Sebastian Gajos Dominik Kaniszewski

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sebastian Gajos Dominik Kaniszewski"

Transkrypt

1 Sebastian Gajos Doinik Kaniszewski Iię i nazwisko data Ćw.8 Poiar skażeń proieniotwórczych ietrza i y Teat ćwiczenia ocena podpis Część teoretyczna: Prawo rozpadu proieniotwórczego. Określona ilość substancji proieniotwórczej nazywa się źródłe proieniotwórczy. Oznaczy przez 0 liczbę nuklidu proieniotwórczego, zawartych w źródle proieniotwórczy w chwili początkowej ( t 0 ). W iarę upływu czasu liczba atoów proieniotwórczych w źródle 0 będzie się zniejszała w skutek ich rozpadu. Za iarę intensywności rozpadów zachodzących w źródle proieniotwórczy przyjuje się liczbę rozpadów odniesionych do jednostkowego odstępu d czasu; wielkość te nazywa się aktywnością źródła proieniotwórczego. A. dt Dla sforułowania prawa rozpadu proieniotwórczego, czyli prawa według którego zienia się w czasie liczba jąder rozpadających się, załóży, że prawdopodobieństwo rozpadu na jednostkę czasu jest dla pojedynczego jądra stałe. Zgodnie z ty założenie ubytek liczby jąder z liczby w czasie dt λt wynosi d λdt Całkując to równanie otrzyujey prawo rozpadu ( t) 0 e. Wielkość λ charakteryzującą prawdopodobieństwo rozpadu pojedynczego jądra w jednostce czasu nazyway stałą rozpadu. Dla scharakteryzowania szybkości rozpadu wprowadzay jeszcze wielkość T (czas połowicznego zaniku), to znaczy czas, po który w wyniku rozpadu liczba jąder spadnie ( T ) λt ln o połowę. Według prawa rozpadu e stąd T. Skażenia, proieniotwórczość naturalna i sztuczna. 0 Większość ludzi przypuszcza, że jedyny źródłe skażenia ietrza substancjai proieniotwórczyi są wybuchy bob jądrowych oraz tak zwany przeysł jądrowy, to znaczy laboratoria, reaktory itp. urządzenia. Istotny źródłe proieniowania jonizującego na ierzchni Ziei są pierwiastki proieniotwórcze występujące w skorupie zieskiej takie jak: 40 K, 50 V, 87 Rb, 5 In, 8 La, 44 d, 47 S, 76 Lu, 87 Re, 5 U, 8 U, Tr. Istotne znaczenie ze względu na oddziaływanie na organizy żywe ają : 40 K, 5 U, 8 U, Tr. Potas 40 K jest stały składnikie gleby, skąd przenika do roślin i organizów zwierzęcych. Staje się więc jedny ze składników naszego pokaru. Tya aktywność potasu 40 K w glebie wynosi 5-00 Bq na kilogra. W inerałach aktywność radioaktywnego potasu oże osiągać znacznie większe wartości. Średnio w ciele człowieka znajduje się taka ilość radioaktywnego potasu 40 K, że w ciągu każdej sekundy w ciele człowieka następuje około 4000 rozpadów 40 K pochodzącego z zasobów naturalnych Ziei. W Polsce nie obserwujey zbyt dużych różnic w zawartości radioaktywnego potasu w poszczególnych gatunkach gruntu. Proieniowanie jonizujące, jakie pochłaniay od radioaktywnego potasu, jest podobne jak proieniowanie kosiczne niej więcej takie sao dla każdego iejsca w Polsce i właściwie nie bardzo ożna je zniejszyć. Potas 40 K znajduje się bowie praktycznie w każdy pożywieniu i jego ilość w organizie jest stale uzupełniana. Uran i tor stanowią stały składnik wszystkich gleb i większości inerałów. Tye ich stężenie wynosi - części na ilion części pozostałych składników gleby. Tye zawartości uranu i toru w glebie są odiednio równe i 50 Bq na kilogra gleby. Produktai rozpadu uranu i toru są.in. gazy szlachetne radon- ( Rn) i toron-0 (zwany też niekiedy radone-0, 0 Rn). Gazy te igrują z gleby ku ierzchni Ziei i dostają się do atosfery. Przy ierzchni Ziei jest więc warstewka ietrza o zwiększonej zawartości tych gazów. Gazy te ogą się kuulować λ

