Plan laboratorium. Eksploracja danych. Co to jest eksploracja danych. Wprowadzenie do eksploracji danych
|
|
- Ksawery Orłowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Plan laboratorium Eksploracja danych Wprowadzenie do eksploracji danych Pakiety PL/SQL i funkcje SQL Transformacja danych Algorytmy eksploracji danych odkrywanie reguł asocjacyjnych klasyfikacja naiwny klasyfikator Bayesa drzewa decyzyjne analiza skupień Narzędzia graficzne: Oracle Data Miner, Weka, RapidMiner Co to jest eksploracja danych Wprowadzenie do eksploracji danych Proces odkrywania wzorców w dużych bazach danych Element procesu odkrywania wiedzy Liczne określenia: data mining, data dredging, data harvesting, data archeology, data pattern analysis, data fishing, data snooping Fayyad, Piatetsky-Shapiro, Smyth, Uthurusamy: Eksploracja danych to nowa dyscyplina badawcza, której celem jest odkrywanie i wydobywanie użytecznych, wcześniej nieznanych, nietrywialnych i zrozumiałych wzorców z dużych baz danych i hurtowni danych
2 Proces odkrywania wiedzy Metody eksploracji danych Elementy procesu odkrywania wiedzy (Fayyad et al., 1996) określenie problemu wybór danych czyszczenie danych integracja danych transformacja danych eksploracja danych ocena wzorców wykorzystanie wzorców analiza skupień odkrywanie anomalii reguły asocjacyjne odkrywanie cech klasyfikacja regresja ważność atrybutów kmeans OCluster One-Class SVM Apriori Non-Negative Matrix Factorization Naive Bayes Decision Tree Logistic Regression SVM Multiple Regression SVM Minimum Description Length Oracle Data Mining 11g Pakiety PL/SQL i funkcje SQL Pakiety PL/SQL DBMS_DATA_MINING DBMS_DATA_MINING_TRANSFORM DBMS_PREDICTIVE_ANALYTICS DBMS_FREQUENT_ITEMSET Funkcje SQL PREDICTION_* CLUSTER_* FEATURE_* Pakiety Java javax.datamining.* oracle.dmt.jdm.* Metadane
3 DBMS_DATA_MINING Pakiety PL/SQL zawiera procedury i funkcje do tworzenia i usuwania modeli, testowania modeli, stosowania modeli do nowych danych, wyświetlania szczegółów modeli, wyliczania miar oceny modeli oraz importowania i eksportowania modeli DBMS_DATA_MINING_TRANSFORM zawiera pomocnicze procedury do transformacji danych, umożliwia dyskretyzację, normalizację i przycinanie danych oraz obsługę brakujących wartości DBMS_PREDICTIVE_ANALYTICS zawiera procedury automatycznej eksploracji danych, w tym wyjaśnianie danych, ranking atrybutów i klasyfikację DBMS_FREQUENT_ITEMSET zawiera funkcje odkrywania zbiorów częstych w poziomej i pionowej organizacji bazy danych PREDICTION_* Funkcje SQL rodzina funkcji służących do klasyfikacji, umożliwiają predykcję wartości atrybutu decyzyjnego, szacowanie kosztu i prawdopodobieństwa predykcji, oraz wytłumaczenie predykcji dla modeli pełnych i częściowych CLUSTER_* rodzina funkcji służących do analizy skupień, umożliwiają wskazanie skupienia i wyznaczenie prawdopodobieństwa przynależności do danego skupienia FEATURE_* rodzina funkcji służących do odkrywania cech, umożliwiają odwzorowanie instancji na przestrzeń cech i wyznaczenie wartości nowych cech WIDTH_BUCKET, NTILE funkcje umożliwiające dyskretyzację danych javax.datamining.* Pakiety Java pakiety składające się na standard JSR 73: Java Data Mining, zawierają klasy reprezentujące dane, statystyki, reguły, zadania, asocjacje, algorytmy, szczegóły modelu, analizę skupień, klasyfikację i regresję oracle.dmt.jdm.* pakiety rozszerzające standard JSR 73: Java Data Mining o rozwiązania specyficzne dla dostawcy, zawierają m.in.: szczegóły algorytmów NNMF, ABN, OCluster, GLM, a także pakiety oferujące możliwość transformacji danych ALL_MINING_MODELS Metadane perspektywa przechowująca informacje o wszystkich modelach zbudowanych przez użytkownika, zawiera nazwę właściciela modelu, nazwę modelu, funkcję i algorytm eksploracji, datę utworzenia, czas tworzenia oraz rozmiar modelu ALL_MINING_MODEL_ATTRIBUTES perspektywa przechowująca informacje o wszystkich atrybutach wchodzących w skład modeli i ich roli (atrybut decyzyjny, predyktor, atrybut nieaktywny) ALL_MINING_MODEL_SETTINGS Perspektywa przechowująca informacje o parametrach początkowych, jakie były wykorzystane do utworzenia każdego modelu
