 X0 Y0 Z5 ; dojazd do pozycji G1 F200 S10 M3 ; określenie posuwu po torze i prawych obrotów wrzeciona G63 Z-50 ; G63 Z5 M4 ; ruch gwintowania ruch wycofania z lewymi obrotami wrzeciona Otwory można także gwintować za pomocą instrukcji nacinania gwintów o stałym skoku G33. W przypadku korzystania z polecenia G33 obrabiarka musi być wyposażona we wrzeciono z enkoderem określającym jego położenie kątowe. Dzięki temu możliwe jest określenie w sposób automatyczny posuwu narzędzia F (maks. do wartości posuwu szybkiego) na podstawie skoku gwintu P i obrotów wrzeciona S. Wyznaczona w ten sposób wartość posuwu zastępuje podczas gwintowania zaprogramowaną wcześniej wartość F. G33 jest poleceniem modalnym, odwołującym wcześniej zaprogramowane funkcje grupy nr 1. Skok P wykonywanego gwintu jest programowany w poszczególnych osiach za pomocą adresów I, J, K, które odpowiadają osiom X, Y, Z. Natomiast sam kierunek gwintu, podobnie jak w przypadku polecenia G63, jest określany poprzez odpowiednie obroty wrzeciona (M3/M4). Także dla polecenia G33 gwintownik musi być umieszczony w oprawce kompensacyjnej.

2 Poniżej przedstawiono przykładowy program wykonania identycznego gwintu M14: WORKPIECE(,,, BOX,112,0,-100,-80,-100,-100,100,100) G17G90 G0 X0 Y0 Z300 G17 G0 X0 Y0 Z5 ; dojazd do pozycji S10 M3 ; określenie prawych obrotów wrzeciona G33 Z-50 K2 ; ruch gwintowania Z5 K2 M4 ; ruch wycofania z lewymi obrotami wrzeciona W praktyce przemysłowej coraz częściej do gwintowania otworów używa się gwintowników mocowanych na sztywno w oprawce narzędziowej. Jest to przeprowadzane na obrabiarkach z regulacją położenia wrzeciona (wrzeciono może pracować jako oś obrotowa). Wykorzystuje się w tym celu instrukcje gwintowania otworu bez oprawki kompensacyjnej G331 i G332. Otwór jest gwintowany za pomocą polecenia G331, natomiast wycofanie po automatycznej zmianie kierunku obrotów wrzeciona następuje w wyniku polecenia G332. Te same funkcje pozwalają na gwintowanie otworu gwintownikiem zamocowanym w oprawce kompensacyjnej. Takie rozwiązanie w pewnych przypadkach przynosi dodatkowe korzyści, np. przy wysokich obrotach podczas gwintowania można zmniejszyć zużycie narzędzia. Przed rozpoczęciem gwintowania otworu za pomocą poleceń G331 i G332 należy dokonać pozycjonowania wrzeciona poleceniem SPOS= Dla poleceń G331 i G332 nie podaje się kierunku obrotów, gdyż ten wynika z wartości skoku gwintu. Przy G331 i dodatniej wartości skoku gwintu jest wykonywany gwint prawy (prawe obroty wrzeciona M3), a dla ujemnej gwint lewy (lewe obroty wrzeciona M4). Natomiast polecenie G332 powoduje automatyczną zmianę obrotów na przeciwne. Ponadto w odróżnieniu od poleceń G63 i G33, gdzie obroty S były cały czas niezmienne, dla G331 i G332 można podawać osobno prędkość obrotową zarówno dla gwintowania, jak i wycofania gwintownika. Przykładowy program wykonania tego samego gwintu M14 jest następujący: Nacinanie gwintów na tokarkach Drugim i zarazem głównym obszarem zastosowania polecenia G33 jest nacinanie gwintów za pomocą noża tokarskiego. Programując jedno po drugim kilka poleceń G33, można wykonać gwint złożony. Dla takiej sekwencji poleceń (przy aktywnym poleceniu G64) układ sterowania dobiera profil prędkości eliminujący jej skoki. Korzystając z polecenia G33, można obrabiać gwinty wielokrotne, przy czym przesunięcie kątowe poszczególnych zwojów określa się w instrukcji SF= (dla SF=0 jest przyjmowana wartość z danej nastawczej MDD_THREAD_ START_ANGLE). Ogólnie można wyróżnić trzy przypadki nacinania gwintów: G33 Z K lub G33 Z K SF= ;gwint walcowy G33 X I lub G33 X I SF= ;gwint poprzeczny G33 X Z I lub G33 X Z I SF= ;gwint stożkowy G33 X Z K lub G33 X Z K SF= ;gwint stożkowy WORKPIECE(,,, BOX,112,0,-100,-80,-100,-100,100,100) G17 G90 G0 X0 Y0 Z300 G0 X0 Y0 Z5 ; dojazd do pozycji SPOS=0 ; pozycjonowanie wrzeciona G331 Z-50 K2 S10 ; ruch gwintowania z zadaną prędkością obrotową G332 Z5 K2 S20 ; ruch wycofania z automatyczną zmianą kierunku obrotów na przeciwne oraz inną prędkością obrotową Dla gwintów stożkowych skok gwintu wprowadza się jako adres K, gdy kąt stożka gwintu <45, jako adres I, gdy kąt stożka gwintu >45, natomiast dla kąta stożka = 45 I = K, więc można podać dowolnie I lub K. Praktyczna rada: Przy testowaniu programu zawierającego polecenia gwintowania powinno się w miarę możliwości zmniejszyć wartość prędkości obrotowej wrzeciona. Dla poleceń gwintowania pokrętła korekcyjne posuwu i obrotów są blokowane, dlatego podczas testowania programu dla małych wartości korektora posuwu można się wystraszyć, gdy maszyna rusza z pełną prędkością. W takiej sytuacji nie zatrzyma się ruchu maszyny, nawet skręcając pokrętło korekcyjne posuwu na 0%. Maszyna zatrzyma się dopiero po zakończeniu ruchu gwintowania! W przypadku zaniku zasilania lub naciśnięcia przycisku Reset na pulpicie maszyny w momencie wykonywania gwintu za pomocą poleceń G33/G331/G332 można wycofać (wykręcić) w trybie JOG gwintownik z otworu, korzystając z funk- cji Wycofanie, która zapewnia synchronizację dla ręcznego ruchu w osi wycofania, np. Z, i ruchu wrzeciona. Funkcję tę musi skonfigurować i ustawić producent obrabiarki.