2 w nieodiednio zbudowanych budynkach jak pod klosze, stając się niekiedy źródłe istotnego zagrożenia zdrowia ieszkańców danego budynku. Źródłe tych gazów ogą być dodatkowo niektóre ateriały budowlane. W wyniku rozpadu radonu i toronu stają pierwiastki proieniotwórcze, które już nie są gazai szlachetnyi i jako elektrycznie naładowane łączą się z drobinkai pyłów w ietrzu tworząc tzw. aerozole. Wdychanie do płuc ietrza zawierającego radon, toron i aerozole oduje naproieniowanie tkanki płucnej proieniowanie jonizujący. Woda stanowi dogodne środowisko do transportu pierwiastków proieniotwórczych z głębiej położonych warstw skalnych ku ierzchni. W Polsce proble radonu w zie występuje w niektórych źródłach wód ineralnych na Pogórzu Sudecki. Wysokie stężenie radonu uwalnianego z y w ietrzu oże wystąpić w pijalniach wód, przy braku odiedniej wentylacji. Cel ćwiczenia enia: Cele ćwiczenia jest wyznaczenia aktywności pierwiastków β - proieniotwórczych w środowisku naturalny na przykładzie ietrza i y. Przebieg ćwiczenia: ) wybrać paraetry pracy zasilacza wysokiego napięcia, wzacniacza i analizatora, pracującego w reżiie dyskryinatora ) wykonać poiar tła ) przeprowadzić kalibrację układu poiarowego przy poocy naturalnego źródła proieniowania KCL (aktywność właściwa 400 pci/g) a) zważyć asę soli KCL (~g) b) wykonać poiar liczby zliczeń pochodzących od źródła KCL w czasie odiadający niepewności zliczeń ~% c) sprawdzić, czy zachodzi potrzeba uwzględnienia poprawki na proieniowanie γ. W ty celu iędzy źródłe KCL i okienkie sondy wstawić absorbent proieniowania β, np. Al. 4) poiar aktywności ietrza a) wykorzystując zestaw do filtracji ietrza przepoać przez filtr bibułowy ~5 ietrza. Zanotować dokładną objętość ietrza przepoanego b) wykonać poiar liczby zliczeń pochodzących od skażonego filtru w określony czasie c) korzystając z kalibracji wykonanej w p. wyznaczyć aktywność właściwą pierwiastków β-proieniotwórczych ietrza 5) poiar aktywności y a) przez urządzenie do filtracji y przepuścić 5l y z kranu b) zierzyć w wybrany czasie liczbę zliczeń pochodzących od filtru, przez który przepuszczono ę c) wyznaczyć aktywność właściwą y 6) przeprowadzić dyskusję błędów otrzyanych wyników 7) porównać wartości otrzyanych aktywności z norai obowiązującyi dla y i ietrz

3 Dane: napięcie U000V Tab.: Ilości zliczeń przez 60 [s] dla różnych p poiary /t Tło [s] KCl [s] poprawka na γ 9 74 [s] poiar aktywności ietrza [ 5 ] [s] poiar aktywności y [ 5 l ] [s] Obliczenia: aktywność właściwa KCL wynosi: pci 0 Bq Bq A w ,7 0 4, 8 g g g aktywność g KCL wynosi: Bq A Aw KCL 4,8 g 4, 8Bq g liczba zliczeń w dany czasie po uwzględnieniu tła: p t dla ietrza:, 896 t t dla y: dla KCl: p t w t 4, 68 tw tt KCL t, 4 t KCL tt Obliczay aktywność ietrza ze wzoru: A AKCL A - szukana aktywność ietrza A KCL - aktywność g KCL - liczba zliczeń dla ietrza w czasie po uwzględnieniu tła - liczba zliczeń dla KCL po uwzględnieniu tła czyli:,896 A 4,8Bq, 680Bq,4 Obliczay aktywność y ze wzoru: A AKCL A - szukana aktywność y A KCL - aktywność g KCL - liczba zliczeń dla y w czasie po uwzględnieniu tła - liczba zliczeń dla KCL po uwzględnieniu tła 4,68 czyli: A 4,8Bq 8, 78689Bq,4

4 Dyskusja błędów otrzyanych wyników: niepewność poiaru asy KCL: 0,00g niepewność poiaru aktywności: AA w * 4,8 g Bq *0,00g0,048Bq niepewność poiaru liczby zliczeń po uwzględnieniu tła: dla y: w t ,0705 t t s dla ietrza: p t ,0467 t t s dla KCL: KCL t ,059 t t s błędy poiaru aktywności: dla y: A A A Aw ) + ( ) + ( czyli: A ( 4,68,4 dla ietrza: A czyli: A 4,8,4 4,8 4,68,4 ( 0,048) + ( 0,0705) + ( A A ) 0,0467) ( Aw ) + ( ) + (,896,4 4,8,4 4,8,896,4 ( 0,048) + ( 0,0467) + ( ) 0,0467),4099Bq 0,5509Bq Ostatecznie aktywności wynoszą: dla 5 l y: 8,78689Bq ±,40Bq dla 5 ietrza:,680bq ± 0,55Bq Wnioski: Cele tego ćwiczenia było wyznaczenie aktywności pierwiastków β-proieniotwórczych w środowisku naturalny na przykładzie ietrza i y. Do kalibracji zestawu poiarowego wykorzystywaliśy naturalne źródło proieniowania β potasu K-40 zawartego w chlorku potasu - KCL. a podstawie otrzyanych wyników wyznaczyliśy aktywność właściwą ietrza i y. Wynosi ona odiednio: dla 5 l y: 8,78689Bq ±,40Bq dla 5 ietrza:,680bq ± 0,55Bq. 4