4 Ogólny schemat działania Kroki działania przygotuj dane określ parametry i ustawienia algorytmu uruchom algorytm obejrzyj szczegóły uzyskanego modelu testuj model zastosuj model CREATE TABLE settings ( ); INSERT INTO settings VALUES ( ); Transformacja danych EXECUTE DBMS_DATA_MINING.CREATE_MODEL ( ); SELECT * FROM TABLE ( DBMS_DATA_MINING.GET_MODEL_DETAILS( ) ); EXECUTE DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX( ); EXECUTE DBMS_DATA_MINING.COMPUTE_LIFT( ); EXECUTE DBMS_DATA_MINING.APPLY( ); CREATE Ogólne kroki transformacji tworzy tabele przechowujące definicje transformacji INSERT wypełnia tabele przechowujące definicje transformacji parametrami transformacji (np. wyliczonymi przedziałami dyskretyzacji) STACK dodaje polecenie transformacji do stosu transformacji, które mają być zaaplikowane w momencie tworzenia modelu XFORM tworzy perspektywy pokazujące dane źródłowe po zastosowaniu transformacji zdefiniowanych przez polecenia INSERT Metody transformacji (1/2) Dysktretyzacja (ang. binning) podział domeny atrybutu kategorycznego lub ciągłego na przedziały, w wyniku podziału gwałtownie maleje rozmiar domeny atrybutu wspierane metody top-n frequency: pozostawienie określonej liczby najczęstszych wartości equi-width: podział na przedziały o równej szerokości quantile: podział na przedziały o równej głębokości (kwantyle) Normalizacja (ang. normalization) przeskalowanie domeny atrybutu ciągłego wspierane metody min-max scale z-score min v' = v (max' min') + min' max min v v ' = max{ abs(min), abs(max)} v' = v µ σ v shift v' = scale
5 Metody transformacji (2/2) Przykład transformacji danych (1/4) Osobliwości (ang. outlier treatment) usunięcie ekstremalnych wartości atrybutu wspierane metody trimming: zamiana osobliwości na wartość NULL winsorizing: zamiana osobliwości na wartość brzegowego percentyla Dyskretyzacja atrybutu JOB metodą top-n DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_CAT( bin_table_name => 'categorical_binning', bin_schema_name => 'scott'); tabela z definicją transformacji Wartości brakujące (ang. missing value treatment) wypełnienie wartości brakujących atrybutów, nie dotyczy atrybutów rzadkich (ang. sparse data) wspierane metody atrybuty numeryczne: wypełnienie wartością średnią atrybuty kategoryczne: wypełnienie wartością modalną DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_CAT_FREQ( bin_table_name data_table_name => 'EMP', bin_num => 3, exclude_list => 'categorical_binning', SELECT * FROM categorical_binning; wyznaczenie przedziałów transformacji => DBMS_DATA_MINING_TRANSFORM.Column_List('ENAME')); lista atrybutów, które nie mają podlegać dyskretyzacji Przykład transformacji danych (2/4) Dyskretyzacja atrybutu SAL metodą quantile Przykład transformacji danych (3/4) Wygenerowanie wyniku dyskretyzacji DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_NUM( bin_table_name => 'numerical_binning', bin_schema_name => 'scott'); DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_NUM_QTILE( bin_table_name data_table_name => 'EMP', bin_num => 3, exclude_list => 'numerical_binning', => DBMS_DATA_MINING_TRANSFORM.Column_List( 'EMPNO','MGR','COMM','DEPTNO')); SELECT * FROM numerical_binning; tabela z definicją transformacji wyznaczenie przedziałów transformacji lista atrybutów, które nie mają podlegać dyskretyzacji DBMS_DATA_MINING_TRANSFORM.XFORM_BIN_CAT( bin_table_name=>'categorical_binning', data_table_name=>'emp', xform_view_name=>'v_emp_1'); SELECT * FROM v_emp_1; DBMS_DATA_MINING_TRANSFORM.XFORM_BIN_NUM( bin_table_name=>'numerical_binning', data_table_name=>'v_emp_1', xform_view_name=>'v_emp_2'); utworzenie perspektywy pokazującej dane po dyskretyzacji atrybutów kategorycznych utworzenie perspektywy pokazującej dane po dyskretyzacji atrybutów numerycznych Uwaga: można automatycznie wyznaczyć przedziały przy użyciu procedury DBMS_DATA_MINING_TRANSFORM.INSERT_AUTOBIN_NUM_EQWIDTH SELECT * FROM v_emp_2;