3 Kierunek nacinanego gwintu jest określany poprzez ustalenie odpowiednich obrotów wrzeciona (M3/M4). Napisany w aplikacji ShopTurn przykładowy program nacinania dwukrotnego gwintu walcowego M42 9 jest następujący: WORKPIECE(,,, CYLINDER,192,0,-150,-120,42) G18 G90 G0 X600 Z300 T= NOZ_DO_GWINTU D1 S10 M3 G0 X41 Z5 ; dojazd do pozycji G33 Z-100 K9 SF=0 ; nacięcie pierwszego zwoju gwintu G0 X44 ; ruch powrotny Z5 ; do pozycji X41 ; G33 Z-100 K9 SF=180 ; nacięcie drugiego zwoju gwintu G0 X44 ; ruch powrotny Z5 ; do pozycji X40 ; ;... dalsze przejścia narzędzia Program ten zawiera tylko jedno przejście narzędzia dla pierwszego i drugiego zwoju gwintu, a pozostałe przejścia będą analogiczne. Zakładając, że ten gwint dwukrotny będzie obrabiany w dziesięciu przejściach, otrzymuje się aż 4 bloki 10 przejść 2 zwoje = 80 bloków programu. Oczywiście zastosowanie gotowego cyklu do nacinania gwintu pozwala się ograniczyć do jednego bloku programu z wywołaniem tego cyklu. Trzeba jednak pamiętać, że w produkcji wielkoseryjnej i masowej nie używa się cykli, tylko G-kody, co pozwala zaoszczędzić cenny czas, gdyż wykonanie cyklu zawsze trwa dłużej niż G-kodu. Polecenie G33 może być wykorzystane także w przypadku nacinania gwintu o dowolnym zarysie narzędziem punktowym. Wtedy narzędzie pozycjonuje się w wielu punktach rozmieszczonych wzdłuż zarysu gwintu i następnie wywołuje polecenie G33. Jednak taki sposób obróbki jest mało dokładny i długotrwały. Innym rozwiązaniem tego problemu jest np. metoda toczenia gwintu za pomocą zaawansowanych funkcji układu sterowania SINUMERIK 840D sl, takich jak tablice krzywych, sprzężenie osi i interpolacja wielomianowa. Zostało to opisane w pracy Obróbka gwintów narzędziem punktowym na tokarkach CNC autorstwa dr. inż. Bogusława Pytlaka (Mechanik nr 5 6/2014, s. 382). Przy obróbce gwintów o dużym skoku można podnieść jakość ich wykonania poprzez włączenie pracy wrzeciona z regulacją położenia. Ten tryb pracy włącza się poleceniem SPCON, a wyłącza poleceniem SPCOF. W układach sterowania SINUMERIK 828D/840D sl istnieje także możliwość nacinania gwintów o liniowo zmiennym skoku za pomocą poleceń G34 i G35, np. podczas obróbki gwintów samonacinających. Instrukcja G34 nacina gwint o skoku rosnącym, natomiast instrukcja G35 o skoku malejącym. Dla tych poleceń programuje się dodatkowo pod adresem F nie posuw, lecz wartość zmiany skoku gwintu ΔP. Fragment programu nacinania gwintu M42 9 o skoku P = 9 mm i przyroście skoku ΔP = 2 mm/zwój wygląda G34 Z-100 K9 F2 Pierwszy zwój będzie miał skok 9 mm, następny: = 11 mm, kolejny: = 13 mm itd. Wartość zmiany skoku gwintu przy znanych wartościach skoku początkowego P p i końcowego P k oraz znanej długości gwintu L g wyznacza się z równania: (2) Natomiast wartość skoku na końcu gwintu P k przy znanej zmianie skoku gwintu ΔP i długości gwintu L g wyznacza się z równania: W powyższym równaniu znak + obowiązuje dla funkcji G34, natomiast znak dla funkcji G35. Podczas nacinania gwintów na tokarce istnieje możliwość zaprogramowania szybkiego odsunięcia narzędzia od nacinanego gwintu w sytuacjach awaryjnych, np. w przypadku naciśnięcia przycisku NC-Stop, alarmu wyzwalającego NC- -Stop lub przełączenia szybkiego wejścia. We wszystkich tych przypadkach narzędzie w bezpieczny sposób jest odsuwane od nacinanego gwintu na pozycję określoną w sposób absolutny lub przyrostowy. Poleceniami LFON i LFOF włącza się i wyłącza funkcję szybkiego odsunięcia narzędzia. Bardzo przydatny jest przyrostowy sposób podania drogi wycofania. Najpierw określa się płaszczyznę, w której ma nastąpić wycofanie. Instrukcja LFTXT wycofuje narzędzie w płaszczyźnie wyznaczonej ze stycznej do toru i kierunku ruchu narzędzia (nastawa domyślna), natomiast polecenie LFWP wycofuje narzędzie w aktywnej płaszczyźnie obróbki. W kolejnym kroku należy podać kierunek wycofania za pomocą polecenia ALF= Przy aktywnych poleceniach LFTXT i ALF=3 narzędzie jest wycofywane w swoim kierunku (w osi X). Przy aktywnych poleceniach LFWP i G18 (płaszczyzna ZX), przy ALF=1 następuje wycofanie w kierunku osi Z, a przy ALF=3 wycofanie w kierunku osi X. Długość drogi wycofania podaje się za pomocą polecenia DILF= W przypadku szybkiego wycofania narzędzia na pozycję absolutną należy najpierw określić, w których osiach ma nastąpić wycofanie. Polecenie POLFMASK(nazwa_osi_1, nazwa_osi_2, ) pozwala na niezależne wycofanie wymienionych osi, natomiast poleceniem POLFMLIN(nazwa_osi_1, nazwa_osi_2, ) wymienione osie będą wycofywane z interpolacją liniową. Pozycję wycofania osi podaną w sposób absolutny określa się w poleceniu POLF[nazwa_osi]=wartość. Polecenie LFPOS uaktywnia funkcję wycofania osi określonych poleceniem POLFMASK lub POLFMLIN do pozycji zdefiniowanej w instrukcji POLF. Przykładowy blok dla powyższego programu nacinania gwintu M42 9 z uaktywnieniem funkcji szybkiego odsunięcia narzędzia będzie wyglądał G33 Z-100 K4.5 LFON DILF=10 LFTXT ALF=3 ;lub G33 Z-100 K4.5 LFON DILF=10 LFWP ALF=3 ;włączenie funkcji szybkiego odsunięcia narzędzia przyrostowo w osi X o 10 mm Natomiast gdy wycofanie ma nastąpić w osi X na pozycję absolutną X100, składnia programu będzie następująca: LFPOS POLF[X]=100 ;uaktywnienie funkcji wycofania dla osi określonych poleceniem POLFMASK oraz określenie pozycji wycofania w osi X100 POLFMASK(X) ;umożliwienie wycofania narzędzia w osi X G33 Z-100 K4.5 LFON ;nacinanie gwintu z włączoną funkcją szybkiego wycofania Frezowanie gwintów Coraz bardziej popularne w przemyśle staje się frezowanie gwintów, zwłaszcza tych o większych średnicach. Dzięki zastosowaniu frezów do gwintów można jednym narzędziem obrabiać gwinty o różnej wielkości i tolerancji, zewnętrzne, wewnętrzne, prawe, lewe, unikając przy tym problemów z powstawaniem długiego wióra. Stosunkowo niewielkie siły występujące podczas skrawania pozwalają na obróbkę gwintów w elementach cienkościennych. W układach sterowania (3)