5 Aby obliczyć stężenie należy podzielić aktywność y i ietrza przez objętość. Stężenie dla y 8,78689Bq 8,78689Bq Bq kbq wynosi: 5745,778 5,745. 5l 5 0,680 Bq Bq Stężenie dla ietrza wynosi:, 6 5 0Bq Stężenie radonu dla ietrza na zewnątrz budynku wynosi ok.. atoiast w poieszczeniach 00Bq zakniętych stężenie radonu jest średnio dziesięć razy większe niż na zewnątrz, czyli ok.. Pozio stężenia radonu w zie jest kilka tysięcy razy wyższy od średniego poziou na ierzchni. Stężenia wyznaczone w ty ćwiczeniu są ałe w porównaniu z obowiązującyi norai dla ietrza i y. Literatura:. J. Arainowicz, K. Małuszyńska, M. Przytuła Laboratoriu fizyki jądrowej, Warszawa 974. T. Hilczer, Metody doświadczalne w fizyce jądrowej. A. Strzałkowski, Wstęp do fizyki jądra atoowego 4. J. B. England, Metody doświadczalne w fizyce jądrowej Spis treści:.część TEORETYCZA... PRAWO ROZPADU PROMIEIOTWÓRCZEGO... SKAŻEIA, PROMIEIOTWÓRCZOŚĆ ATURALA I SZTUCZA....CEL ĆWICZEIA PRZEBIEG ĆWICZEIA DAE I OBILCZEIA... 6.DYSKUSJA IEPEWOŚCI POMIAROWYCH WIOSKI LITERATURA

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega

Bardziej szczegółowo

Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2

Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2 Radon w powietrzu Marcin Polkowski marcin@polkowski.eu 10 marca 2008 Streszczenie Celem ćwiczenia był pomiar stężenia 222 Rn i produktów jego rozpadu w powietrzu. Pośrednim celem ćwiczenia było również

Bardziej szczegółowo

Laboratorium Fizyki i Techniki Jądrowej

Laboratorium Fizyki i Techniki Jądrowej Laboratorium Fizyki i Techniki Jądrowej Radon 2: Pomiary zawartości radonu Rn-222 w próbkach wody Opracowanie: mgr inż. Zuzanna Podgórska, podgorska@clor.waw.pl Miejsce wykonania ćwiczenia: Zakład Kontroli

Bardziej szczegółowo

FIZYKA JĄDRA ATOMOWEGO

FIZYKA JĄDRA ATOMOWEGO FIZYKA JĄDRA ATOMOWEGO Ato Jest to najniejszy, niepodzielny etodai cheicznyi składnik aterii. Atoy składają się z jądra i otaczających to jądro elektronów. Elektron Ładunek: Masa: qe e 19 = e ( e = 1,

Bardziej szczegółowo

CHARAKTERYSTYKA ROBOCZA LICZNIKA SCYNTYLACYJNEGO. CZAS MARTWY LICZNIKA SCYNTYLACYJNEGO i G-M

CHARAKTERYSTYKA ROBOCZA LICZNIKA SCYNTYLACYJNEGO. CZAS MARTWY LICZNIKA SCYNTYLACYJNEGO i G-M Zakład Radiocheii i Cheii Koloidów ĆWICZEIE 2 CHARAKTERYSTYKA ROBOCZA LICZIKA SCYTYLACYJEGO. CZAS MARTWY LICZIKA SCYTYLACYJEGO i G-M Instrukcje do ćwiczeń laboratoryjnych Zakład Radiocheii i Cheii Koloidów

Bardziej szczegółowo

Wyznaczanie czasu połowicznego zaniku izotopu promieniotwórczego

Wyznaczanie czasu połowicznego zaniku izotopu promieniotwórczego Ćwiczenie 8 Wyznaczanie czasu połowicznego zaniku izotopu promieniotwórczego 8.. Zasada ćwiczenia Celem ćwiczenia jest wyznaczenie czasu połowicznego zaniku izotopu promieniotwórczego Ba-37m (izotop wtórny)

Bardziej szczegółowo

Wyznaczanie promieniowania radonu

Wyznaczanie promieniowania radonu Wyznaczanie promieniowania radonu Urszula Kaźmierczak 1. Cele ćwiczenia Zapoznanie się z prawem rozpadu promieniotwórczego, Pomiar aktywności radonu i produktów jego rozpadu w powietrzu.. Źródła promieniowania

Bardziej szczegółowo

WYZNACZANIE PROMIENIOWANIA RADONU Instrukcja dla uczniów szkół ponadpodstawowych

WYZNACZANIE PROMIENIOWANIA RADONU Instrukcja dla uczniów szkół ponadpodstawowych WYZNACZANIE PROMIENIOWANIA RADONU Instrukcja dla uczniów szkół ponadpodstawowych WSTĘP I. ROZPAD PROMIENIOTWÓRCZY I RODZAJE PROMIENIOWANIA JĄDROWEGO Rozpadem promieniotwórczym (przemianą promieniotwórczą)

Bardziej szczegółowo

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość OCHRONA RADIOLOGICZNA PACJENTA Promieniotwórczość PROMIENIOTWÓRCZOŚĆ (radioaktywność) zjawisko samorzutnego rozpadu jąder atomowych niektórych izotopów, któremu towarzyszy wysyłanie promieniowania α, β,

Bardziej szczegółowo

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się

Bardziej szczegółowo

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów.

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Ćw. M2 Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Zagadnienia: Budowa jądra atomowego. Defekt masy, energie wiązania jądra.