6 Przykład transformacji danych (4/4) Funkcje SQL przydatne do transformacji danych SELECT ename, sal, NTILE(3) OVER (ORDER BY sal) AS qtile, WIDTH_BUCKET(sal,0,5001,3) AS equi_width FROM emp; Algorytmy eksploracji danych dolna granica górna granica liczba przedziałów Odkrywanie reguł asocjacyjnych Uwagi: NTILE() jest funkcją niedeterministyczną WIDTH_BUCKET() tworzy przedziały prawostronnie otwarte WIDTH_BUCKET() tworzy przedziały nadmiarowe Model reguł asocjacyjnych Zbiór częsty podzbiór elementów występujący wystarczająco często w dużej kolekcji zbiorów Reguła asocjacyjna wyrażenie statystycznie wiążące elementy zbioru częstego kiełbaski musztarda piwo Odkrywanie reguł asocjacyjnych (1/4) pionowa baza danych CREATE OR REPLACE VIEW sales_horizontal AS SELECT S.cust_id, CAST ( MULTISET ( pozioma baza danych SELECT DM_Nested_Numerical(prod_name,1) FROM sales WHERE cust_id = S.cust_id ) AS DM_Nested_Numericals ) products FROM sales S GROUP BY S.cust_id; SELECT * FROM sales WHERE cust_id = ; SELECT * FROM sales_horizontal WHERE cust_id = ; wsparcie: 2% klientów kupiło kiełbaski, musztardę i piwo ufność: 77% klientów, którzy kupili kiełbaski i musztardę, kupiło także piwo Pionowa baza danych jest wykorzystywana przez Oracle Data Minera, pozioma baza danych jest wykorzystywana przez PL/SQL API
7 Odkrywanie reguł asocjacyjnych (2/4) Odkrywanie reguł asocjacyjnych (3/4) CREATE TABLE settings ( setting_name VARCHAR2(30), setting_value VARCHAR2(128) ); tabela z parametrami algorytmu ważne są tylko nazwy kolumn INSERT INTO settings VALUES (DBMS_DATA_MINING.ASSO_MAX_RULE_LENGTH,5); INSERT INTO settings VALUES (DBMS_DATA_MINING.ASSO_MIN_SUPPORT,0.01); INSERT INTO settings VALUES (DBMS_DATA_MINING.ASSO_MIN_CONFIDENCE,0.5); COMMIT; SELECT t.itemset_id, i.attribute_subname AS item, t.support, t.number_of_items FROM TABLE (DBMS_DATA_MINING.GET_FREQUENT_ITEMSETS('Associations')) t, TABLE (t.items) i GROUP BY t.itemset_id, i.attribute_subname, t.support, t.number_of_items ORDER BY t.itemset_id, i.attribute_subname, t.support, t.number_of_items; DBMS_DATA_MINING.CREATE_MODEL( przekazanie parametrów do algorytmu model_name => 'Associations', mining_function => DBMS_DATA_MINING.ASSOCIATION, data_table_name => 'SALES_HORIZONTAL', case_id_column_name => 'cust_id', settings_table_name => 'settings' ); Odkrywanie reguł asocjacyjnych (4/4) SELECT t.rule_id, t.rule_support, t.rule_confidence, a.attribute_subname AS item_a, c.attribute_subname AS item_b FROM TABLE (DBMS_DATA_MINING.GET_ASSOCIATION_RULES('Associations')) t, TABLE (t.antecedent) a, TABLE (t.consequent) c ORDER BY t.rule_id, t.rule_support DESC, t.rule_confidence; DBMS_FREQUENT_ITEMSET CREATE TYPE fi_products AS TABLE OF VARCHAR2(100); SELECT CAST(itemset AS fi_products) itemset, support, length, total_tranx FROM TABLE(DBMS_FREQUENT_ITEMSET.FI_TRANSACTIONAL( CURSOR(SELECT cust_id, prod_name FROM sales), 0.005, wsparcie 2, min liczba elementów 5, max liczba elementów NULL, elementy które mają się znaleźć w wyniku CURSOR(SELECT * FROM TABLE(fi_products('Standard Mouse'))))); elementy które nie mają się znaleźć w wyniku
8 Co to jest klasyfikacja? Algorytmy eksploracji danych Klasyfikacja Kategoryzacja podział bytów na rozłączne klasy (kategorie) zawierające byty tego samego typu Uczenie nadzorowane dedukowanie funkcji na podstawie danych, przeciwdziedzina ciągła (regresja) lub dyskretna (klasyfikacja) Dane wejściowe zbiór uczący (ang. train set) zbiór testujący (ang. test set) atrybut decyzyjny (ang. target attribute) Indukcja drzew decyzyjnych Model drzewa liście reprezentują decyzję modelu (przypisanie do klasy) węzły wewnętrzne reprezentują testy wartości predyktorów krawędzie reprezentują wyniki testów predyktorów Algorytmy eksploracji danych Analiza skupień
9 Problem znajdowania skupień Analiza skupień (ang. clustering) grupowanie obiektów w skupienia w taki sposób, który maksymalizuje podobieństwo między parami obiektów przydzielonych do jednego skupienia i jednocześnie minimalizuje podobieństwo między parami obiektów przydzielonymi do różnych skupień liczba skupień w danych nie jest znana a priori Fundamentalne pytania co to znaczy, że dwa obiekty są do siebie podobne? skąd wiadomo, że zbudowany model jest poprawny? Miary podobieństwa Miarą podobieństwa może być dowolna metryka d(x,y) spełniająca aksjomaty d(x,x)=0 d(x,y)=d(y,x) d(x,z) d(x,y)+d(y,z) W przestrzeniach metrycznych naturalną miarą podobieństwa jest metryka mierząca