4 SINUMERIK 828D/840D sl poleceniem umożliwiającym ten typ obróbki jest interpolacja spiralna. Powstaje ona ze złożenia interpolacji kołowej G2/G3, wykonywanej w aktywnej płaszczyźnie obróbki, z interpolacją liniową G1, wykonywaną w osi prostopadłej do tej płaszczyzny. Składnia interpolacji spiralnej jest następująca: G2/G3 X Y Z I J K TURN= Adresy I, J, K określają zawsze przyrostowo położenie punktu środkowego okręgu względem jego punktu początkowego. Jedynym sposobem na ich podanie w sposób absolutny jest wykorzystanie polecenia I=AC( ), J=AC( ), K=AC( ). Należy także pamiętać, że dla interpolacji spiralnej nie można pomijać (nie programować) którejś ze współrzędnych punktu końcowego, nawet jeśli ona się nie zmienia. Programując frezowanie chociażby jednego zwoju gwintu, należy dodatkowo zaprogramować odpowiedni ruch dosunięcia i odsunięcia narzędzia względem frezowanego gwintu. Dobrym punktem wyjścia do rozpoczęcia obróbki np. gwintu wewnętrznego jest środek otworu. Następnie można dosunąć się po interpolacji spiralnej w formie półokręgu do frezowanego gwintu, przesuwając w tym czasie narzędzie wzdłuż jego osi o ¼ skoku gwintu. Następnie wykonywana jest interpolacja spiralna po pełnym okręgu z przesunięciem w osi narzędzia o skok gwintu. W kolejnym kroku można zaprogramować ruch odsunięcia narzędzia także po półokręgu, przesuwając w tym czasie narzędzie wzdłuż jego osi dodatkowo o ¼ skoku gwintu. Przykładowy program frezowania jednego zwoju gwintu 2 w punkcie X50 Y50 przy rozpoczęciu od Z 50 i wycofaniu się w kierunku narzędzia wygląda G0 X50 Y50 Z5 Z-50 G3 X=IC(30/2-$P_TOOLR) Y50 Z=IC(2/4) CR=(30/2-$P_ TOOLR)/2 G3 X=IC(0) Y=IC(0) Z=IC(2) I=AC(50) J=AC(50) G3 X50 Y50 Z=IC(2/4) CR=(30/2-$P_TOOLR)/2 G0 Z5 Powyższy fragment programu jest na tyle uniwersalny, że wystarczy zmieniać tylko położenie środka gwintu w osi X i Y zaznaczone w programie kolorem czerwonym, średnicę gwintu zaznaczoną na niebiesko oraz skok gwintu zaznaczony na zielono. Możliwe jest jednak programowanie cykli w tradycyjny sposób, gdzie ta linia jest wprowadzana ręcznie lub np. za pomocą postprocesora systemu CAM. Ten sposób programowania cykli został opisany w jednym z ostatnich rozdziałów instrukcji programowania SINUMERIK 840D sl/828d. Przygotowanie do pracy 03/2013. Cykl gwintowania otworu umożliwia zaprogramowanie gwintu we wszystkich wariantach: G63, G33 oraz G331/G332. Aby użyć funkcji G63, trzeba ustawić następujące skojarzenie parametrów cyklu: z oprawką wyrównawczą, SC: bez przetwornika, Skok: aktywny posuw po torze. Cykl może też wyliczyć wartość posuwu po torze przy ustawieniu parametru Skok: Wprow. użytkow., gdzie można podać rodzaj lub skok gwintu. Aby skorzystać z funkcji G33, należy ustawić następujące skojarzenia parametrów cyklu: z oprawką wyrównawczą, SC: z przetwornikiem, podając rodzaj lub skok gwintu. Natomiast wybranie opcji bez oprawki wyrównaw. skutkuje wykonaniem funkcji G331/G332. Na poniższym rysunku przedstawiono przykładowe okno dialogowe do programowania cyklu gwintowania. Kolejny cykl frezowania gwintu jest połączeniem cyklu wiercenia i frezowania gwintu. Jest to cykl opracowany dla specjalistycznych narzędzi wiertło-frezów do gwintów, np. firmy Emuge. Przykładowe okno dialogowe do programowania w górnej części zawiera parametry cyklu wiercenia, natomiast na dole parametry cyklu frezowania gwintu. Cykle obróbki gwintów dostępne w sterowaniach SINUMERIK 828D/840D sl W technologii wiercenia wyróżnia się cykl gwintowania otworu i cykl frezowania gwintu (wierci się i frezuje otwór tym samym narzędziem). W technologii toczenia występują cykle: gwint podłużny, gwint stożkowy, gwint poprzeczny oraz cykl łańcucha gwintów. Natomiast w technologii frezowania jest dostępny cykl frezowania gwintów. Cykle te są bardzo przyjazne dla użytkownika. Dzięki rozbudowanemu wspomaganiu graficznemu można w szybki sposób zaprogramować obróbkę gwintu, przetestować ją w symulacji oraz wykonać w rzeczywistym detalu. Cykle te tak naprawdę bazują na podstawowych poleceniach do obróbki gwintów przedstawionych powyżej. Można się o tym przekonać, włączając podgląd bloków bazowych podczas wykonywania cyklu na maszynie. Przeważnie programowanie cykli kojarzone jest z oknami dialogowymi, w których podaje się parametry skrawania i wymiary geometryczne oraz określa technologię obróbki. Po naciśnięciu przycisku Przejmij w programie zostaje wypisana w automatyczny sposób linia z wywołaniem cyklu: Jak widać na następnym rysunku, cykl frezowania gwintu opiera się na interpolacji spiralnej. Należy jednak zaznaczyć, że pozycja wyjściowa do rozpoczęcia frezowania gwintu jest określana w sposób automatyczny. Na ogół znajduje się ona w pobliżu ścianki otworu i tylko w przypadku niewielkiej różnicy wymiarów pomiędzy średnicą otworu i średnicą frezu do gwintów punkt wyjściowy jest ustalany w środku otworu.

5 000 MECHANIK NR 10/2014 instrukcja G33. W cyklu nacinania gwintu pojawiają się czasem wątpliwości odnośnie do programowania obróbki gwintów o innym zarysie, np. trapezowych. Należy pamiętać, że w znakomitej większości przypadków obróbki zarys gwintu jest odwzorowaniem zarysu płytki skrawającej. Takie też założenie zostało przyjęte dla tego cyklu. Nie ma więc większego problemu, aby według tego cyklu nacinać np. gwinty trapezowe wystarczy go tylko w odpowiedni sposób sparametryzować. Aby naciąć więcej odcinków gwintu za pomocą polecenia G33, wykorzystuje się cykl łańcucha gwintów. Na rysunku przedstawiono okno dialogowe do programowania tego cyklu: Dla cykli nacinania gwintu na tokarkach opracowano okna dialogowe pokazane poniżej: Opisane cykle są dostępne w edytorze SINUMERIK 828D/840D sl dla programów pisanych w G-kodach. Cykle dla nakładek są bardzo podobne. Najważniejsza różnica jest taka, że cykle dla nakładek ShopMill i ShopTurn mają dodatkowe pola do wprowadzania narzędzia i parametrów skrawania. Podsumowanie Podstawowe polecenia i gotowe cykle obróbkowe układów sterowania SINUMERIK 828D/840D sl pokrywają praktycznie w 100% potrzeby technologiczne związane z obróbką gwintów. Dzięki stworzeniu bibliotek gotowych cykli uproszczono i skrócono w znacznym stopniu sposób tworzenia programów do obróbki różnego rodzaju gwintów. Wpisuje się to w nowy sposób programowania, polegający na tworzeniu programu technologicznego z poszczególnych operacji technologicznych i parametryzowaniu tych operacji tak jak w nakładkach technologicznych ShopTurn i ShopMill. Zintegrowane ze sterowaniami SINUMERIK 828D/840D sl narzędzia i biblioteki cykli oraz możliwość przetestowania programu technologicznego poza pulpitem obrabiarki ułatwiają pracę operatora maszyny i technologa programisty oraz przyczyniają się do efektywniejszego wykorzystania maszyn. Testowanie programu poza pulpitem obrabiarki jest możliwe dzięki zaimplementowaniu jądra systemu sterowania (kernel) do programu SinuTrain, emulującego sterowania SINUMERIK 828D/840D sl na komputerze PC. Dr inż. Bogusław Pytlak, ATH Jacek Krzak, Siemens Sp. z o.o. Siemens Sp. z o.o. I DT MC Odpowiadają one kolejno cyklom toczenia gwintu: walcowego, czołowego i stożkowego. Oczywiście podstawowym poleceniem podczas nacinania jednego odcinka gwintu jest ul. Żupnicza 11, Warszawa tel

Szkolenia z zakresu obsługi i programowania obrabiarek sterowanych numerycznie CNC

Szkolenia z zakresu obsługi i programowania obrabiarek sterowanych numerycznie CNC Kompleksowa obsługa CNC www.mar-tools.com.pl Szkolenia z zakresu obsługi i programowania obrabiarek sterowanych numerycznie CNC Firma MAR-TOOLS prowadzi szkolenia z obsługi i programowania tokarek i frezarek

Bardziej szczegółowo

Kurs: Programowanie i obsługa obrabiarek sterowanych numerycznie - CNC

Kurs: Programowanie i obsługa obrabiarek sterowanych numerycznie - CNC Kurs: Programowanie i obsługa obrabiarek sterowanych numerycznie - CNC Liczba godzin: 40; koszt 1200zł Liczba godzin: 80; koszt 1800zł Cel kursu: Nabycie umiejętności i kwalifikacji operatora obrabiarek

Bardziej szczegółowo

PROGRAMOWANIE OBRABIAREK CNC W JĘZYKU SINUMERIC

PROGRAMOWANIE OBRABIAREK CNC W JĘZYKU SINUMERIC Uniwersytet im. Kazimierza Wielkiego w Bydgoszczy Instytut Techniki Instrukcja do ćwiczeń laboratoryjnych Opracował: Marek Jankowski PROGRAMOWANIE OBRABIAREK CNC W JĘZYKU SINUMERIC Cel ćwiczenia: Napisanie

Bardziej szczegółowo

Obrabiarki CNC. Nr 10

Obrabiarki CNC. Nr 10 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Obrabiarki CNC Nr 10 Obróbka na tokarce CNC CT210 ze sterowaniem Sinumerik 840D Opracował: Dr inż. Wojciech Ptaszyński Poznań, 17 maja,

Bardziej szczegółowo

Symulacja komputerowa i obróbka części 5 na frezarce sterowanej numerycznie

Symulacja komputerowa i obróbka części 5 na frezarce sterowanej numerycznie LABORATORIUM TECHNOLOGII Symulacja komputerowa i obróbka części 5 na frezarce sterowanej numerycznie Przemysław Siemiński, Cel ćwiczenia: o o o o o zapoznanie z budową i działaniem frezarek CNC, przegląd

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium Programowanie obrabiarek CNC. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium Programowanie obrabiarek CNC. Nr 2 1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie obrabiarek CNC Nr 2 Obróbka z wykorzystaniem kompensacji promienia narzędzia Opracował: Dr inŝ. Wojciech Ptaszyński

Bardziej szczegółowo

Podstawy technik wytwarzania PTWII - projektowanie. Ćwiczenie 4. Instrukcja laboratoryjna