Bardziej szczegółowo

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny

Bardziej szczegółowo

II PRACOWNIA FIZYCZNA część Pracownia Jądrowa. Ćwiczenie nr 6

II PRACOWNIA FIZYCZNA część Pracownia Jądrowa. Ćwiczenie nr 6 II PRACOWNIA FIZYCZNA część Pracownia Jądrowa Ćwiczenie nr 6 Aktywacja neutronowa. Wyznaczanie krzywej aktywacji i półokresu rozpadu izotopów promieniotwórczych srebra Ag W substancji umieszczonej w strumieniu

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ OZNACZANIE OKRESU PÓŁROZPADU DLA NUKLIDU 40 K WSTĘP Naturalny potas stanowi mieszaninę trzech nuklidów: 39 K (93.08%), 40 K (0.012%) oraz 41 K (6.91%). Nuklid 40 K jest izotopem promieniotwórczym, którego

Bardziej szczegółowo

Promieniowanie w środowisku człowieka

Promieniowanie w środowisku człowieka Promieniowanie w środowisku człowieka Jeżeli przyjrzymy się szczegółom mapy nuklidów zauważymy istniejące w przyrodzie w stosunkowo dużych ilościach nuklidy nietrwałe. Ich czasy zaniku są duże, większe

Bardziej szczegółowo

- ĆWICZENIA - Radioaktywność w środowisku naturalnym K. Sobianowska, A. Sobianowska-Turek,

- ĆWICZENIA - Radioaktywność w środowisku naturalnym K. Sobianowska, A. Sobianowska-Turek, Ćwiczenie A Wyznaczanie napięcia pracy licznika Ćwiczenie B Pomiary próbek naturalnych (gleby, wody) Ćwiczenie C Pomiary próbek żywności i leków - ĆWICZENIA - Radioaktywność w środowisku naturalnym K.

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze

Bardziej szczegółowo

Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym. Praca zbiorowa pod redakcją Jana Skowronka

Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym. Praca zbiorowa pod redakcją Jana Skowronka Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym Praca zbiorowa pod redakcją Jana Skowronka GŁÓWNY INSTYTUT GÓRNICTWA Katowice 2007 SPIS TREŚCI WPROWADZENIE (J. SKOWRONEK)...

Bardziej szczegółowo

LABORATORIUM PROMIENIOWANIE w MEDYCYNIE

LABORATORIUM PROMIENIOWANIE w MEDYCYNIE LABORATORIUM PROMIEIOWAIE w MEDYCYIE Ćw nr STATYSTYKA ZLICZEŃ PROMIEIOWAIA JOIZUJACEGO azwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa Cel ćwiczenia Rozpad izotopu promieniotwórczego wysyłającego

Bardziej szczegółowo

II PRACOWNIA FIZYCZNA część: Pracownia Jądrowa

II PRACOWNIA FIZYCZNA część: Pracownia Jądrowa II PRCOWI FIZYCZ część: Pracownia Jądrowa Ćwiczenie nr 2 Pomiar skażeń promieniowórczych ypu wody lub ierza Cel ćwiczenia, opis: Wyznaczenie akywności pierwiasków -promieniowórczych w środowisku nauralnym

Bardziej szczegółowo

obowiązuje w r. akad / 2020

obowiązuje w r. akad / 2020 POLITECHIKA ŚLĄSKA WYDZIAŁ CHEMICZY KATEDRA FIZYKOCHEMII I TECHOLOGII POLIMERÓW obowiązuje w r. akad. 2019 / 2020 OZACZAIE AKTYWOŚCI I OKRESU PÓŁTRWAIA SUBSTACJI PROMIEIOTWÓRCZEJ Opiekun ćwiczenia: dr

Bardziej szczegółowo

Pomiar stężenia radonu i jego pochodnych w powietrzu atmosferycznym

Pomiar stężenia radonu i jego pochodnych w powietrzu atmosferycznym Wydział Fizyki PW - Laboratorium Fizyki i Techniki Jądrowej Pomiar stężenia radonu i jego pochodnych w powietrzu atmosferycznym Kalina Mamont-Cieśla 1, Magdalena Piekarz 1, Jan Pluta 2 -----------------------------------------------------------------

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa

Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Cel ćwiczenia Celem ćwiczenia jest zapoznanie się - z metodyką pomiaru aktywności

Bardziej szczegółowo

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego

Bardziej szczegółowo

Promieniowanie w naszych domach. I. Skwira-Chalot

Promieniowanie w naszych domach. I. Skwira-Chalot Promieniowanie w naszych domach I. Skwira-Chalot Co to jest promieniowanie jonizujące? + jądro elektron Rodzaje promieniowania jonizującego Przenikalność promieniowania L. Dobrzyński, E. Droste, W. Trojanowski,

Bardziej szczegółowo

3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona

3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona 3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona I. Przedmiotem zadania zjawisko Comptona. II. Celem zadania jest doświadczalne sprawdzenie zależności energii kwantów γ od kąta rozproszenia

Bardziej szczegółowo

Opracowanie wyników pomiarów w ćwiczeniu "Czas połowicznego zaniku izotopów promieniotwórczych" z wykorzystaniem arkusza Excel

Opracowanie wyników pomiarów w ćwiczeniu Czas połowicznego zaniku izotopów promieniotwórczych z wykorzystaniem arkusza Excel Opracowanie wyników pomiarów w ćwiczeniu "Czas połowicznego zaniku izotopów promieniotwórczych" z wykorzystaniem arkusza Excel 1. Oblicz średnią wartość tła w impulsach na minutę: Bśr =,. Wypełnij tabelę

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Cel ćwiczenia: Zapoznanie się z podstawami dozymetrii promieniowania jonizującego. Porównanie własności absorpcyjnych promieniowania

Bardziej szczegółowo

ĆWICZENIE 9 SPEKTROMETRIA PROMIENIOWANIA GAMMA W ZASTOSOWANIU DO ŹRÓDEŁ O DUŻEJ OBJĘTOŚCI

ĆWICZENIE 9 SPEKTROMETRIA PROMIENIOWANIA GAMMA W ZASTOSOWANIU DO ŹRÓDEŁ O DUŻEJ OBJĘTOŚCI ĆWICZENIE 9 SPEKTROMETRIA PROMIENIOWANIA GAMMA W ZASTOSOWANIU DO ŹRÓDEŁ O DUŻEJ OBJĘTOŚCI Instrukcje do ćwiczeń laboratoryjnych CEL ĆWICZENIA Zapoznanie się z metodą spektrometrii promieniowania gamma

Bardziej szczegółowo

1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY.