odległość (miary Minkowskiego) p L1 ( x, y) = 10 n = ( i= 1 L ( x, y) ( x y ) ) L2 ( x, y) = L3 ( x, y) = i i p 1/ p 7 3 x 2 8 y Algorytmy k-means i k-medoids wylosuj k punktów jako początkowe centroidy; WHILE (zmiana przypisania punktów) DO przypisz każdy obiekt do najbliższego centroidu; uaktualnij centroidy; END WHILE; Cechy algorytmu k-means centroidem jest średnia geometryczna punktów w klastrze złożoność O(n) bardzo czuły na występowanie wartości osobliwych może wpaść w optimum lokalne zależny od wyboru parametru k Cechy algorytmu k-medoids centroidem jest najbardziej centralny punkt w klastrze złożoność O(n 2 ) nieczuły na występowanie wartości osobliwych Narzędzia graficzne do eksploracji danych
10 Oracle Data Miner Oracle Data Miner Darmowy graficzny interfejs do Oracle Data Mining Funkcjonalność uruchamianie wszystkich algorytmów ODM w trybie graficznym graficzna prezentacja wyników (krzywe lift, ROC, regresji) SQL Worksheet podgląd zawartości schematu bazy danych dostęp do wcześniejszych modeli i wyników testów możliwość wstępnego przetwarzania danych wersje 10g i 11g Weka 3 Weka 3 Projekt open-source rozwijany na Uniwersytecie Waikato "Data Mining: Practical Machine Learning Tools and Techniques", Ian Witten, Eibe Frank Narzędzie graficzne oraz bogate API (Java) Możliwość implementacji własnych algorytmów środowisko do wstępnego przetwarzania danych, znajdowania asocjacji, budowania klasyfikatorów i modeli skupień narzędzie umożliwiające równoległe testowanie różnych algorytmów na tym samym zbiorze danych graficzne środowisko projektowania przepływów pracy uruchamianie programów bezpośrednio z linii poleceń
11 RapidMiner RapidMiner Środowisko inteligencji biznesowej RapidMiner RapidMiner Enterprise Analytics Server RapidNet RapidSentilyzer RapidDoc Technologie: analiza i eksploracja, ETL, raportowanie Ogromna liczba zaimplementowanych algorytmów Generatory danych syntetycznych Bogate możliwości wizualizacji danych i wyników
Plan laboratorium. Eksploracja danych. Co to jest eksploracja danych. Wprowadzenie do eksploracji danych
Plan laboratorium Eksploracja danych Wprowadzenie do eksploracji danych Pakiety PL/SQL i funkcje SQL Transformacja danych Algorytmy eksploracji danych określanie ważności atrybutów odkrywanie reguł asocjacyjnych
Ćwiczenie 5. Eksploracja danych
Ćwiczenie 5. Eksploracja danych 1. Uruchomienie i skonfigurowanie środowiska do ćwiczeń Czas trwania: 15 minut Zadaniem niniejszych ćwiczeń jest przedstawienie podstawowych zagadnień dotyczących wykorzystywania
Laboratorium 12. Odkrywanie osobliwości.
Laboratorium 12 Odkrywanie osobliwości. Odkrywanie osobliwości (ang. outliers) za pomocą algorytmu SVM zostanie w pierwszej części ćwiczenia przeprowadzone w środowisku SQL, a w drugiej części wykorzystamy
Laboratorium 3. Odkrywanie reguł asocjacyjnych.
Laboratorium 3 Odkrywanie reguł asocjacyjnych. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Tools SQL Worksheet. W górnym oknie wprowadź i wykonaj
Laboratorium 11. Regresja SVM.
Laboratorium 11 Regresja SVM. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk Dalej>. 3. Z
1. Przygotowanie danych do analizy. Transformacja danych
Spis treści: 1. 2. 3. 3. Przygotowanie danych do analizy. Transformacja danych.1 Rapid Miner transformacja danych.2 Oracle Data Miner - Przygotowanie danych do analizy...5 Transformacja danych w ODM JAVA
Implementacja metod eksploracji danych - Oracle Data Mining
Implementacja metod eksploracji danych - Oracle Data Mining 395 Plan rozdziału 396 Wprowadzenie do eksploracji danych Architektura Oracle Data Mining Możliwości Oracle Data Mining Etapy procesu eksploracji
Laboratorium 4. Naiwny klasyfikator Bayesa.
Laboratorium 4 Naiwny klasyfikator Bayesa. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk
Laboratorium 10. Odkrywanie cech i algorytm Non-Negative Matrix Factorization.
Laboratorium 10 Odkrywanie cech i algorytm Non-Negative Matrix Factorization. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie
Laboratorium 6. Indukcja drzew decyzyjnych.
Laboratorium 6 Indukcja drzew decyzyjnych. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk
Laboratorium 13. Eksploracja danych tekstowych.