Podstawy technik wytwarzania PTWII - projektowanie. Ćwiczenie 4. Instrukcja laboratoryjna PTWII - projektowanie Ćwiczenie 4 Instrukcja laboratoryjna Człowiek - najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Warszawa 2011 2 Ćwiczenie

Bardziej szczegółowo

Ćwiczenie OB-6 PROGRAMOWANIE OBRABIAREK

Ćwiczenie OB-6 PROGRAMOWANIE OBRABIAREK POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie OB-6 Temat: PROGRAMOWANIE OBRABIAREK Redakcja i opracowanie: dr inż. Paweł Kubik, mgr inż. Norbert Kępczak Łódź, 2013r. Stanowisko

Bardziej szczegółowo

FUNKCJE INTERPOLACJI W PROGRAMOWANIU OBRABIAREK CNC

FUNKCJE INTERPOLACJI W PROGRAMOWANIU OBRABIAREK CNC Politechnika Białostocka Wydział Mechaniczny Zakład Inżynierii Produkcji Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: FUNKCJE INTERPOLACJI W PROGRAMOWANIU OBRABIAREK CNC Laboratorium z przedmiotu:

Bardziej szczegółowo

Zasada prawej dłoni przy wyznaczaniu zwrotów osi

Zasada prawej dłoni przy wyznaczaniu zwrotów osi Zasada prawej dłoni przy wyznaczaniu zwrotów osi M punkt maszynowy (niem. Maschinen-Nullpunkt) W punkt zerowy przedmiotu (niem. Werkstück-Nullpunkt). R punkt referencyjny (niem. Referenzpunkt). F punkt

Bardziej szczegółowo

Materiał szkoleniowy MTS, CAD/CAM, Frezowanie. Materiał szkoleniowy. MTS GmbH 2004 1

Materiał szkoleniowy MTS, CAD/CAM, Frezowanie. Materiał szkoleniowy. MTS GmbH 2004 1 Materiał szkoleniowy MTS GmbH 2004 1 ĆWICZENIE "POKRYWA" Zaprogramuj przedstawioną na rysunku "POKRYWĘ" z wykorzystaniem systemu CAD/CAM TOPCAM. Wykonaj następujące zasadnicze czynności: Otwórz odpowiedni

Bardziej szczegółowo

SINUMERIK 802D. Toczenie ISO-Dialekt T. Krótka instrukcja. Dokumentacja użytkownika

SINUMERIK 802D. Toczenie ISO-Dialekt T. Krótka instrukcja. Dokumentacja użytkownika SINUMERIK 802D Krótka instrukcja Toczenie ISO-Dialekt T Dokumentacja użytkownika SINUMERIK 802D Toczenie ISO-Dialekt T Krótka instrukcja Obowiązuje dla Sterowanie Wersja oprogramowania SINUMERIK 802D

Bardziej szczegółowo

Instrukcja programowania wieratko-frezarki BFKO, sterowanej odcinkowo (Sinumerik 802C)

Instrukcja programowania wieratko-frezarki BFKO, sterowanej odcinkowo (Sinumerik 802C) Instrukcja programowania wieratko-frezarki BFKO, sterowanej odcinkowo (Sinumerik 802C) Stan na dzień Gliwice 10.12.2002 1.Przestrzeń robocza maszyny Rys. Układ współrzędnych Maksymalne przemieszczenia

Bardziej szczegółowo

Programowanie obrabiarek CNC. Nr 5

Programowanie obrabiarek CNC. Nr 5 olitechnika oznańska Instytut Technologii Mechanicznej Laboratorium rogramowanie obrabiarek CNC Nr 5 Obróbka wałka wielostopniowego Opracował: Dr inŝ. Wojciech taszyński oznań, 2008-04-18 1. Układ współrzędnych

Bardziej szczegółowo

Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi

Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi 1 Geometryczne podstawy obróbki CNC 1.1. Układy współrzędnych. Układy współrzędnych umożliwiają

Bardziej szczegółowo

Analiza konstrukcyjno technologiczna detalu frezowanego na podstawie rysunku wykonawczego

Analiza konstrukcyjno technologiczna detalu frezowanego na podstawie rysunku wykonawczego Analiza konstrukcyjno technologiczna detalu frezowanego na podstawie rysunku wykonawczego Analiza rysunku wykonawczego pozwoli dobrać prawidłowy plan obróbki detalu, zastosowane narzędzia i parametry ich

Bardziej szczegółowo

www.prolearning.pl/cnc

www.prolearning.pl/cnc Gwarantujemy najnowocześniejsze rozwiązania edukacyjne, a przede wszystkim wysoką efektywność szkolenia dzięki części praktycznej, która odbywa się w zakładzie obróbki mechanicznej. Cele szkolenia 1. Zdobycie

Bardziej szczegółowo

CIĘCIE POJEDYNCZE MARMUR

CIĘCIE POJEDYNCZE MARMUR CIĘCIE POJEDYNCZE MARMUR START KONIEC 1. Parametry początku i końca cięcia (wpisywanie wartości, lub odczyt bieżącej pozycji): a. punkt start i punkt koniec b. punkt start i długość cięcia 2. Parametr:

Bardziej szczegółowo

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Komputerowy dobór narzędzi i parametrów obróbki w procesie toczenia Nr

Bardziej szczegółowo

Specyfikacja techniczna obrabiarki. wersja 2013-02-03, wg. TEXT VMX42 U ATC40-05 VMX42 U ATC40

Specyfikacja techniczna obrabiarki. wersja 2013-02-03, wg. TEXT VMX42 U ATC40-05 VMX42 U ATC40 Specyfikacja techniczna obrabiarki wersja 2013-02-03, wg. TEXT VMX42 U ATC40-05 VMX42 U ATC40 KONSTRUKCJA OBRABIARKI HURCO VMX42 U ATC40 Wysoka wytrzymałość mechaniczna oraz duża dokładność są najważniejszymi

Bardziej szczegółowo

Podstawy technik wytwarzania PTWII - projektowanie. Ćwiczenie 3. Instrukcja laboratoryjna

Podstawy technik wytwarzania PTWII - projektowanie. Ćwiczenie 3. Instrukcja laboratoryjna PTWII - projektowanie Ćwiczenie 3 Programowanie frezarki sterowanej numerycznie (CNC) Instrukcja laboratoryjna Człowiek - najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego

Bardziej szczegółowo

SINUMERIK 802D. Frezowanie. Instrukcja skrócona Wydanie 11.2000. Dokumentacja użytkownika

SINUMERIK 802D. Frezowanie. Instrukcja skrócona Wydanie 11.2000. Dokumentacja użytkownika SINUMERIK 802D Instrukcja skrócona Wydanie 11.2000 Frezowanie Dokumentacja użytkownika SINUMERIK 802D Instrukcja skrócona Frezowanie Obowiązuje dla Sterowanie Wersja oprogramowania SINUMERIK 802D 1 Wydanie

Bardziej szczegółowo

Dobór parametrów dla frezowania

Dobór parametrów dla frezowania Dobór parametrów dla frezowania Wytyczne dobru parametrów obróbkowych dla frezowania: Dobór narzędzia. W katalogu narzędzi naleŝy odszukać narzędzie, które z punktu widzenia technologii umoŝliwi zrealizowanie

Bardziej szczegółowo

SINUMERIK 802D. Toczenie. Krótka instrukcja wydanie 11.2000. Dokumentacja użytkownika

SINUMERIK 802D. Toczenie. Krótka instrukcja wydanie 11.2000. Dokumentacja użytkownika SINUMERIK 802D Krótka instrukcja wydanie 11.2000 Toczenie Dokumentacja użytkownika SINUMERIK 802D Toczenie Obowiązuje dla Sterowanie Wersja oprogramowania SINUMERIK 802D 1 Wydanie 11.2000 Dokumentacja

Bardziej szczegółowo

TOKARKO-WIERTARKA DO GŁĘBOKICH WIERCEŃ STEROWANA NUMERYCZNIE WT2B-160 CNC WT2B-200 CNC

TOKARKO-WIERTARKA DO GŁĘBOKICH WIERCEŃ STEROWANA NUMERYCZNIE WT2B-160 CNC WT2B-200 CNC TOKARKO-WIERTARKA DO GŁĘBOKICH WIERCEŃ STEROWANA NUMERYCZNIE WT2B-160 CNC WT2B-200 CNC Podstawowe parametry: Max. moment obrotowy wrzeciona Max. ciężar detalu w kłach Długość obrabianego otworu 40000 Nm

Bardziej szczegółowo

Obrabiarki CNC. Nr 2

Obrabiarki CNC. Nr 2 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Obrabiarki CNC Nr 2 Programowanie warsztatowe tokarki CNC ze sterowaniem Sinumerik 840D Opracował: Dr inż. Wojciech Ptaszyński Poznań,

Bardziej szczegółowo

1. przygotowanie uczniów do egzaminów kwalifikacyjnych, 2. realizacja kursów w ramach dokształcania i doskonalenia zawodowego dorosłych.

1. przygotowanie uczniów do egzaminów kwalifikacyjnych, 2. realizacja kursów w ramach dokształcania i doskonalenia zawodowego dorosłych. Mgr inŝ. Janusz Szuba Materiały stanowiące załączniki do programu nauczania zgodnych z obowiązującymi przepisami w Centrum Kształcenia Praktycznego nr 1 w Gdańsku w ramach realizacji zadań Statutowych

Bardziej szczegółowo

Tematy prac dyplomowych inżynierskich kierunek MiBM

Tematy prac dyplomowych inżynierskich kierunek MiBM Tematy prac dyplomowych inżynierskich kierunek MiBM Nr pracy Temat Cel Zakres Prowadzący 001/I8/Inż/2013 002/I8/Inż/2013 003/I8/ Inż /2013 Wykonywanie otworów gwintowanych na obrabiarkach CNC. Projekt

Bardziej szczegółowo

Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC

Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC Kurs zawodowy Operator - Programista Obrabiarek Sterowanych Numerycznie CNC ma na celu nabycie przez kursanta praktycznych

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 1

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 1 Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Geometria ostrzy narzędzi skrawających KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 1 Kierunek: Mechanika

Bardziej szczegółowo

Obróbka po realnej powierzchni o Bez siatki trójkątów o Lepsza jakość po obróbce wykańczającej o Tylko jedna tolerancja jakości powierzchni

Obróbka po realnej powierzchni o Bez siatki trójkątów o Lepsza jakość po obróbce wykańczającej o Tylko jedna tolerancja jakości powierzchni TEBIS Wszechstronny o Duża elastyczność programowania o Wysoka interaktywność Delikatne ścieżki o Nie potrzebny dodatkowy moduł HSC o Mniejsze zużycie narzędzi o Mniejsze zużycie obrabiarki Zarządzanie

Bardziej szczegółowo

Moduł 8 Zasady programowania maszyn sterowanych numerycznie

Moduł 8 Zasady programowania maszyn sterowanych numerycznie Moduł 8 Zasady programowania maszyn sterowanych numerycznie 1. Osie sterowania i układy współrzędnych stosowane na OSN 2. Punkty charakterystyczne 3. Interpolacja 4. Wymiana narzędzi 5. Korekcja narzędzi

Bardziej szczegółowo

Program kształcenia kursu dokształcającego

Program kształcenia kursu dokształcającego Program kształcenia kursu dokształcającego Opis efektów kształcenia kursu dokształcającego Nazwa kursu dokształcającego Tytuł/stopień naukowy/zawodowy imię i nazwisko osoby wnioskującej Dane kontaktowe

Bardziej szczegółowo

OBRÓBKA SKRAWANIEM DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO FREZOWANIA. Ćwiczenie nr 6

OBRÓBKA SKRAWANIEM DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO FREZOWANIA. Ćwiczenie nr 6 OBRÓBKA SKRAWANIEM Ćwiczenie nr 6 DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO FREZOWANIA opracowali: dr inż. Joanna Kossakowska mgr inż. Maciej Winiarski PO L ITECH NI KA WARS ZAWS KA INSTYTUT TECHNIK WYTWARZANIA

Bardziej szczegółowo

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Katalogowy dobór narzędzi i parametrów obróbki Nr ćwiczenia : 10 Kierunek:

Bardziej szczegółowo

TOKARKA KŁOWA STEROWANA NUMERYCZNIE TC2B-160 CNC TC2B-200 CNC TC2B-224 CNC TC2B-250 CNC TC2B-275 CNC TC2B-300 CNC

TOKARKA KŁOWA STEROWANA NUMERYCZNIE TC2B-160 CNC TC2B-200 CNC TC2B-224 CNC TC2B-250 CNC TC2B-275 CNC TC2B-300 CNC TOKARKA KŁOWA STEROWANA NUMERYCZNIE TC2B-160 CNC TC2B-200 CNC TC2B-224 CNC TC2B-250 CNC TC2B-275 CNC TC2B-300 CNC Podstawowe parametry: Łoże 3-prowadnicowe Max. moment obrotowy wrzeciona Max. ciężar detalu

Bardziej szczegółowo

Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC

Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC Kurs zawodowy Operator - Programista Obrabiarek Sterowanych Numerycznie CNC ma na celu nabycie przez kursanta praktycznych

Bardziej szczegółowo

TC3-200 CNC TC3-250 CNC

TC3-200 CNC TC3-250 CNC TOKARKA KŁOWA SUPERCIĘŻKA STEROWANA NUMERYCZNIE TC3-200 CNC TC3-250 CNC Podstawowe parametry: Łoże 4-prowadnicowe Max. moment obrotowy wrzeciona Max. ciężar detalu w kłach Długość toczenia 180000 Nm 80

Bardziej szczegółowo

() (( 25.4.2006 17:58 ( ( KONFIGURACJA ( OBRABIARKA MTS01 TM-016_-R1_-060x0646x0920 ( STEROWANIE MTS TM01 ( ( PRZEDMIOT OBRABIANY ( WALEC D030.

() (( 25.4.2006 17:58 ( ( KONFIGURACJA ( OBRABIARKA MTS01 TM-016_-R1_-060x0646x0920 ( STEROWANIE MTS TM01 ( ( PRZEDMIOT OBRABIANY ( WALEC D030. ĆWICZENIE - NR 2 Wykonaj na tokarce CNC detal przedstawiony na rysunku wykonawczym. Materiał: wałek aluminiowy PA6, wymiary surówki do obróbki należy dobrać na bazie wymiarów rysunkowych elementu. Programowanie

Bardziej szczegółowo

PROGRAM NAUCZANIA. Obejmującego 120 godzin zajęć realizowanych w formie wykładowo ćwiczeniowej i zajęć praktycznych

PROGRAM NAUCZANIA. Obejmującego 120 godzin zajęć realizowanych w formie wykładowo ćwiczeniowej i zajęć praktycznych PROGRAM NAUCZANIA Kursu Operator obrabiarek sterowanych numerycznie Obejmującego 120 godzin zajęć realizowanych w formie wykładowo ćwiczeniowej i zajęć praktycznych I. Wymagania wstępne dla uczestników

Bardziej szczegółowo

WPŁYW WYBRANYCH USTAWIEŃ OBRABIARKI CNC NA WYMIARY OBRÓBKOWE

WPŁYW WYBRANYCH USTAWIEŃ OBRABIARKI CNC NA WYMIARY OBRÓBKOWE OBRÓBKA SKRAWANIEM Ćwiczenie nr 2 WPŁYW WYBRANYCH USTAWIEŃ OBRABIARKI CNC NA WYMIARY OBRÓBKOWE opracował: dr inż. Tadeusz Rudaś dr inż. Jarosław Chrzanowski PO L ITECH NI KA WARS ZAWS KA INSTYTUT TECHNIK

Bardziej szczegółowo

TOKARKA KŁOWA SUPERCIĘŻKA PŁYTOWA STEROWANA NUMERYCZNIE

TOKARKA KŁOWA SUPERCIĘŻKA PŁYTOWA STEROWANA NUMERYCZNIE TOKARKA KŁOWA SUPERCIĘŻKA PŁYTOWA STEROWANA NUMERYCZNIE TC3L-420 CNC Podstawowe parametry: Łoże pod suport 4-prowadnicowe Max. moment obrotowy wrzeciona Max. ciężar detalu w kłach Długość toczenia 180000

Bardziej szczegółowo

Genesis Evolution Sp6 -- program do obsługi maszyny sterowanej numerycznie - streszczenie referatu z dnia 7 maja 2010 roku.

Genesis Evolution Sp6 -- program do obsługi maszyny sterowanej numerycznie - streszczenie referatu z dnia 7 maja 2010 roku. Adrian Lewandowski nr indeksu 8915 E-g, dn. 18 lipca 2010 Genesis Evolution Sp6 -- program do obsługi maszyny sterowanej numerycznie - streszczenie referatu z dnia 7 maja 2010 roku. 1. Temat prezentacji.

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium Programowanie obrabiarek CNC. Nr 3

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium Programowanie obrabiarek CNC. Nr 3 1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie obrabiarek CNC Nr 3 Obróbka otworów z wykorzystaniem cykli obróbkowych Opracował: Dr inŝ. Wojciech Ptaszyński Poznań,

Bardziej szczegółowo

1. OBRÓBKA WAŁKA NA TOKARCE KŁOWEJ

1. OBRÓBKA WAŁKA NA TOKARCE KŁOWEJ ĆWICZENIE NR 1. 1. OBRÓBKA WAŁKA NA TOKARCE KŁOWEJ 1.1. Zadanie technologiczne Dla zadanego rysunkiem wykonawczym wałka wykonać : - Plan operacyjny obróbki tokarskiej, wykonywanej na tokarce kłowej TUC

Bardziej szczegółowo

Tworzenie narzędzi. Narzędzia standardowe

Tworzenie narzędzi. Narzędzia standardowe Tworzenie narzędzi Narzędzia standardowe Tworzenie narzędzia w EdgeCAM odbywa się poprzez wpisanie odpowiednich parametrów definiujące to narzędzie. W tym celu naleŝy wywołać okno magazynu narzędzi i wybrać

Bardziej szczegółowo

Laboratorium Napędu robotów

Laboratorium Napędu robotów WYDZIAŁ ELEKTRYCZNY INSTYTUT MASZYN, NAPĘDÓW I POMIARÓW ELEKTRYCZNYCH Laboratorium Napędu robotów INS 5 Ploter frezująco grawerujący Lynx 6090F 1. OPIS PRZYCISKÓW NA PANELU STEROWANIA. Rys. 1. Przyciski

Bardziej szczegółowo

TOKARKA KŁOWA STEROWANA NUMERYCZNIE TR2D-93 CNC

TOKARKA KŁOWA STEROWANA NUMERYCZNIE TR2D-93 CNC TOKARKA KŁOWA STEROWANA NUMERYCZNIE TR2D-93 CNC Podstawowe parametry: Max. średnica obrabianych rur Max. ciężar detalu w kłach 204/300/370 mm 6 ton Długość toczenia 2-4m Transporter wiórów w standardzie

Bardziej szczegółowo

() (( 29.6.2006 21:07 ( ( KONFIGURACJA ( OBRABIARKA MTS01 TM_008_-R1_-060x0048x0236 ( STEROWANIE MTS TM55 ( ( PRZEDMIOT OBRABIANY ( WALEC D030.

() (( 29.6.2006 21:07 ( ( KONFIGURACJA ( OBRABIARKA MTS01 TM_008_-R1_-060x0048x0236 ( STEROWANIE MTS TM55 ( ( PRZEDMIOT OBRABIANY ( WALEC D030. ĆWICZENIE - NR 3 Wykonaj na tokarce CNC detal przedstawiony na rysunku wykonawczym. Materiał: wałek aluminiowy PA6, wymiary surówki do obróbki należy dobrać na bazie wymiarów rysunkowych elementu. Programowanie

Bardziej szczegółowo

Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink.

Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Celem ćwiczenia jest symulacja działania (w środowisku Matlab/Simulink) sterownika dla dwuosiowego robota

Bardziej szczegółowo

Część nr 7 OPIS PRZEDMIOTU ZAMÓWIENIA SPECYFIKACJA TECHNICZNA

Część nr 7 OPIS PRZEDMIOTU ZAMÓWIENIA SPECYFIKACJA TECHNICZNA Nr sprawy: CKP.272-1/D-MRPO/11 Załącznik nr 1 Część nr 7 OPIS PRZEDMIOTU ZAMÓWIENIA SPECYFIKACJA TECHNICZNA Przedmiotem zamówienia jest dostawa Oprogramowania dydaktyczno-przemysłowego do nauki programowania

Bardziej szczegółowo

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI Inżynieria wytwarzania: Obróbka ubytkowa

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI Inżynieria wytwarzania: Obróbka ubytkowa Przedmiot: KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI Inżynieria wytwarzania: Obróbka ubytkowa Temat ćwiczenia: Toczenie Numer ćwiczenia: 1 1. Cel ćwiczenia Poznanie odmian toczenia, budowy i przeznaczenia

Bardziej szczegółowo

Programowanie obrabiarek CNC. Nr 5

Programowanie obrabiarek CNC. Nr 5 olitechnika oznańska Instytut Technologii Mechanicznej Laboratorium rogramowanie obrabiarek CNC Nr 5 Obróbka wałka wielostopniowego Opracował: Dr inŝ. Wojciech taszyński oznań, 2009-04-25 1. Cel ćwiczenia

Bardziej szczegółowo

Automation and Drives. service. Szkolenia

Automation and Drives. service. Szkolenia Automation and Drives service Szkolenia s SINUMERIK 810D/840D Programowanie i obsługa I Uruchamianie obrabiarki Praca w trybie JOG Praca w trybie MDA Praca w trybie AUTO/SBL Powrót do konturu tryb REPOS

Bardziej szczegółowo

Zastosowanie Safety Integrated na przykładzie obrabiarki Scharmann Heavycut

Zastosowanie Safety Integrated na przykładzie obrabiarki Scharmann Heavycut Zastosowanie Safety Integrated na przykładzie obrabiarki Scharmann Heavycut Charakterystyka maszyny - Scharmann Heavycut Rodzaj maszyny wytaczarka Układ sterowania Stary Sinumerik 8 + Sinumerik 840D (MMC

Bardziej szczegółowo

SprutCAM to system CAM do generowania programów NC dla frezarek wieloosiowych, tokarek, tokarko-frezarek, numerycznie sterowanych drutówek oraz

SprutCAM to system CAM do generowania programów NC dla frezarek wieloosiowych, tokarek, tokarko-frezarek, numerycznie sterowanych drutówek oraz SprutCAM to system CAM do generowania programów NC dla frezarek wieloosiowych, tokarek, tokarko-frezarek, numerycznie sterowanych drutówek oraz centrów obróbczych. System umożliwia tworzenie programów

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest

Bardziej szczegółowo

CNC. Rys. Obróbka tokarska - obraca się przedmiot, porusza narzędzie.

CNC. Rys. Obróbka tokarska - obraca się przedmiot, porusza narzędzie. CNC Konstrukcje. Omawiane obrabiarki to tokarki i frezarki, chociaŝ dzisiaj czasem naprawdę trudno zdecydować z jakim typem maszyny mamy do czynienia. Tokarki mają montowane tzw. napędzane narzędzie i

Bardziej szczegółowo

Centra. tokarskie DUGARD 300P / 300MC. ze skośnym łożem DUGARD. www.jafo.com.pl

Centra. tokarskie DUGARD 300P / 300MC. ze skośnym łożem DUGARD. www.jafo.com.pl Centra tokarskie DUGARD 300P / 300MC ze skośnym łożem DUGARD www.jafo.com.pl Dokładne toczenie i niższe koszty produkcyjne! Tokarka skonstruowana z myślą o produktywności i niezawodności. Teraz można realizować

Bardziej szczegółowo

Centra. tokarskie DUGARD 100. ze skośnym łożem. www.jafo.com.pl DUGARD

Centra. tokarskie DUGARD 100. ze skośnym łożem. www.jafo.com.pl DUGARD Centra tokarskie DUGARD 100 ze skośnym łożem DUGARD www.jafo.com.pl DUGARD 100 Tokarki CNC Szybkie posuwy 30m/min, prowadnice liniowe w osiach X i Z Prowadnice liniowe zapewniają duże prędkości przesuwów

Bardziej szczegółowo

9.1.4 Parametry gwintu

9.1.4 Parametry gwintu 9.1.4 Parametry gwintu 9.1.4 Parametry gwintu CNC PILOT ustala parametry gwintu na podstawie nast puj cej tabeli. Jeśli w szpalcie F znajduje si *, to skok gwintu - w zależności od rodzaju gwintu - zostaje

Bardziej szczegółowo

WIERTARKA POZIOMA DO GŁĘBOKICH WIERCEŃ W30-160 W30-200

WIERTARKA POZIOMA DO GŁĘBOKICH WIERCEŃ W30-160 W30-200 WIERTARKA POZIOMA DO GŁĘBOKICH WIERCEŃ W30-160 W30-200 Obrabiarka wyposażona w urządzenia umożliwiające wykonywanie wiercenia i obróbki otworów do długości 8000 mm z wykorzystaniem wysokowydajnych specjalistycznych

Bardziej szczegółowo

Nr 6. Obróbka części na tokarce CNC. Instytut Technologii Mechanicznej. Laboratorium Maszyn i urządzeń technologicznych. Politechnika Poznańska

Nr 6. Obróbka części na tokarce CNC. Instytut Technologii Mechanicznej. Laboratorium Maszyn i urządzeń technologicznych. Politechnika Poznańska Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Maszyn i urządzeń technologicznych Nr 6 Obróbka części na tokarce CNC Opracował: dr inŝ. Wojciech Ptaszyński mgr inŝ. Waldemar Bereza

Bardziej szczegółowo

Modelowanie powierzchniowe cz. 2

Modelowanie powierzchniowe cz. 2 Modelowanie powierzchniowe cz. 2 Tworzenie modelu przez obrót wokół osi SIEMENS NX Revolve Opis okna dialogowego Section wybór profilu do obrotu Axis określenie osi obrotu Limits typ i parametry geometryczne

Bardziej szczegółowo

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Ćwiczenie laboratoryjne 2 Temat: Modelowanie powierzchni swobodnych 3D przy użyciu programu Autodesk Inventor Spis treści 1.