1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY. . JĄDROWA BUDOWA ATOMU. A - POIOM PODSTAWOWY. Na początek - przeczytaj uważnie tekst i wykonaj zawarte pod nim polecenia.. Dwie reakcje jądrowe zachodzące w górnych warstwach atmosfery: N + n C + p N +

Bardziej szczegółowo

Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6. Wyznaczanie krzywej aktywacji

Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6. Wyznaczanie krzywej aktywacji Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6 Wyznaczanie krzywej aktywacji Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie kształtu krzywej zależności

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

WYZNACZANIE ZAWARTOŚCI POTASU

WYZNACZANIE ZAWARTOŚCI POTASU POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW obowiązuje w r. akad. 2017 / 2018 WYZNACZANIE ZAWARTOŚCI POTASU W STAŁEJ PRÓBCE SOLI Opiekun ćwiczenia: Miejsce ćwiczenia:

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

ĆWICZENIE 2. BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ

ĆWICZENIE 2. BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ ĆWICZENIE 2 BADANIE CHARAKTERYSTYK SOND PROMIENIOWANIA γ CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie następujących charakterystyk sond promieniowania γ: wydajności detektora w funkcji odległości detektora

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 3 14 marca 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Henri Becquerel 1896 Promieniotwórczość 14.III.2017 EJ

Bardziej szczegółowo

Wyższy Urząd Górniczy. Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych

Wyższy Urząd Górniczy. Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Wyższy Urząd Górniczy Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Katowice 2011 Copyright by Wyższy Urząd Górniczy, Katowice 2011

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:...

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:... Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 8 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Pomiar okresu połowicznego

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów

Bardziej szczegółowo

Wyznaczanie współczynnika rozpraszania zwrotnego. promieniowania β.

Wyznaczanie współczynnika rozpraszania zwrotnego. promieniowania β. Wyznaczanie współczynnika rozpraszania otnego. Zagadnienia promieniowania β. 1. Promieniotwórczość β.. Oddziaływanie cząstek β z materią (w tym rozproszenie otne w wyniku zderzeń sprężystych). 3. Znajomość

Bardziej szczegółowo

PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego

PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 4 Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Łódź 017 I.

Bardziej szczegółowo

LABORATORIUM PROMIENIOWANIE W MEDYCYNIE

LABORATORIUM PROMIENIOWANIE W MEDYCYNIE LABORATORIUM PROMIENIOWANIE W MEDYCYNIE Ćw nr 3 NATEŻENIE PROMIENIOWANIA γ A ODLEGŁOŚĆ OD ŹRÓDŁA PROMIENIOWANIA Nazwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa 1 Cel ćwiczenia Natężenie

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY OZNACZANIE AKTYWNOŚCI, OKRESU PÓŁTRWANIA I MAKSYMALNEJ ENERGII PROMIENIOWANIA

POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY OZNACZANIE AKTYWNOŚCI, OKRESU PÓŁTRWANIA I MAKSYMALNEJ ENERGII PROMIENIOWANIA POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW OZNACZANIE AKTYWNOŚCI, OKRESU PÓŁTRWANIA I MAKSYMALNEJ ENERGII PROMIENIOWANIA Opiekun ćwiczenia: Jerzy Żak Miejsce ćwiczenia:

Bardziej szczegółowo

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony Zadanie 1. (1 pkt) W jednym z naturalnych szeregów promieniotwórczych występują m.in. trzy izotopy polonu, których okresy półtrwania podano w nawiasach: Po-218 (T 1/2 = 3,1minuty), Po-214 (T 1/2 = 0,0016

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć

Bardziej szczegółowo

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE

Bardziej szczegółowo

BADANIE ZAWARTOŚCI RADONU W POWIETRZU Instrukcja dla studenta J 5 -J 8

BADANIE ZAWARTOŚCI RADONU W POWIETRZU Instrukcja dla studenta J 5 -J 8 Ćwiczenie BADANIE ZAWARTOŚCI RADONU W POWIETRZU Instrukcja dla studenta J 5 -J 8 I. WSTĘP W skorupie ziemskiej znajduje się promieniotwórczy uran-238 ( 238 U), wytworzony wiele miliardów lat temu. Przetrwał

Bardziej szczegółowo

1. Wstęp. Z prasy. Encyklopedia medyczna. Autor: Hayk Hovhannisyan. Tytuł: Badanie transportu radonu w ośrodku porowatym na stanowisku laboratoryjnym

1. Wstęp. Z prasy. Encyklopedia medyczna. Autor: Hayk Hovhannisyan. Tytuł: Badanie transportu radonu w ośrodku porowatym na stanowisku laboratoryjnym 1. Wstęp Radon cichy zabójca, niewidzialny przenikający do naszych domów. Z prasy Radonoterapia sposób leczenia wielu chorób za pomocą ekspozycji radonu lub radonowych wód. Encyklopedia medyczna Temat

Bardziej szczegółowo

Co nowego w dozymetrii? Dozymetria radonu

Co nowego w dozymetrii? Dozymetria radonu Co nowego w dozymetrii? Dozymetria radonu mgr inż. Zuzanna Podgórska podgorska@clor.waw.pl Laboratorium Wzorcowania Przyrządów Dozymetrycznych i Radonowych Zakład Kontroli Dawek i Wzorcowania Wstęp 1898

Bardziej szczegółowo

KWALIFIKACJA ODPADÓW. wojnarowicz

KWALIFIKACJA ODPADÓW. wojnarowicz KWALIFIKACJA ODPADÓW wojnarowicz Zakwalifikować do kategorii i podkategorii zużytą izotopową (Am-241) czujkę dymu o aktywności początkowej 7,4 kbq. Aktywność czujki określono na dzień 12.10.2001 Dane dla

Bardziej szczegółowo

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest: zbadanie pochłaniania promieniowania β w różnych materiałach i wyznaczenie zasięgu promieniowania

Bardziej szczegółowo

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu

Bardziej szczegółowo

WYZNACZANIE PRZEWODNICTWA GRANICZNEGO ELEKTROLITÓW

WYZNACZANIE PRZEWODNICTWA GRANICZNEGO ELEKTROLITÓW POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY WYZNACZANIE PRZEWODNICTWA GRANICZNEGO ELEKTROLITÓW Opiekun: Miejsce ćwiczenia: Karoń Krzysztof Katedra Fizykocheii i Technologii Polierów ul. M. Strzody 9, p. II,

Bardziej szczegółowo

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą

Bardziej szczegółowo

Dozymetria promieniowania jonizującego. Jonizacja gazów. średnia praca jonizacji W (1) bilans energii dla jonizacji gazu (2)

Dozymetria promieniowania jonizującego. Jonizacja gazów. średnia praca jonizacji W (1) bilans energii dla jonizacji gazu (2) Jonizacja gazów potencjał jonizacyjny J inialna energia potrzebna do wytworzenia pary jonów średnia praca jonizacji W E = N W (1) i bilans energii dla jonizacji gazu E = N i E i + N ex E ex + N i E se

Bardziej szczegółowo

UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ

UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ Krzysztof Janas Michał Krzeszowiec Koło Nauk Aktuarialnych Politechniki Łódzkiej Warszawa, 09-11.06.2008 r. Plan Założenia wstępne: Teoria oprocentowania

Bardziej szczegółowo

tel./ kom./fax: 012 66 28 332 / 0 517 904 204 / 012 66 28 458; e-mail: radon@ifj.edu.pl; http:// radon.ifj.edu.pl RAPORT KOŃCOWY

tel./ kom./fax: 012 66 28 332 / 0 517 904 204 / 012 66 28 458; e-mail: radon@ifj.edu.pl; http:// radon.ifj.edu.pl RAPORT KOŃCOWY INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego POLSKIEJ AKADEMII NAUK LABORATORIUM EKSPERTYZ RADIOMETRYCZNYCH doświadczenie profesjonalizm solidność ul. E. Radzikowskiego 152, 31-342 KRAKÓW tel./

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Fizyka Pozio rozszerzony Marzec 019 1.1. Poprawne rozwiązanie: Skalując oś czasu, trzeba ieć na względzie, że przyrosty czasu dla kolejnych położeń są wszędzie takie sae i

Bardziej szczegółowo

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość

Bardziej szczegółowo

Badanie absorpcji promieniowania γ

Badanie absorpcji promieniowania γ Badanie absorpcji promieniowania γ 29.1. Zasada ćwiczenia W ćwiczeniu badana jest zależność natężenia wiązki osłabienie wiązki promieniowania γ po przejściu przez warstwę materiału absorbującego w funkcji

Bardziej szczegółowo

przyziemnych warstwach atmosfery.

przyziemnych warstwach atmosfery. Źródła a promieniowania jądrowego j w przyziemnych warstwach atmosfery. Pomiar radioaktywności w powietrzu w Lublinie. Jan Wawryszczuk Radosław Zaleski Lokalizacja monitora skażeń promieniotwórczych rczych

Bardziej szczegółowo

http://isieko.jeleniagora.pl/inne.php?pages_id=613. Promieniowanie jonizujące.

http://isieko.jeleniagora.pl/inne.php?pages_id=613. Promieniowanie jonizujące. http://isieko.jeleniagora.pl/inne.php?pages_id=613. Promieniowanie jonizujące. W rejonie Sudetów zauważa się wyraźne, dodatnie anomalie geochemiczne zawartości w podłożu naturalnych pierwiastków radioaktywnych.

Bardziej szczegółowo

ĆWICZENIE 3. BADANIE POCHŁANIANIA PROMIENIOWANIA α i β w ABSORBERACH

ĆWICZENIE 3. BADANIE POCHŁANIANIA PROMIENIOWANIA α i β w ABSORBERACH ĆWICZENIE 3 BADANIE POCHŁANIANIA PROMIENIOWANIA α i β w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest wyznaczenie: zbadanie pochłaniania promieniowania β w różnych materiałach i wyznaczenie zasięgu w

Bardziej szczegółowo

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na

Bardziej szczegółowo

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE - LISTA I

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE - LISTA I RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE - LISTA I RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. ROZWIĄZAĆ RÓWNANIE RÓŻNICZKOWE LUB ZAGADNIENIE POCZĄTKOWE.......6. ln ln...7..8..9. d d.... co.... in.... in co in.6..7..8.

Bardziej szczegółowo

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji Ćwiczenie nr (wersja_05) Pomiar energii gamma metodą absorpcji Student winien wykazać się znajomością następujących zagadnień:. Promieniowanie gamma i jego własności.. Absorpcja gamma. 3. Oddziaływanie

Bardziej szczegółowo

Ćwiczenie LP1. Jacek Grela, Łukasz Marciniak 22 listopada 2009

Ćwiczenie LP1. Jacek Grela, Łukasz Marciniak 22 listopada 2009 Ćwiczenie LP1 Jacek Grela, Łukasz Marciniak 22 listopada 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii

Bardziej szczegółowo

PODSTAWY DATOWANIA RADIOWĘGLOWEGO

PODSTAWY DATOWANIA RADIOWĘGLOWEGO Dni Otwarte Wydziału Chemii 2008 PODSTAWY DATOWANIA RADIOWĘGLOWEGO Andrzej Komosa Zakład Radiochemii i Chemii Koloidów UMCS 1 Nagroda Nobla z chemii w roku 1960 Willard Frank Libby 1908-1980 Książka: Radiocarbon

Bardziej szczegółowo

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest obserwacja pochłaniania cząstek alfa w powietrzu wyznaczenie zasięgu w aluminium promieniowania

Bardziej szczegółowo

Sebastian Gajos Dominik Kaniszewski

Sebastian Gajos Dominik Kaniszewski Sebastian Gajos Dominik Kaniszewski 13.06.006 Imię i nazwisko Data Ćw.1 Spektometria scyntylacyjna promieniowania Υ. Temat ćwiczenia ocena podpis 1. Część teoretyczna: Prawo rozpadu promieniotwórczego.

Bardziej szczegółowo

PIERWSZA PRACOWNIA FIZYCZNA Ćwiczenie nr 64 BADANIE MIKROFAL opracowanie: Marcin Dębski, I. Gorczyńska

PIERWSZA PRACOWNIA FIZYCZNA Ćwiczenie nr 64 BADANIE MIKROFAL opracowanie: Marcin Dębski, I. Gorczyńska PIERWSZA PRACOWNIA FIZYCZNA Ćwiczenie nr 64 BAANIE MIKROFAL opracowanie: Marcin ębski, I. Gorczyńska 1. Przediot zadania: fale elektroagnetyczne. 2. Cel zadania: badanie praw rządzących propagacją fali

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski

Bardziej szczegółowo

Człowiek nie może za pomocą zmysłów wykryć obecności radonu. Wiadomo jednak że gromadzi się on w pomieszczeniach zamkniętych, w których przebywamy.

Człowiek nie może za pomocą zmysłów wykryć obecności radonu. Wiadomo jednak że gromadzi się on w pomieszczeniach zamkniętych, w których przebywamy. Człowiek nie może za pomocą zmysłów wykryć obecności radonu. Wiadomo jednak że gromadzi się on w pomieszczeniach zamkniętych, w których przebywamy. Starajmy się więc zmniejszyć koncentrację promieniotwórczego

Bardziej szczegółowo

Spotkanie z promieniotwórczością - - Podstawowe pojęcia fizyki jądrowej

Spotkanie z promieniotwórczością - - Podstawowe pojęcia fizyki jądrowej Spotkanie z promieniotwórczością - - Podstawowe pojęcia fizyki jądrowej Model atomu według Nielsa Bohr a Energia emitowana jest wtedy, gdy elektron przechodzi z orbity o większym promieniu (większej energii)

Bardziej szczegółowo

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka Seminarium -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne Konrad Tudyka 1 W 1908r. Rutheford zatopił niewielka ilość 86 Rn w szklanym naczyniu o ciękich sciankach (przenikliwych

Bardziej szczegółowo

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich. Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.. 1. 3. 4. 1. Pojemnik z licznikami cylindrycznymi pracującymi w koincydencji oraz z uchwytem na warstwy

Bardziej szczegółowo

Ćwiczenie nr 50 CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO

Ćwiczenie nr 50 CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 50 CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU

Bardziej szczegółowo

Analiza zderzeń dwóch ciał sprężystych

Analiza zderzeń dwóch ciał sprężystych Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.

Bardziej szczegółowo

Laboratorium fizyki CMF PŁ

Laboratorium fizyki CMF PŁ Laboraoriu fizyki CMF PŁ Dzień 8.03.06 godzina 10 15 grupa 8 Kod ćwiczenia W5_b Tyuł ćwiczenia Absorpcja elekronów w róŝnych aeriałach sałych Wydział Elekroechniki, Elekroniki, Inforayki i Auoayki seesr

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład IV Krzysztof Golec-Biernat Promieniotwórczość naturalna Uniwersytet Rzeszowski, 22 listopada 2017 Wykład IV Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 21 Reakcja

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Fizyki

POLITECHNIKA WARSZAWSKA Wydział Fizyki POLITECHNIKA WARSZAWSKA Wydział Fizyki Pomiar skażeń wewnętrznych izotopami promieniotwórczymi metodami in vivo oraz szacowanie pochodzącej od nich dawki obciążającej Instrukcja wykonania ćwiczenia Opracował:

Bardziej szczegółowo

FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA

FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA FIZYKA CZĄSTECZKOWA I TERMODYNAMIKA Fizyka - cząsteczkowa Dział fizyki badający budowę i własności aterii przy założeniu, że każde ciało składa się z dużej liczby bardzo ałych cząsteczek. Cząsteczki te

Bardziej szczegółowo

Analiza zderzeń dwóch ciał sprężystych

Analiza zderzeń dwóch ciał sprężystych Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.

Bardziej szczegółowo

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE

Bardziej szczegółowo

dn dt Promieniotwórczość

dn dt Promieniotwórczość Promieniotwórczość Zagadnienie promieniotwórczości związane jest z niestabilnością konstrukcji jąder niektórych atomów: jeśli proporcje nukleonów (tj. protonów (p) i neutronów (n)) są niewłaściwe, wówczas

Bardziej szczegółowo

Temat 1 Badanie fluorescencji rentgenowskiej fragmentu meteorytu pułtuskiego opiekun: dr Chiara Mazzocchi,

Temat 1 Badanie fluorescencji rentgenowskiej fragmentu meteorytu pułtuskiego opiekun: dr Chiara Mazzocchi, Warszawa, 15.11.2013 Propozycje tematów prac licencjackich dla kierunku Energetyka i Chemia Jądrowa Zakład Spektroskopii Jądrowej, Wydział Fizyki UW Rok akademicki 2013/2014 Temat 1 Badanie fluorescencji

Bardziej szczegółowo

Rok akademicki: 2030/2031 Kod: STC OS-s Punkty ECTS: 2. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2030/2031 Kod: STC OS-s Punkty ECTS: 2. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Radioaktywność w środowisku Rok akademicki: 2030/2031 Kod: STC-2-212-OS-s Punkty ECTS: 2 Wydział: Energetyki i Paliw Kierunek: Technologia Chemiczna Specjalność: Ochrona środowiska w energetyce

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Fizyki

POLITECHNIKA WARSZAWSKA Wydział Fizyki POLITECHNIKA WARSZAWSKA Wydział Fizyki Pomiar skażeń wewnętrznych izotopami promieniotwórczymi metodami in vivo oraz szacowanie pochodzącej od nich dawki obciążającej Instrukcja wykonania ćwiczenia 1.

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej NWERSYTET RZESZOWSK Pracownia Technik nforatycznych w nżynierii Elektrycznej Ćw. 4 Badanie obwodów szeregowych R Rzeszów 016/017 ię i nazwisko Grupa Rok studiów Data wykonania Podpis Ocena Badanie obwodów

Bardziej szczegółowo

PRACOWNIA JĄDROWA ĆWICZENIE 10. Spektrometria promieniowania γ z wykorzystaniem detektora scyntylacyjnego

PRACOWNIA JĄDROWA ĆWICZENIE 10. Spektrometria promieniowania γ z wykorzystaniem detektora scyntylacyjnego Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZNI 10 Spektrometria promieniowania z wykorzystaniem detektora scyntylacyjnego Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Ćwiczenie 57 Badanie absorpcji promieniowania α

Ćwiczenie 57 Badanie absorpcji promieniowania α Ćwiczenie 57 Badanie absorpcji promieniowania α II PRACOWNIA FIZYCZNA UNIWERSYTET ŚLĄSKI W KATOWICACH Cele doświadczenia Głównym problemem, który będziemy badać w tym doświadczeniu jest strata energii

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 7 Waga hydrostatyczna, wypór. Cele ćwiczenia jest wyznaczenie gęstości ciał stałych za poocą wagi hydrostatycznej i porównanie tej etody z etodai, w których ierzona

Bardziej szczegółowo

2. Porównać obliczoną i zmierzoną wartość mocy dawki pochłoniętej w odległości 1m, np. wyznaczyć względną róŝnice między tymi wielkościami (w proc.

2. Porównać obliczoną i zmierzoną wartość mocy dawki pochłoniętej w odległości 1m, np. wyznaczyć względną róŝnice między tymi wielkościami (w proc. Ćwiczenie 7 Dozymetria promieniowania jonizującego Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z: - wielkościami i jednostkami stosowanymi w dozymetrii i ochronie radiologicznej, - wzorcowaniem przyrządów

Bardziej szczegółowo

Wprowadzenie: Dynamika

Wprowadzenie: Dynamika Wprowadzenie: Dynaika dr inż. ebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ail: spakula@agh.edu.pl www: hoe.agh.edu.pl/~spakula/ dr inż. ebastian Pakuła

Bardziej szczegółowo

10. Spektroskopia rentgenowska

10. Spektroskopia rentgenowska 0. Spektroskopia rentgenowska CZĘŚĆ A. Badanie charakterystycznego proieniowania X dla Fe, Cu i Mo Zagadnienia Zbadanie intensywności proieniowania X eitowanego przez Fe (Cu, Mo) przy aksyalny napięciu

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład IV Oddziaływanie promieniowania jonizującego z materią Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 26 kwietnia 2017 Wykład IV Oddziaływanie promieniowania jonizującego

Bardziej szczegółowo