Laboratorium 13 Eksploracja danych tekstowych. Eksploracja danych tekstowych oraz kroki wstępne przetwarzania tekstu zostaną wykonane zarówno w środowisku SQL, jak i za pomocą narzędzia Oracle Data Miner.
Laboratorium 2. Określanie ważności atrybutów.
Laboratorium 2 Określanie ważności atrybutów. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk
Laboratorium 5. Adaptatywna sieć Bayesa.
Laboratorium 5 Adaptatywna sieć Bayesa. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk Dalej>.
KOLEKCJE - to typy masowe,zawierające pewną liczbę jednorodnych elementów
KOLEKCJE - to typy masowe,zawierające pewną liczbę jednorodnych elementów SQL3 wprowadza następujące kolekcje: zbiory ( SETS ) - zestaw elementów bez powtórzeń, kolejność nieistotna listy ( LISTS ) - zestaw
Wprowadzenie do technologii informacyjnej.
Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja
DMX DMX DMX DMX: CREATE MINING STRUCTURE. Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
DMX DMX DMX Data Mining Extensions jest językiem do tworzenia i działania na modelach eksploracji danych w Microsoft SQL Server Analysis Services SSAS. Za pomocą DMX można tworzyć strukturę nowych modeli
Integracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining
Integracja technik eksploracji danych ]V\VWHPHP]DU]G]DQLDED]GDQ\FK QDSU]\NáDG]LH2UDFOHi Data Mining 0LNRáDM0RU]\ Marek Wojciechowski Instytut Informatyki PP Eksploracja danych 2GNU\ZDQLHZ]RUFyZZGX*\FK
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
Oracle Data Mining 10g
Oracle Data Mining 10g Zastosowanie algorytmu Support Vector Machines do problemów biznesowych Piotr Hajkowski Oracle Consulting Agenda Podstawy teoretyczne algorytmu SVM SVM w bazie danych Klasyfikacja
1. Odkrywanie asocjacji
1. 2. Odkrywanie asocjacji...1 Algorytmy...1 1. A priori...1 2. Algorytm FP-Growth...2 3. Wykorzystanie narzędzi Oracle Data Miner i Rapid Miner do odkrywania reguł asocjacyjnych...2 3.1. Odkrywanie reguł
Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów
Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie
1. Cele eksploracyjnej analizy danych Rapid Miner zasady pracy i wizualizacja danych Oracle Data Miner -zasady pracy.
Spis treści: 1. Cele eksploracyjnej analizy danych...1 2. Rapid Miner zasady pracy i wizualizacja danych...3 3. Oracle Data Miner -zasady pracy.12 3.1 ODM PL/SQL.......12 3.2 ODM JAVA API......12 3.2.1
data mining machine learning data science
data mining machine learning data science deep learning, AI, statistics, IoT, operations research, applied mathematics KISIM, WIMiIP, AGH 1 Machine Learning / Data mining / Data science Uczenie maszynowe
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Blaski i cienie wyzwalaczy w relacyjnych bazach danych. Mgr inż. Andrzej Ptasznik
Blaski i cienie wyzwalaczy w relacyjnych bazach danych. Mgr inż. Andrzej Ptasznik Technologia Przykłady praktycznych zastosowań wyzwalaczy będą omawiane na bazie systemu MS SQL Server 2005 Wprowadzenie
SYLABUS. Dotyczy cyklu kształcenia Realizacja w roku akademickim 2016/2017. Wydział Matematyczno - Przyrodniczy
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS Dotyczy cyklu kształcenia 2014-2018 Realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
Tworzenie raportów XML Publisher przy użyciu Data Templates
Tworzenie raportów XML Publisher przy użyciu Data Templates Wykorzystanie Szablonów Danych (ang. Data templates) jest to jedna z metod tworzenia raportów w technologii XML Publisher bez użycia narzędzia
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Analiza danych i data mining.