Bardziej szczegółowo

Symulacja maszyny CNC oparta na kodzie NC

Symulacja maszyny CNC oparta na kodzie NC Systemy CAM w praktyce NX CAM i symulacja maszyny CNC Symulacja maszyny CNC oparta na kodzie NC Prawie każdy użytkownik systemu CAM ma do dyspozycji narzędzie, jakim jest symulacja obrabiarki *. Nie w

Bardziej szczegółowo

Technologia wykrawania w programie SigmaNEST

Technologia wykrawania w programie SigmaNEST Technologia wykrawania w programie SigmaNEST 1. Wstęp Wykrawanie - obok cięcia plazmą, laserem, nożem, tlenem oraz wodą - jest kolejnym procesem, obsługiwanym przez program SigmaNEST. Jednak w tym przypadku,

Bardziej szczegółowo

Centrum wiertarsko-frezarskie MAKA PE 75

Centrum wiertarsko-frezarskie MAKA PE 75 Centrum wiertarsko-frezarskie MAKA PE 75 NOWA OPCJA W STANDARDZIE Portalna zabudowa maszyny Agregat frezujący: - 5-cio osiowy - chłodzony cieczą - moc 11 kw Agregat wiertarski: - 7 + 10 + 2 x 1 wierteł

Bardziej szczegółowo

Korzyści z pakietu NX CAM-SINUMERIK Optymalizacja połączenia między oprogramowaniem CAM a sterowaniem numerycznym obrabiarki.

Korzyści z pakietu NX CAM-SINUMERIK Optymalizacja połączenia między oprogramowaniem CAM a sterowaniem numerycznym obrabiarki. Siemens PLM Software Korzyści z pakietu NX CAM-SINUMERIK Optymalizacja połączenia między oprogramowaniem CAM a sterowaniem numerycznym obrabiarki. www.siemens.com/nx A rtykuł techniczny Uzyskanie najwyższej

Bardziej szczegółowo

Przykład 1 wałek MegaCAD 2005 2D przykład 1 Jest to prosty rysunek wałka z wymiarowaniem. Założenia: 1) Rysunek z branży mechanicznej; 2) Opracowanie w odpowiednim systemie warstw i grup; Wykonanie 1)

Bardziej szczegółowo

O G Ł O S Z E N I E o rozpoczęciu postępowania o zamówienie o wartości do 30 000 euro.

O G Ł O S Z E N I E o rozpoczęciu postępowania o zamówienie o wartości do 30 000 euro. Szczecin, dn. 29.01.2015r. O G Ł O S Z E N I E o rozpoczęciu postępowania o zamówienie o wartości do 30 000 euro. Zachodniopomorskie Centrum Edukacji Morskiej i Politechnicznej w Szczecinie, ul. Hoża 6,

Bardziej szczegółowo

Technik Mechanik. Użytkowanie Obrabiarek Skrawających (CNC)

Technik Mechanik. Użytkowanie Obrabiarek Skrawających (CNC) Technik Mechanik Użytkowanie Obrabiarek Skrawających (CNC) Technik Mechanik Programuje i obsługuje obrabiarki CNC, Projektuje i wytwarza części i zespoły maszyn i urządzeń mechanicznych z wykorzystaniem

Bardziej szczegółowo

Mechatroniczne głowice wytaczarskie firmy D Andrea

Mechatroniczne głowice wytaczarskie firmy D Andrea Mechatroniczne głowice wytaczarskie firmy D Andrea Rafał Wujczak Historia firmy D ANDREA zaczyna się w 1951 roku, wraz z powstaniem pierwszej specjalizowanej głowicy SENSITIV T-TA, przeznaczonej do planowania

Bardziej szczegółowo

NOWOŚCI SOLID EDGE ST7. Przykładowy rozdział

NOWOŚCI SOLID EDGE ST7. Przykładowy rozdział NOWOŚCI SOLID EDGE ST7 Przykładowy rozdział Firma GM System Integracja Systemów Inżynierskich Sp. z o.o. została założona w 2001 roku. Zajmujemy się dostarczaniem systemów CAD/CAM/CAE/PDM. Jesteśmy jednym

Bardziej szczegółowo

KURSY I SZKOLENIA Z ZAKRESU OBRÓBKI SKRAWANIEM

KURSY I SZKOLENIA Z ZAKRESU OBRÓBKI SKRAWANIEM KURSY I SZKOLENIA Z ZAKRESU OBRÓBKI SKRAWANIEM Nowoczesne wyposażenie Laboratorium konwencjonalnych obrabiarek skrawających, Laboratorium nowoczesnych technik wytwarzania na obrabiarkach numerycznych oraz

Bardziej szczegółowo

Specjalne funkcje programu SigmaNEST do obsługi przecinarek laserowych

Specjalne funkcje programu SigmaNEST do obsługi przecinarek laserowych Specjalne funkcje programu SigmaNEST do obsługi przecinarek laserowych Wstęp Cięcie laserem jest stosunkowo nową technologią, która pozwala na uzyskanie bardzo dobrej jakości krawędzi blachy, w połączeniu

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie OB-2 BUDOWA I MOŻLIWOŚCI TECHNOLOGICZNE FREZARKI OBWIEDNIOWEJ

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie OB-2 BUDOWA I MOŻLIWOŚCI TECHNOLOGICZNE FREZARKI OBWIEDNIOWEJ POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie OB-2 Temat: BUDOWA I MOŻLIWOŚCI TECHNOLOGICZNE FREZARKI OBWIEDNIOWEJ Opracował: mgr inż. St. Sucharzewski Zatwierdził: prof.

Bardziej szczegółowo

SolidCAM - najczęściej zadawane pytania

SolidCAM - najczęściej zadawane pytania SolidCAM - najczęściej zadawane pytania 1. Jaka jest liczba programowalnych osi (ile, jakich)? System SolidCAM umożliwia programowanie ścieżek narzędzia w 5 osiach lub więcej, programowanie robotów 6 osiowych,

Bardziej szczegółowo

WYBÓR PUNKTÓW POMIAROWYCH

WYBÓR PUNKTÓW POMIAROWYCH Scientific Bulletin of Che lm Section of Technical Sciences No. 1/2008 WYBÓR PUNKTÓW POMIAROWYCH WE WSPÓŁRZĘDNOŚCIOWEJ TECHNICE POMIAROWEJ MAREK MAGDZIAK Katedra Technik Wytwarzania i Automatyzacji, Politechnika

Bardziej szczegółowo

Elastyczne systemy wytwarzania

Elastyczne systemy wytwarzania ZAKŁAD PROJEKTOWANIA TECHNOLOGII Laboratorium: Elastyczne systemy wytwarzania Instrukcja 3 Temat: Programowanie współpracy obrabiarki CNC i manipulatora przemysłowego Opracował: mgr inż. Arkadiusz Pietrowiak

Bardziej szczegółowo

WSTĘP. 1. Pierwsza część zawiera informacje związane z opisem dostępnych modułów, wymaganiami oraz instalacją programu.

WSTĘP. 1. Pierwsza część zawiera informacje związane z opisem dostępnych modułów, wymaganiami oraz instalacją programu. WSTĘP Podręcznik został przygotowany przez firmę Falina Systemy CAD CAM dla użytkowników rozpoczynających pracę z programem SmartCAM v19.6. Materiał informacyjno-szkoleniowy został podzielony na trzy podstawowe

Bardziej szczegółowo

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa TECHNOLOGIA MASZYN Wykład dr inż. A. Kampa Technologia - nauka o procesach wytwarzania lub przetwarzania, półwyrobów i wyrobów. - technologia maszyn, obejmuje metody kształtowania materiałów, połączone

Bardziej szczegółowo

Centra DUGARD 300P / 300MC. tokarskie. ze skośnym łożem DUGARD. www.jafo.com.pl JAROCIŃSKA FABRYKA OBRABIAREK S.A.

Centra DUGARD 300P / 300MC. tokarskie. ze skośnym łożem DUGARD. www.jafo.com.pl JAROCIŃSKA FABRYKA OBRABIAREK S.A. Centra tokarskie JAROCIŃSKA FABRYKA OBRABIAREK S.A. DUGARD 300P / 300MC ze skośnym łożem DUGARD www.jafo.com.pl Tokarki CNC serii DUGARD 300 ze skośnym łożem Dokładne toczenie i niższe koszty produkcyjne!

Bardziej szczegółowo

WYKAZ MASZYN I URZĄDZEŃ DO UPŁYNNIENIA (stan na dzień 04.04.2014 r.)

WYKAZ MASZYN I URZĄDZEŃ DO UPŁYNNIENIA (stan na dzień 04.04.2014 r.) FABRYKA OBRABIAREK PRECYZYJNYCH AVIA S.A. ul. Siedlecka 47, 03-768 Warszawa WYKAZ MASZYN I URZĄDZEŃ DO UPŁYNNIENIA (stan na dzień 04.04.2014 r.) Lp. Nazwa maszyny / urządzenia Typ Nr inw. Nr fabr. Rok

Bardziej szczegółowo

MINISTERSTWO EDUKACJI NARODOWEJ

MINISTERSTWO EDUKACJI NARODOWEJ MINISTERSTWO EDUKACJI NARODOWEJ Priorytet III- Wysoka jakość systemu oświaty, Poddziałanie 3.3.2. Efektywny system kształcenia i doskonalenia nauczycieli Zeszyt naukowy nr 7/2011 PRAKTYCZNE ZASTOSOWANIA

Bardziej szczegółowo

Przedmiotowy system oceniania - kwalifikacja M19. Podstawy konstrukcji maszyn. Przedmiot: Technologia naprawy elementów maszyn narzędzi i urządzeń

Przedmiotowy system oceniania - kwalifikacja M19. Podstawy konstrukcji maszyn. Przedmiot: Technologia naprawy elementów maszyn narzędzi i urządzeń Przedmiotowy system oceniania - kwalifikacja M19 KL II i III TM Podstawy konstrukcji maszyn nauczyciel Andrzej Maląg Przedmiot: Technologia naprawy elementów maszyn narzędzi i urządzeń CELE PRZEDMIOTOWEGO

Bardziej szczegółowo

Tworzenie nowego rysunku Bezpośrednio po uruchomieniu programu zostanie otwarte okno kreatora Nowego Rysunku.

Tworzenie nowego rysunku Bezpośrednio po uruchomieniu programu zostanie otwarte okno kreatora Nowego Rysunku. 1 Spis treści Ćwiczenie 1...3 Tworzenie nowego rysunku...3 Ustawienia Siatki i Skoku...4 Tworzenie rysunku płaskiego...5 Tworzenie modeli 3D...6 Zmiana Układu Współrzędnych...7 Tworzenie rysunku płaskiego...8

Bardziej szczegółowo

GEOMETRIA GWINTÓW Pracę wykonał Mateusz Szatkowski 1h.

GEOMETRIA GWINTÓW Pracę wykonał Mateusz Szatkowski 1h. GEOMETRIA GWINTÓW Pracę wykonał Mateusz Szatkowski 1h. Gwint to śrubowe nacięcie na powierzchni walcowej lub stożkowej, zewnętrznej lub wewnętrznej. Komplementarne gwinty wewnętrzny i zewnętrzny mają tak

Bardziej szczegółowo

Projekt pn. Mam zawód mam pracę w regionie jest współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt pn. Mam zawód mam pracę w regionie jest współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ED.042.1.2014 Częstochowa, 20.06.2014 r. Zapytanie ofertowe (wartość do 30 000 ) W związku z realizacją projektu pn. Mam zawód mam pracę w regionie, Program Operacyjny Kapitał Ludzki 2007 2013, Priorytet

Bardziej szczegółowo

Spis treści płyt DVD. Systemu ZERO-OSN do wersji 1.82. Płyta DVD - 1 czas 1.58.30 Podstawy obróbki skrawaniem i narzędzia

Spis treści płyt DVD. Systemu ZERO-OSN do wersji 1.82. Płyta DVD - 1 czas 1.58.30 Podstawy obróbki skrawaniem i narzędzia Spis treści płyt DVD Systemu ZERO-OSN do wersji 1.82 Płyta DVD - 1 czas 1.58.30 Podstawy obróbki skrawaniem i narzędzia 1. Tworzenie i usuwanie wióra czas 5.52 Fragmenty filmu obrazują (w dużym powiększeniu)

Bardziej szczegółowo

Technik mechanik 311504

Technik mechanik 311504 Technik mechanik 311504 Absolwent szkoły kształcącej w zawodzie technik mechanik powinien być przygotowany do wykonywania następujących zadań zawodowych: 1) wytwarzania części maszyn i urządzeń; 2) dokonywania

Bardziej szczegółowo

quadra www.randdtech.pl

quadra www.randdtech.pl quadra L1 PL www.randdtech.pl ALL IN ONE BAR positioning Magazyn zaladunkowy na profile Może pomieścić do 15 profili o maksymalnej szerokości 100 lub do 7 profili przy maksymalnej szerokości przekroju

Bardziej szczegółowo

CNC WPROWADZENIE MATERIAŁ SZKOLENIOWY

CNC WPROWADZENIE MATERIAŁ SZKOLENIOWY MATHEMATISCH TECHNISCHE SOFTWARE-ENTWICKLUNG GMBH CNC WPROWADZENIE MATERIAŁ SZKOLENIOWY mgr inż. Robert Dubas ul. Sosnowa 1-4, 71-468 Szczecin Tel. 0601 724 127, tel/fax: 091 4553960 dubas@mts-cnc.com

Bardziej szczegółowo

Laboratorium Programowanie Obrabiarek CNC. Nr H6

Laboratorium Programowanie Obrabiarek CNC. Nr H6 1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie Obrabiarek CNC Nr H6 Programowanie podprogramów i pętli Opracował: Dr inŝ. Wojciech Ptaszyński Poznań, 18 marca 2010

Bardziej szczegółowo

Sterowanie obrabiarką numeryczną

Sterowanie obrabiarką numeryczną Sterowanie obrabiarką numeryczną Instrukcja do ćwiczenia laboratoryjnego Arkadiusz Lewicki, Jarosław Guziński 1. Wstęp Obrabiarki sterowane numerycznie (ang. computer numerical control CNC) wykorzystywane

Bardziej szczegółowo

Centra. tokarskie DUGARD 200HT / 200MC. ze skośnym łożem DUGARD. www.jafo.com.pl

Centra. tokarskie DUGARD 200HT / 200MC. ze skośnym łożem DUGARD. www.jafo.com.pl Centra tokarskie DUGARD H / MC ze skośnym łożem DUGARD www.jafo.com.pl DUGARD H/MC okarki CNC Konik Hydrauliczny Wysuw tuleii konika można sterować programem lub pedałem nożnym. Automatyczny czujnik kontroli

Bardziej szczegółowo

Tokarka uniwersalna SPA-700P

Tokarka uniwersalna SPA-700P Tokarka uniwersalna SPA-700P Tokarka uniwersalna SPA-700P Charakterystyka maszyny. Tokarka uniwersalna SPA-700P przeznaczona jest do wszelkiego rodzaju prac tokarskich. MoŜliwa jest obróbka zgrubna i wykańczająca

Bardziej szczegółowo

PLAN SZKOLEŃ NX CAM. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range,

PLAN SZKOLEŃ NX CAM. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range, PLAN SZKOLEŃ NX CAM Firma GM System Integracja Systemów Inżynierskich Sp. z o.o. została założona w 2001 roku. Zajmujemy się dostarczaniem systemów CAD/CAM/CAE/PDM. Jesteśmy jednym z największych polskich

Bardziej szczegółowo