Analiza danych i data mining. mgr Katarzyna Racka Wykładowca WNEI PWSZ w Płocku Przedsiębiorczy student 2016 15 XI 2016 r. Cel warsztatu Przekazanie wiedzy na temat: analizy i zarządzania danymi (data
1. Grupowanie Algorytmy grupowania:
1. 1.1. 2. 3. 3.1. 3.2. Grupowanie...1 Algorytmy grupowania:...1 Grupowanie metodą k-średnich...3 Grupowanie z wykorzystaniem Oracle Data Miner i Rapid Miner...3 Grupowanie z wykorzystaniem algorytmu K-Means
Ewelina Dziura Krzysztof Maryański
Ewelina Dziura Krzysztof Maryański 1. Wstęp - eksploracja danych 2. Proces Eksploracji danych 3. Reguły asocjacyjne budowa, zastosowanie, pozyskiwanie 4. Algorytm Apriori i jego modyfikacje 5. Przykład
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH
INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Data Mining podstawy analizy danych Część druga
Data Mining podstawy analizy danych Część druga W części pierwszej dokonaliśmy procesu analizy danych treningowych w oparciu o algorytm drzewa decyzyjnego. Proces analizy danych treningowych może być realizowany
Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na
Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji
Bazy danych. dr inż. Arkadiusz Mirakowski
Bazy danych dr inż. Arkadiusz Mirakowski Początek pracy z Transact SQL (T-SQL) 153.19.7.13,1401 jkowalski nr indeksu 2 Perspektywa - tabela tymczasowa - grupowanie Perspektywa (widok) Perspektywa (widok)
Baza danych dla potrzeb zgłębiania DMX
Baza danych dla potrzeb zgłębiania DMX ID Outlook Temperature Humidity Windy PLAY 1 sunny hot high false N 2 sunny hot high true N 3 overcast hot high false T 4rain mild high false T 5rain cool normal
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Określanie ważności atrybutów. OracleData Miner
Określanie ważności atrybutów OracleData Miner Algorytm MDL (intuicja) (1) William of Ockham (1285-1349): Nie należy mnożyć bytów ponad potrzebę Reguła minimalnej długości opisu (Minimum DescriptionLengthMDL)
Inżynieria biomedyczna
Inżynieria biomedyczna Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna studia międzywydziałowe współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.
Wykład 8. SQL praca z tabelami 5
Wykład 8 SQL praca z tabelami 5 Podzapytania to mechanizm pozwalający wykorzystywać wyniki jednego zapytania w innym zapytaniu. Nazywane często zapytaniami zagnieżdżonymi. Są stosowane z zapytaniami typu
Pakiety podprogramów Dynamiczny SQL
Pakiety podprogramów Dynamiczny SQL Pakiety podprogramów, specyfikacja i ciało pakietu, zmienne i kursory pakietowe, pseudoinstrukcje (dyrektywy kompilatora), dynamiczny SQL 1 Pakiety Pakiet (ang. package)
Ćwiczenie 5. Metody eksploracji danych
Ćwiczenie 5. Metody eksploracji danych Reguły asocjacyjne (association rules) Badaniem atrybutów lub cech, które są powiązane ze sobą, zajmuje się analiza podobieństw (ang. affinity analysis). Metody analizy
Krzysztof Kawa. empolis arvato. e mail: krzysztof.kawa@empolis.com
XI Konferencja PLOUG Kościelisko Październik 2005 Zastosowanie reguł asocjacyjnych, pakietu Oracle Data Mining for Java do analizy koszyka zakupów w aplikacjach e-commerce. Integracja ze środowiskiem Oracle
Wyzwalacz - procedura wyzwalana, składowana fizycznie w bazie, uruchamiana automatycznie po nastąpieniu określonego w definicji zdarzenia
Wyzwalacz - procedura wyzwalana, składowana fizycznie w bazie, uruchamiana automatycznie po nastąpieniu określonego w definicji zdarzenia Składowe wyzwalacza ( ECA ): określenie zdarzenia ( Event ) określenie
Pakiety są logicznymi zbiorami obiektów takich jak podprogramy, typy, zmienne, kursory, wyjątki.
Pakiety Pakiety są logicznymi zbiorami obiektów takich jak podprogramy, typy, zmienne, kursory, wyjątki. Pakiet składa się ze: specyfikacji (interfejsu) i ciała (implementacji). W specyfikacji mieszczą
Szczegółowy opis przedmiotu zamówienia
ZP/ITS/19/2013 SIWZ Załącznik nr 1.1 do Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych dla studentów
Data Mining Wykład 4. Plan wykładu
Data Mining Wykład 4 Klasyfikacja danych Klasyfikacja poprzez indukcje drzew decyzyjnych Plan wykładu Sformułowanie problemu Kryteria oceny metod klasyfikacji Metody klasyfikacji Klasyfikacja poprzez indukcje
Obiektowe bazy danych Ćwiczenia laboratoryjne (?)
Obiektowe bazy danych Ćwiczenia laboratoryjne (?) Tworzenie typów obiektowych 1. Zdefiniuj typ obiektowy reprezentujący SAMOCHODY. Każdy samochód powinien mieć markę, model, liczbę kilometrów oraz datę
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
Klasyfikacja i regresja Wstęp do środowiska Weka
Klasyfikacja i regresja Wstęp do środowiska Weka 19 listopada 2015 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików pdf sformatowanych podobnie do tego dokumentu.
Modelowanie wymiarów
Wymiar Modelowanie wymiarów struktura umożliwiająca grupowanie danych z tabeli faktów implementowana jako obiekt bazy danych DIMENSION wykorzystanie DIMENSION zaawansowane przepisywanie zapytań (ang. query
w PL/SQL bloki nazwane to: funkcje, procedury, pakiety, wyzwalacze
w PL/SQL bloki nazwane to: funkcje, procedury, pakiety, wyzwalacze Cechy bloków nazwanych: w postaci skompilowanej trwale przechowywane na serwerze wraz z danymi wykonywane na żądanie użytkownika lub w
projekt zaliczeniowy Eksploracja Danych
Ostaszewski Paweł [55566] Piła, 22.02.2006 projekt zaliczeniowy Eksploracja Danych 1. Obejrzyj histogramy dla wszystkich atrybutów, na podstawie wartości średniej i zakresu wartości oceń, dla których atrybutów
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Wprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARSTWA PREZENTACJI HURTOWNI DANYCH Wykorzystanie hurtowni danych - aspekty Analityczne zbiory danych (ADS) Zbiór danych tematycznych (Data
Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa
Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa Konrad Miziński 14 stycznia 2015 1 Temat projektu Grupowanie hierarchiczne na podstawie algorytmu k-średnich. 2 Dokumenty
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Przykłady najlepiej wykonywać od razu na bazie i eksperymentować z nimi.
Marek Robak Wprowadzenie do języka SQL na przykładzie baz SQLite Przykłady najlepiej wykonywać od razu na bazie i eksperymentować z nimi. Tworzenie tabeli Pierwsza tabela W relacyjnych bazach danych jedna
Wykład 5. SQL praca z tabelami 2
Wykład 5 SQL praca z tabelami 2 Wypełnianie tabel danymi Tabele można wypełniać poprzez standardową instrukcję INSERT INTO: INSERT [INTO] nazwa_tabeli [(kolumna1, kolumna2,, kolumnan)] VALUES (wartosc1,
Laboratorium 7. Support Vector Machines (klasyfikacja).
Laboratorium 7 Support Vector Machines (klasyfikacja). 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Kolekcje Zbiory obiektów, rodzaje: tablica o zmiennym rozmiarze (ang. varray) (1) (2) (3) (4) (5) Rozszerzenie obiektowe w SZBD Oracle
Rozszerzenie obiektowe w SZBD Oracle Cześć 2. Kolekcje Kolekcje Zbiory obiektów, rodzaje: tablica o zmiennym rozmiarze (ang. varray) (1) (2) (3) (4) (5) Malinowski Nowak Kowalski tablica zagnieżdżona (ang.
SZKOLENIA SAS. ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie
SZKOLENIA SAS ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie DANIEL KUBIK ŁUKASZ LESZEWSKI ROLE ROLE UŻYTKOWNIKÓW MODUŁU
Wprowadzenie do technologii Business Intelligence i hurtowni danych
Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence
Modelowanie hierarchicznych struktur w relacyjnych bazach danych
Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego
Część 1: OLAP. Raport z zajęć laboratoryjnych w ramach przedmiotu Hurtownie i eksploracja danych
Łukasz Przywarty 171018 Wrocław, 05.12.2012 r. Grupa: CZW/N 10:00-13:00 Raport z zajęć laboratoryjnych w ramach przedmiotu Hurtownie i eksploracja danych Część 1: OLAP Prowadzący: dr inż. Henryk Maciejewski
UPDATE Studenci SET Rok = Rok + 1 WHERE Rodzaj_studiow =' INŻ_ST'; UPDATE Studenci SET Rok = Rok 1 WHERE Nr_albumu IN ( '111345','100678');
polecenie UPDATE służy do aktualizacji zawartości wierszy tabel lub perspektyw składnia: UPDATE { } SET { { = DEFAULT NULL}, {
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować
Hurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Biznesowe słowniki pojęć biznesowych odwzorowania pojęć
ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL
ORACLE System Zarządzania Bazą Danych Oracle Oracle Advanced SQL wersja 1.0 Politechnika Śląska 2008 Plan laboratorium Frazy SQL: group by, rollup, cube, grouping sets funkcje analityczne, budowa modeli
Procedury wyzwalane. (c) Instytut Informatyki Politechniki Poznańskiej 1
Procedury wyzwalane procedury wyzwalane, cel stosowania, typy wyzwalaczy, wyzwalacze na poleceniach DML i DDL, wyzwalacze typu INSTEAD OF, przykłady zastosowania, zarządzanie wyzwalaczami 1 Procedury wyzwalane
Mail: Pokój 214, II piętro
Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,
Mikołaj Morzy, Marek Wojciechowski: "Integracja technik eksploracji danych z systemem zarządzania bazą danych na przykładzie Oracle9i Data Mining"
Mikołaj Morzy, Marek Wojciechowski: "Integracja technik eksploracji danych z systemem zarządzania bazą danych na przykładzie Oracle9i Data Mining" Streszczenie Eksploracja danych znajduje coraz szersze
Implementacja wybranych algorytmów eksploracji danych na Oracle 10g
Implementacja wybranych algorytmów eksploracji danych na Oracle 10g Sławomir Skowyra, Michał Rudowski Instytut Informatyki Wydziału Elektroniki i Technik Informacyjnych, Politechnika Warszawska S.Skowyra@stud.elka.pw.edu.pl,
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych
Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2
Data Mining Wykład 2 Odkrywanie asocjacji Plan wykładu Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych Geneza problemu Geneza problemu odkrywania reguł
Monika Kruk Mariusz Grabowski. Informatyka Stosowana WFiIS, AGH 13 grudzień 2006
OBIEKTOWOŚĆ W BAZIE DANYCH ORACLE Monika Kruk Mariusz Grabowski Informatyka Stosowana WFiIS, AGH 13 grudzień 2006 Plan prezentacji kilka słów o bazie danych ORACLE rzecz o obiektach ORACLE tworzenie typów
Metody eksploracji danych. Reguły asocjacyjne
Metody eksploracji danych Reguły asocjacyjne Analiza podobieństw i koszyka sklepowego Analiza podobieństw jest badaniem atrybutów lub cech, które są powiązane ze sobą. Metody analizy podobieństw, znane
ORACLE. System Zarządzania Bazą Danych Oracle. Oracle Advanced SQL
ORACLE System Zarządzania Bazą Danych Oracle Oracle Advanced SQL wersja 1.0 Politechnika Śląska 2008 Raportowanie z wykorzystaniem fraz rollup, cube Frazy cube, rollup, grouping sets umożliwiają rozszerzoną
Programowanie w SQL procedury i funkcje. UWAGA: Proszę nie zapominać o prefiksowaniu nazw obiektów ciągiem [OLIMP\{nr indeksu}] Funkcje użytkownika
Programowanie w SQL procedury i funkcje UWAGA: Proszę nie zapominać o prefiksowaniu nazw obiektów ciągiem [OLIMP\{nr indeksu}] Funkcje użytkownika 1. Funkcje o wartościach skalarnych ang. scalar valued
strukturalny język zapytań używany do tworzenia i modyfikowania baz danych oraz do umieszczania i pobierania danych z baz danych
SQL SQL (ang. Structured Query Language): strukturalny język zapytań używany do tworzenia strukturalny język zapytań używany do tworzenia i modyfikowania baz danych oraz do umieszczania i pobierania danych
2. Ocena dokładności modelu klasyfikacji:
Spis treści: 1. Klasyfikacja... 1 2. Ocena dokładności modelu klasyfikacji:...1 2.1. Miary dokładności modelu...2 2.2. Krzywe oceny...2 3. Wybrane algorytmy...3 3.1. Naiwny klasyfikator Bayesa...3 3.2.
Bazy danych. Andrzej Łachwa, UJ, /15
Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 6/15 Statystyki w języku SQL W różnych produktach SQL spotkamy rozmaite funkcje wbudowane ułatwiające analizy
Systemy baz danych Prowadzący: Adam Czyszczoń. Systemy baz danych. 1. Import bazy z MS Access do MS SQL Server 2012:
Systemy baz danych 16.04.2013 1. Plan: 10. Implementacja Bazy Danych - diagram fizyczny 11. Implementacja Bazy Danych - implementacja 2. Zadania: 1. Przygotować model fizyczny dla wybranego projektu bazy
Założenia do ćwiczeń: SQL Server UWM Express Edition: 213.184.8.192\SQLEXPRESS. Zapoznaj się ze sposobami użycia narzędzia T SQL z wiersza poleceń.
Cel: polecenia T-SQL Założenia do ćwiczeń: SQL Server UWM Express Edition: 213.184.8.192\SQLEXPRESS Authentication: SQL Server Authentication Username: student01,, student21 Password: student01,., student21
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
KARTA PRZEDMIOTU. Hurtownie i eksploracja danych D1_5
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Analiza danych tekstowych i języka naturalnego
Kod szkolenia: Tytuł szkolenia: ANA/TXT Analiza danych tekstowych i języka naturalnego Dni: 3 Opis: Adresaci szkolenia Dane tekstowe stanowią co najmniej 70% wszystkich danych generowanych w systemach
Eksploracja danych Jacek Rumiński
Eksploracja danych Jacek Rumiński slajd 1 Kontakt: Katedra Inżynierii Biomedycznej, pk. 106, tel.: 3472678, fax: 3461757, e-mail: jwr@eti.pg.gda.pl Źródła, Internet, SQL/MM i inne standardy (dodatkowy
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania
Przestrzenne bazy danych Podstawy języka SQL
Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured
Język PL/SQL Pakiety podprogramów
Język PL/SQL Pakiety podprogramów Pakiety podprogramów, specyfikacja i ciało pakietu, zmienne i kursory pakietowe, pseudoinstrukcje (dyrektywy kompilatora) 1 Pakiety Pakiet (ang. package) grupuje powiązane
Drzewa decyzyjne i lasy losowe
Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM
mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych.
mgr inż. Magdalena Deckert Poznań, 30.11.2010r. Metody przyrostowego uczenia się ze strumieni danych. Plan prezentacji Wstęp Concept drift i typy zmian Algorytmy przyrostowego uczenia się ze strumieni
Bazy danych. Plan wykładu. Rozproszona baza danych. Fragmetaryzacja. Cechy bazy rozproszonej. Replikacje (zalety) Wykład 15: Rozproszone bazy danych
Plan wykładu Bazy danych Cechy rozproszonej bazy danych Implementacja rozproszonej bazy Wykład 15: Rozproszone bazy danych Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy danych (studia
Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel
według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology