WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu
|
|
- Wiktoria Gajewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl Katedra Informatyki Technicznej Tomasz.Walkowiak@pwr.edu.pl IJP PAN / UP Kraków maciejeder@gmail.com
2 Stylometria Stylometria analiza tekstów pod kątem cech charakterystycznych dla autora, okresu powstania, gatunku, stylu, miejsca pochodzenia tekstu, języka źródłowego, tłumacza, itd. Spojrzenie z oddali: Typy cech analiza statyczna cech tekstów, które mogą być charakterystyczne dla: autora, okresu powstania itd. pojedyncze wystąpienia niosą mało informacji, ale kombinacja ich częstości występowania jest znacząca formy wyrazowe (słowa), cechy form: morfologiczne i gramatyczne, kolokacje, własności składniowe: frazy lub zdania
3 Stylometria - zastosowania Atrybucja autorska potwierdzenie porównanie tekstu z innymi tekstami danego autora ustalenie autorstwa dla zbioru znanych autorów i przykładowych tekstów ustalenie autorstwa innych tekstów wykrycie autorów podzielenie zbioru tekstów wg autorów Okres powstania tekstu podobieństwo do tekstów z określonych okresów Analiza stylu znane style (przykładowe teksty) vs ustalenie styli Rozpoznanie gatunku literackiego Miejsce powstania tekstu Ustalenie cech autora, np. płeć, język rodzimy Analiza tłumaczeń: język pierwotny, język rodzimy tłumacza
4 Stylometria proces analizy 1. Przygotowanie korpusu tekstów 2. Analiza językowa tekstów i ustalenie częstości występowania wybranych cech np. określonych słów, sekwencji klas gramatycznych 3. Przetwarzanie danych 4. Analiza danych: grupowanie lub klasyfikacja na podstawie cech wektorów 5. Analiza wyników i wizualizacja
5 Stylometria proces analizy Przygotowanie korpusu tekstów zgromadzenie dokumentów o znanych/nieznanych własnościach wydobycie czystego tekstu z dokumentów programy rozpoznające różne formaty problem cech zakłócających np. adresy internetowe, `szlaczki interpunkcyjne, stopki/nagłówki, przeniesienia wyrazów, metadane od redakcji itd. opatrzenie dokumentów metadanymi w nazwie pliku poprzez rekord metadanych, np. CMDI
6 Stylometria - przykład Grupowanie 5 książek, dwóch autorów podzielonych na fragmenty za pomocą WebSty
7 Stylo przykład systemu do analizy stylometrycznej System opracowany przez Macieja Edera (Uniwersytet Pedagogiczny w Krakowie, Instytut Języka Polskiego PAN) Biblioteka (zestaw funkcji) dla środowiska R Darmowa i na licencji open-source (GPL) Zaopatrzona w interfejs graficzny Wyposażona w szereg metod nadzorowanych i nienadzorowanych Prosta w obsłudze, ale nie banalnie prosta
8 WebSty założenia Aplikacja uruchamiana przez dowolną przeglądarkę cechy opisujące tekst mogą dotyczyć dowolnego poziomu analizy języka ograniczeniem są dostępne narzędzia dla języka polskiego analizowane mogą być zarówno dokumenty jak i fragmenty tekstu w połączeniu z dostępem do wielu narzędzi do analizy danych Grupowanie Klasyfikacja oparta na maszynowym uczeniu się Wizualizacja wyników Wydobywanie cech charakterystycznych dla grup Wszystkie moduły przetwarzające oparte są o zestaw otwartych narzędzi. Możliwe podłączanie dalszych narzędzi.
9 Schemat systemu Załadowanie korpusu z różnych źródeł Wybór cech opisowych Określenie parametrów przetwarzania przetwarzanie cech, np. transformacja liczba grup Wstępne przetwarzanie automatyczne uruchomienie sekwencji narzędzi językowych Obliczenie wartości cech zliczenie statystyk wystąpienia 6. Filtrowanie i/lub transformacja cech, np. odsianie zbyt rzadkich/częstych cech ważenie cech wyznaczenie miar podobieństwa/odległości między tekstami 7. Grupowanie 8. Identyfikacja cech charakterystycznych grupa vs pozostałe 9. Prezentacja wyników dane liczbowe wizualizacje skalowanie wielowymiarowe
10 Przygotowanie i załadowanie korpusu Opisanie plików z tekstami Umieszczenie Bezpośrednie załadowanie plików do aplikacji automatyczna konwersja do tekstu z różnych formatów rtf, doc, docx, odt, xlslx, pdf (Uwaga: nie czyści z cech zakłócających!) ograniczona liczba, ograniczona ilość danych Wybór korpusu z repozytorium DSpace CLARIN-PL CTJ dowolny rozmiar, ale czas przetwarzania zależy od rozmiaru! automatyczna Korpus spakowany do pliku Zip z adresu w sieci j.w. ale możliwość załadowania własnych danych, np. z dysku sieciowego
11 Załadowanie plików
12 Załadowanie plików Korpus z repozytorium Dspace CTJ Korpus spakowany z dysku sieciowego
13 Cechy dla języka polskiego Założenia możliwe do identyfikacji na odpowiednim poziomie dokładności możliwie mało czułe na znaczenie tekstu Poziomy analizy języka morfologiczny morfo-syntaktyczny semantyki leksykalnej Wykorzystywane narzędzia językowe CLARIN-PL program do segmentacji tekstu i analizy morfologicznej MACA tager morfosyntaktyczny - WCFRT2 program do rozpoznawania nazw własnych - Liner2 -
14 Cechy morfologiczne i morfosyntaktyczne Formy wyrazowe dowolne z tekstu semantyczne powiązania wg listy najczęstszych w: danym korpusie skuteczne do grupowanie, lub języku wyniki porównywalne z innymi korpusami Znaki interpunkcyjne wybrane duży szum z niejęzykowego użycia Lematy podstawowe formy morfologiczne zmniejszają sztuczną różnorodność wyrazów wyznaczane z pomocą tagera morfosyntaktycznego wg listy najczęstszych - podobnie jak dla form wyrazowych
15 Cechy morfologiczne i morfosyntaktyczne Klasy gramatyczne zgodnie z definicją w Narodowym Korpusie Języka Polskiego klas gramatycznych, np. pseudoimiesłowy (preat), formy nieprzeszłe (fin), przymiotniki przyprzymiotnikowe (adja) wyznaczane przez tager morfosyntaktyczny WCRFT2 niektóre klasy gramatyczne są często wynikiem błędów tagera dla nieznanych słów, np. burkinostki, wykrzykniki, formy obce Części mowy klasy gramatyczne pogrupowane wg naturalnych kryteriów Kombinacje klasa gramatyczna wartość kategorii gramatycznych np. forma nieprzeszła osoba 1 lub 2 Wskazuje na bezpośredni styl pisania, np. list
16 Cechy sekwencyjne Przykład cech Może to czysty hedonizm, ale wyznaję teorię, że potrzeby należy zaspokajać. Lematy: może:1, to:1, czysty:1, hedonizm:1,, :2, ale:1, wyznawać: 1 potrzeba:1 Klasy gramatyczne: qub:1, conj:2, adj:1, subst:3, fin:2, comp:1, inf:1 Sekwencje 2 lub 3 elementowe ciągłe sekwencje wystąpień cech w tekście lematów (lub form wyrazowych) w pewnym sensie sygnalizują kolokacje Problemem jest niska częstość konieczność filtrowania klas gramatycznych przybliżają do pewnego stopnia konstrukcje składniowe
17 Analiza autorstwa Typowe podejście najczęstsze wyrazy w korpusie Proponowana w WebSty najczęstsze lematy w języku (tj. w dużym korpusie) początkowo: 500 najczęstszych w Narodowym Korpusie Języka Polskiego dalej ręczna eliminacja lematów o większym ładunku semantycznym uzupełnienie podklas gramatycznych, np. spójników znaki interpunkcyjne (wybrane) Uogólnione najczęstsze wyrazy w języku (tj. w dużym korpusie) gotowa lista najczęstsze lematy w korpusie lub języku znaki interpunkcyjne
18 Wybór cech
19 Wybór cech
20 Analiza stylu Podstawowa cechy analogiczne jak w atrybucji autorstwa Rozszerzona klasy gramatyczne dwuelementowe sekwencje klas gramatycznych przybliżają strukturę składniową tekstu Potencjalne dalsze rozszerzenia lematy najczęstsze w języku częstość występowania zdań o określonych długościach częstość słów o określonych długościach trzyelementowe sekwencje klas gramatycznych struktury konstrukcji składniowych
21 Filtrowanie Usuwanie cech rzadkich minimalna liczba wystąpień cechy w korpusie cechy bardzo rzadkie powodują często przypadkowe powiązania wartość zależy od wielkości korpusu, ale min. 20 jest rozsądne minimalna liczba dokumentów (fragmentów), w których wystąpiła cecha cecha może być częsta, ale tylko w niektórych dokumentach min. 5 jest dość typowe zależne od wielkości korpusu Inne możliwości (niedostępne jeszcze z aplikacji) usuwanie wybranych wartości cech, np. sekwencji dwóch burkinostek usuwanie cech o małych wartościach po transformacji
22 Transformacja Ważenie cech matematyczne przekształcenie wartości, które ma na celu uwypuklenie istotnych różnic, a zniwelowanie nieznaczących schemat: (wartość cechy, opis dokumentu/korpusu) -> nowa wartość cechy Typy metod ważenia heurystyczne algorytm, który nie ma podstaw formalnych oparte na miarach istotności ze statystyki matematycznej oparte na teorii informacji
23 Podobieństwo dokumentów Reprezentacja dokumentów D 1 : [ v 11, v 12, v 13,, v 1m ] D 2 : [ v 21, v 22, v 23,, v 2m ] Obliczenie podobieństwa wektory wartości cech dla D 1 i D 2 zostają porównane ze sobą Metody miary odległości heurystyczne geometryczne
24 Podobieństwo dokumentów Metody oparte na mierze odległości odległość Manhattan suma różnic między wartościami cech, ważna jest każda cecha z osobna odległość Euklidesowa w wielowymiarowej przestrzeni, wartości cech bardzo wpływają na miarę Geometryczne miara kosinusowa (podobieństwa) kosinus kąta między wektorami, ważny jest kierunek wektora układ cech, a nie ich poszczególne wartości prosta, ale bardzo dobra w wielu zastosowaniach
25 Podobieństwo dokumentów Miary heurystyczne Dice stosunek masy cech wspólnych do wszystkich, obrazuje istotność części wspólnej Jaccard stosunek masy cech wspólnych do masy cech specyficznych dla obu dokumentów SHD (Piasecki, z systemu SuperMatrix) mierzy na ile oba dokumentów potrafią opisać się wzajemnie poprzez swoje cechy; miara może być ukierunkowana na określony kierunek porównania Delta miara odległości, suma różnic znormalizowanych statystycznie cech Delta Edera zmodyfikowana miara Delta
26 Opcje filtrowania, transformacji, podobieństwa i grupowania Opcje zaawansowane: Opcje wyznaczania podobieństwa Filtrowanie Transformacja cech (ważenie)
27 Grupowanie dokumentów Grupowanie pakiet Cluto uniwersalny system do grupowania danych metoda aglomeracyjno-podziałowa zaczyna od łączenia najbardziej do siebie podobnych elementów i grup później dzieli cały zbiór na podzbiory o dużym średnim podobieństwie pomiędzy dokumentami Parametry liczba grup na etapie podziału liczba grup widocznych w danych ukryte parametry wybór metody Predefiniowane ustawienia (przygotowane wcześniej) wybór określonych zespołów cech, np. do analizy autorstwa brakuje jeszcze wyboru parametrów przetwarzania, np. filtrowania, transformacji, itd..
28 Opcje grupowania Opcje zaawansowane: Opcje wyznaczania podobieństwa Filtrowanie Metoda liczenia podobieństwa
29 Eksperymentalna metod doboru parametrów Wybieramy kolekcję wzorcową dobrze ilustrującą zjawisko, które chcemy zbadać, np. zawierającą teksty o znanym autorstwie przykłady określonych stylów teksty tłumaczone z określonych języków zawierającą teksty podobne do tekstów badanych Na kolekcji wzorcowej przeprowadzamy eksperymenty w celu dobrania wartości parametrów zaczynamy od parametrów domyślnych badamy wyniki wizualizacji analizujemy cechy charakterystyczne wyznaczone dla grup Ustalone wartości parametrów stosujemy do kolekcji tekstów będącej przedmiotem badania
30 Prezentacja wyników
31 Prezentacja wyników Dane: dla każdego tekstu (pliku): plik wejściowy ew. pliki po podziale przynależność do grupy id grupy (wektor: Nx1) Dendrogram hierarchia drzewa (drzewo binarne) Podobieństwo między tekstami (macierz: NxN liczb 1-0) Odległość między tekstami (macierz: NxN liczb 0-+ ) Formaty: JSON, XLSX
32 Prezentacja wyników Warsztaty CLARIN-PL Łódź 3-4 II 2017 CLARIN-PL Interaktywny dendrogram drzewo bliskości tekstów i grup tekstów Mapa ciepła pokazuje podobieństwo tekstów i ich grupy Skalowanie wielowymiarowe pokazuje bliskość tekstów na płaszczyźnie Skalowanie wielowymiarowe z wizualizacją 3D pokazuje bliskość tekstów w przestrzeni trójwymiarowej Wykres radarowy powiązania (bliskość) tekstów rozmieszczonych na kole Wykres kołowy graf bliskości tekstów i grup tekstów wpisany w koło
33 Prezentacja wyników drzewo interaktywne 34
34 Prezentacja wyników mapa ciepła 35
35 Prezentacja wyników wykres radarowy 36
36 Prezentacja wyników wykres kołowy
37 Skalowanie wielowymiarowe
38 Skalowanie wielowymiarowe 3D
39 WebSty: wydobywanie cech Cel wydobycie cech charakterystycznych dla danej grupy lub dokumentu (planowane) porównywanie korpusów Schematy przetwarzania grupa vs pozostałe grupy razem rozkład cech względem grup Metody narzędzia: Weka, scipy, scikit-learn grupy metod Weka (miary informacyjne) testy statystyczne drzewa losowe eliminacja cech i algorytmy supervised
40 Selekcja cech Narzędzia: Weka, scipy, scikit-learn Grupy metod: weka (miary informacyjne) testy statystyczne drzewa losowe eliminacja cech i algorytmy supervised 41
41 WebSty: interfejs do cech
42 Dziękuję bardzo za uwagę
43 Architektura rozwiązania Problemy: Różne środowiska programistyczne: Java, C++, Python, R Duże modele Długie czasy przetwarzania Udostępnianie jako aplikacja webowa Język modelowania (LPMN): urlzip( any2txt wcrft2 fextor({"features":"base"}) dir featfilt({"similarity":"jaccard }) cluto({"no_clusters":3}) 44
44 Schemat potoków przetwarzania Any2txt WCRFT2 Liner2 Fextor Document (doc) Any2txt WCRFT2 Liner2 Fextor FeatFilt Cluto Document (docx) Wynik... Any2txt WCRFT2 Liner2 Fextor Document (pdf) FeatSel Wynik z Cluto Wynik Wynik z Cluto MDS Wynik SubFeatSel
45 Architektura rozwiązania Samba Worker 1 (Any2txt) Worker 3 (WCRFT2) REST NLPREST2 RabbitMQ Worker 2 (fextor) Worker n (featfilt) Data base LPMN engine Wydajność przetwarzanie asynch. skalowanie synchronizacja po zadaniu zew. baza danych LPMN Engine Wykonanie LPMN model asynchroniczny => 0.01 procesora RabbitMQ 46
46 Techniki użycia Aplikacja webowa Korpusy z różnych źródeł API programistyczne Własny kod: Java, Python, R Aplikacja wysyła korpus (plik zip) i np. stop listę Uruchamia wybrany tor przetwarzania filezip(id_pliku) any2txt wcrft2 fextor({"features":"base"}) dir output(korpus_ccl) featfilt({"similarity":"jaccard }) output(dane_podob) cluto({"no_clusters":3}) makezip Załadowanie wyników na lokalny komputer Można powtórzyć przetwarzanie od wybranego miejsca file(id_dane_podob) cluto({"no_clusters":15}) makezip Wysłanie korpusu do CTJ CLARIN-PL
47 Ważenie cech Metody heurystyczne tf znormalizowana częstość tf.idf częstość cechy w dokumencie podzielona przez najwyższą częstość cechy daje zaskakująco dobre wyniki dla częstych słów (lematów) z ograniczonej listy technika z wyszukiwania informacji czynnik idf promuje cechy, które występują w ograniczonej liczbie dokumentów Nie działa dla cech częstych np. klas gramatycznych występują wszędzie, więc idf=0 Normalize normalizacja, czyli sprowadzenie wartości cech do takich wartości, że cały wektor ma długość jeden zmniejsza wpływ długości tekstu na jego opis
48 Ważenie cech Metody statystyczne tscore test istotności statystycznej współwystąpienie cech ma tendencję do promowania częstych cech chi2 test powiązania dwóch zmiennych losowych często stosowany, bardziej zrównoważony niż tscore Miary oparte na teorii informacji MI Mutual Information (pol. miara informacji wzajemnej) określa ile możemy dowiedzieć się o wystąpieniach jednej zmiennej losowej (np. słowo w dokumencie) na podstawie wystąpień innej zmiennej losowej, np. konkretna cecha wartości dodatnie: cecha wnosi istotną informację mi simple inny wariant obliczania, tylko pary, a nie cały korpus
49 Transformacja i filtrowanie przykład Różne metody oceny istotności cechy dla dokumentu/próbki Łączenie cech różnego typu np. częstości lematów i klas gramatycznych Przykład procesu przetwarzania miara tf.idf 1. obliczenie częstości występowania lematów 2. odrzucenie cech-lematów występujących rzadziej niż n=10 3. normalizacja częstości lematu a, tf(a) = częstość(a) maksymalną częstości w danym dokumencie 4. ważenie idf(a)= ln( liczba dokumentów dokumenty(a) ) 5. wyliczenie wagi dla lematu: tf(a) * idf(a)
50 Transformacja przestrzeni Transformacja przestrzeni wektorowej wektor dla każdego dokumentu zostaje znacząco zmniejszony z N cech na M cech, Cel np. z do 100 zredukowanie przypadkowości szumów uwypuklenie podobieństw i zmniejszenie przypadkowych podobieństw niebezpieczeństwa Metody Zbytnie uogólnienie/uśrednienie Singular Value Decomposition (Latent Semantic Analysis) Random Projection
51 Prezentacja wyników Metody wizualizacji w przeglądarce: Teksty jako punkty w 2D, 3D: skalowanie wielowymiarowe ( MDS - Multidimensional scaling) metryczne zachowanie odległości niemetryczne zachowanie porządku w odległościach t-distributed Stochastic Neighbor Embedding (TSNE) zachowanie podobieństwa miara Kullback-Leibler nieliniowa redukcja wielowymiarowości Spectral Embedding (Laplacian Eigenmaps) zachowanie lokalnych informacji graf łączący sąsiednie punkty (podobne teksty)
52 WebStyEn - nie tylko język polski Język angielski - z wykorzystaniem spacy
53 Przykład cech Przetwarzanie: WebSty, korpusie 1000 klasycznych dzieł, cechy leksykalne, interpunkcja, bigramy; ważenie PMI, selekcja Mann-Whitney Kraszewski_syn_jazdona_1880 Kraszewski_krakow-za-loktka_1880 Kraszewski_pogrobek_1880 Kraszewski_kunigas_1882 Kraszewski_boleszczyce_1877 Kraszewski_stara-basn-tom-III_1876 Kraszewski_braciazmartwychwstancy_1876 Kraszewski_banita_1885 Kraszewski_strzemienczyk_1883 Kraszewski_stara-basn-tom-I_1876 Kraszewski_bialy-ksiaze_1882 Kraszewski_jelita_1881 Kraszewski_caprea-i-roma_1860 Kraszewski_stara-basn-tom-II_1876 Stryjkowski_stryjkowski_kronika-polskalitewska-zmudzka-i-wszystkiej-rusi_1846 bigrams:inf_imps bigrams:inf_praet bigrams:ppron3_pcon bigrams:ppas_pcon bigrams:imps_interp bigrams:ppron3_pant bigrams:pant_interp lex_classes:imps_count bigrams:subst_pant bigrams:interj_inf base:wszyscy bigrams:siebie_pcon base:on base:choć base:gdy bigrams:praet_pant bigrams:ppron3_imps bigrams:adj_pant bigrams:pant_pact
54 WebSty: ćwiczenia 1. WebSty: Mały korpus: 2 autorów, 5 nowel analiza całych tekstów: cechy, metody, wizualizacja Analiza z podziałem na grupy, j.w. oraz dodatkowo analiza istotności cech Testy na predefiniowanych ustawieniach 35 książek, rozszerzona analiza autorstwa, różne metody grupowania, wykrycie cech istotnych 4. Mały korpus 50 książek ( podkorpus) korpus: należy wybrać dowolną próbkę tekstów do 31 tekstów przetestować WebSty na różnych ustawieniach
WebSty otwarty webowy system do analiz stylometrycznych
WebSty otwarty webowy system do analiz stylometrycznych Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 maciej.piasecki@pwr.edu.pl
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wroc awska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl
WebSty - otwarty sieciowy system do analizy stylometrycznej i semantycznej tekstów
IJP PAN / UP Kraków maciejeder@gmail.com WebSty - otwarty sieciowy system do analizy stylometrycznej i semantycznej tekstów ws.clarin-pl.eu/websty.shtml Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl
Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2
Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2 ws.clarin-pl.eu/websty.shtml Tomasz Walkowiak, Maciej Piasecki Politechnika Wrocławska Grupa Naukowa G4.19 Katedra Inteligencji Obliczeniowej
Centrum Technologii Językowych: repozytorium zasobów językowych i podstawowe usługi
CLARIN-PL Centrum Technologii Językowych: repozytorium zasobów językowych i podstawowe usługi Marcin Pol, Tomasz Walkowiak Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19
Repozytorium Centrum Technologii Językowych: deponowanie i upowszechnianie zasobów i narzędzi językowych, gromadzenie korpusów tekstowych
CLARIN-PL Repozytorium Centrum Technologii Językowych: deponowanie i upowszechnianie zasobów i narzędzi językowych, gromadzenie korpusów tekstowych Marcin Pol, Tomasz Walkowiak, Marcin Oleksy Politechnika
Narzędzia do automatycznego wydobywania kolokacji
Narzędzia do automatycznego wydobywania kolokacji Jan Kocoń, Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji Obliczeniowej marek.maziarz@pwr.edu.pl
Centrum Technologii Językowych CLARIN- PL: deponowanie i upowszechnianie zasobów oraz narzędzi językowych dla języka polskiego
Centrum Technologii Językowych CLARIN- PL: deponowanie i upowszechnianie zasobów oraz narzędzi językowych dla języka polskiego Maciej Piasecki, Tomasz Walkowiak Politechnika ska Katedra Inteligencji Obliczeniowej
System do klasyfikacji tekstu i analizy stylometrycznej
System do klasyfikacji tekstu i analizy stylometrycznej Maciej Eder, Maciej Piasecki IJP PAN / UP Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 maciejeder@gmail.com maciej.piasecki@pwr.edu.pl
Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych
Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra
Narzędzia do automatycznego wydobywania kolokacji
Narzędzia do automatycznego wydobywania kolokacji Jan Kocoń, Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji Obliczeniowej marek.maziarz@pwr.edu.pl
CLARIN rozproszony system technologii językowych dla różnych języków europejskich
CLARIN rozproszony system technologii językowych dla różnych języków europejskich Maciej Piasecki Politechnika Wrocławska Instytut Informatyki G4.19 Research Group maciej.piasecki@pwr.wroc.pl Projekt CLARIN
Program warsztatów CLARIN-PL
W ramach Letniej Szkoły Humanistyki Cyfrowej odbędzie się III cykl wykładów i warsztatów CLARIN-PL w praktyce badawczej. Narzędzia cyfrowe do analizy języka w naukach humanistycznych i społecznych 17-19
Analiza listów pożegnalnych w oparciu o metody lingwistyki informatycznej i klasyfikacji semantycznej tekstów
Analiza listów pożegnalnych w oparciu o metody lingwistyki informatycznej i klasyfikacji semantycznej tekstów Maciej Piasecki, Jan Kocoń Politechnika Wrocławska Katedra InteligencjiObliczeniowej Grupa
Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur
Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur Maciej Piasecki, Paweł Kędzia Politechnika ska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Plan prezentacji
AUTOMATYKA INFORMATYKA
AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Lokalizacja Oprogramowania
mgr inż. Anton Smoliński anton.smolinski@zut.edu.pl Lokalizacja Oprogramowania 16/12/2016 Wykład 6 Internacjonalizacja, Testowanie, Tłumaczenie Maszynowe Agenda Internacjonalizacja Testowanie lokalizacji
Mapa Literacka analiza odniesień geograficznych w tekstach literackich
CLARIN-PL Mapa Literacka analiza odniesień geograficznych w tekstach literackich Michał Marcińczuk Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl
Zarządzanie i anotowanie korpusów tekstowych w systemie Inforex
Zarządzanie i anotowanie korpusów tekstowych w systemie Inforex Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy marcin.oleksy@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji Obliczeniowej
Wydział Elektrotechniki, Informatyki i Telekomunikacji. Instytut Informatyki i Elektroniki. Instrukcja do zajęć laboratoryjnych
Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Informatyki i Elektroniki Instrukcja do zajęć laboratoryjnych wersja: 1.0 Nr ćwiczenia: 12, 13 Temat: Cel ćwiczenia: Wymagane przygotowanie
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
Co wylicza Jasnopis? Bartosz Broda
Co wylicza Jasnopis? Bartosz Broda Analiza języka polskiego Ekstrakcja tekstu Dokument narzędzie do mierzenia zrozumiałości Analiza morfologiczna Analiza morfosyntaktyczna Indeksy Klasa trudności:
EmotiWord, semantyczne powiązanie i podobieństwo, odległość znaczeniowa
, semantyczne powiązanie i podobieństwo, odległość Projekt przejściowy ARR Politechnika Wrocławska Wydział Elektroniki Wrocław, 22 października 2013 Spis treści 1 językowa 2, kryteria 3 Streszczenie artykułu
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
CLARIN infrastruktura naukowa technologii językowych
CLARIN infrastruktura naukowa technologii językowych Maciej Piasecki Politechnika ska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 maciej.piasecki@pwr.edu.pl Przykład: analiza pojęcia Problem:
Wyszukiwanie informacji w internecie. Nguyen Hung Son
Wyszukiwanie informacji w internecie Nguyen Hung Son Jak znaleźć informację w internecie? Wyszukiwarki internetowe: Potężne machiny wykorzystujące najnowsze metody z różnych dziedzin Architektura: trzy
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
Sprzętowo wspomagane metody klasyfikacji danych
Sprzętowo wspomagane metody klasyfikacji danych Jakub Botwicz Politechnika Warszawska, Instytut Telekomunikacji Plan prezentacji 1. Motywacje oraz cele 2. Problemy klasyfikacji danych 3. Weryfikacja integralności
Inforex - zarządzanie korpusami i ich anotacja. Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Technologii Językowych G4.
Inforex - zarządzanie korpusami i ich anotacja Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy Jan Wieczorek Jan Kocoń marcin.oleksy@pwr.edu.pl jan.wieczorek@pwr.edu.pl jan.kocon@pwr.edu.pl
Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego
Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego Witold Kieraś Łukasz Kobyliński Maciej Ogrodniczuk Instytut Podstaw Informatyki PAN III Konferencja DARIAH-PL Poznań 9.11.2016
Inforex - zarządzanie korpusami i ich anotacja
Inforex - zarządzanie korpusami i ich anotacja Marcin Oleksy marcin.oleksy@pwr.edu.pl Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Technologii
OSA OTWARTY SYSTEM ANTYPLAGIATOWY
OSA OTWARTY SYSTEM ANTYPLAGIATOWY Kontrola antyplagiatowa pisemnych prac na Uniwersytecie Mikołaja Kopernika w Toruniu Mariusz Czerniak Plan prezentacji Informacje o systemie OSA Kontrola wstępnych wersji
CLARIN-PL wielka infrastruktura badawcza technologii językowych dla nauk humanistycznych i społecznych
wielka infrastruktura badawcza technologii językowych dla nauk humanistycznych i społecznych Maciej Piasecki Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Technologii Językowej
Open Access w technologii językowej dla języka polskiego
Open Access w technologii językowej dla języka polskiego Marek Maziarz, Maciej Piasecki Grupa Naukowa Technologii Językowych G4.19 Zakład Sztucznej Inteligencji, Instytut Informatyki, W-8, Politechnika
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Modelowanie Data Mining na wielką skalę z SAS Factory Miner. Paweł Plewka, SAS
Modelowanie Data Mining na wielką skalę z SAS Factory Miner Paweł Plewka, SAS Wstęp SAS Factory Miner Nowe narzędzie do data mining - dostępne od połowy 2015 r. Aktualna wersja - 14.1 Interfejs webowy
Grafika i Systemy Multimedialne (IGM)
Nowa Specjalność na Kierunku Informatyka Informatyka Techniczna (ITN) Grafika i Systemy Multimedialne (IGM) dr inż. Jacek Mazurkiewicz (K-9) Motywacja 2 narastająca potrzeba aktualizacji, modernizacji
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
LEM wydobywanie statystyk z korpusów
LEM wydobywanie statystyk z korpusów Maciej Piasecki, Tomasz Walkowiak Politechnika Wroc awska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej Maryl Instytut Bada Literackich Polska Akademia
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
PODSTAWOWE ANALIZY I WIZUALIZACJA Z WYKORZYSTANIEM MAP W STATISTICA
PODSTAWOWE ANALIZY I WIZUALIZACJA Z WYKORZYSTANIEM MAP W STATISTICA Krzysztof Suwada, StatSoft Polska Sp. z o.o. Wstęp Wiele różnych analiz dotyczy danych opisujących wielkości charakterystyczne bądź silnie
Technologie informacyjne - wykład 12 -
Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski
EXSO-CORE - specyfikacja
EXSO-CORE - specyfikacja System bazowy dla aplikacji EXSO. Elementy tego systemu występują we wszystkich programach EXSO. Może on ponadto stanowić podstawę do opracowania nowych, dedykowanych systemów.
Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne:
WYDOBYWANIE I WYSZUKIWANIE INFORMACJI Z INTERNETU Forma wykład: 30 godzin laboratorium: 30 godzin Główny cel kursu W ramach kursu studenci poznają podstawy stosowanych powszechnie metod wyszukiwania informacji
WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO
Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność
Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1.
Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1. Grażyna Koba MIGRA 2019 Spis treści (propozycja na 2*32 = 64 godziny lekcyjne) Moduł A. Wokół komputera i sieci komputerowych
CLARIN infrastruktura naukowa technologii językowych i jej potencjał jako narzędzia badawczego
CLARIN infrastruktura naukowa technologii językowych i jej potencjał jako narzędzia badawczego Maciej Piasecki Politechnika Wrocławska Instytut Informatyki Grupa Naukowa G4.19 maciej.piasecki@pwr.wroc.pl
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych
Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji
Analiza danych tekstowych i języka naturalnego
Kod szkolenia: Tytuł szkolenia: ANA/TXT Analiza danych tekstowych i języka naturalnego Dni: 3 Opis: Adresaci szkolenia Dane tekstowe stanowią co najmniej 70% wszystkich danych generowanych w systemach
Modelowanie glikemii w procesie insulinoterapii
Dawid Kaliszewski Modelowanie glikemii w procesie insulinoterapii Promotor dr hab. inż. Zenon Gniazdowski Cel pracy Zbudowanie modelu predykcyjnego przyszłych wartości glikemii diabetyka leczonego za pomocą
Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych
Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław
Publikacja w repozytorium i przetwarzanie w systemach DSpace i NextCloud
Publikacja w repozytorium i przetwarzanie w systemach DSpace i NextCloud Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy Jan Wieczorek Jan Kocoń marcin.oleksy@pwr.edu.pl jan.wieczorek@pwr.edu.pl
Sposoby prezentacji problemów w statystyce
S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki
O czym w Sejmie piszczy? Analiza tekstowa przemówień poselskich
O czym w Sejmie piszczy? Analiza tekstowa przemówień poselskich mgr Aleksander Nosarzewski Szkoła Główna Handlowa w Warszawie pod kierunkiem naukowym dr hab. Bogumiła Kamińskiego, prof. SGH Problem Potrzeba
Publikacja w repozytorium i przetwarzanie w systemach DSpace i NextCloud
Publikacja w repozytorium i przetwarzanie w systemach DSpace i NextCloud Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy marcin.oleksy@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
System wspomagania harmonogramowania przedsięwzięć budowlanych
System wspomagania harmonogramowania przedsięwzięć budowlanych Wojciech Bożejko 1 Zdzisław Hejducki 2 Mariusz Uchroński 1 Mieczysław Wodecki 3 1 Instytut Informatyki, Automatyki i Robotyki Politechnika
Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1
Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie
Morfeusz 2 analizator i generator fleksyjny dla języka polskiego
Morfeusz 2 analizator i generator fleksyjny dla języka polskiego Marcin Woliński i Anna Andrzejczuk Zespół Inżynierii Lingwistycznej Instytut Podstaw Informatyki Polskiej Akademii Nauk Warsztaty CLARIN-PL,
STATYSTYKA MATEMATYCZNA
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
SZKOLENIA SAS. ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie
SZKOLENIA SAS ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie DANIEL KUBIK ŁUKASZ LESZEWSKI ROLE ROLE UŻYTKOWNIKÓW MODUŁU
Publikacja w repozytorium i przetwarzanie w systemie DSpace
Publikacja w repozytorium i przetwarzanie w systemie DSpace Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy marcin.oleksy@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji Obliczeniowej
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
CLARIN-PL wielka infrastruktura badawcza technologii j zykowych dla nauk humanistycznych i spo ecznych
wielka infrastruktura badawcza technologii j zykowych dla nauk humanistycznych i spo ecznych Maciej Piasecki Politechnika Wroc awska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Technologii J
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Projekt i implementacja systemu wspomagania planowania w języku Prolog
Projekt i implementacja systemu wspomagania planowania w języku Prolog Kraków, 29 maja 2007 Plan prezentacji 1 Wstęp Czym jest planowanie? Charakterystyka procesu planowania 2 Przeglad istniejacych rozwiazań
2
1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Narzędzia do automatycznej analizy odniesień w tekstach
CLARIN-PL Narzędzia do automatycznej analizy odniesień w tekstach Michał Marcińczuk Jan Kocoń Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl
Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, Spis treści
Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, 2016 Spis treści Przedmowa XI I Podstawy języka Python 1. Wprowadzenie 3 1.1. Język i środowisko
Nazwa wariantu modułu (opcjonalnie): Laboratorium programowania w języku C++
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, poziom pierwszy Sylabus modułu: Laboratorium programowania (0310-CH-S1-019) Nazwa wariantu modułu (opcjonalnie): Laboratorium programowania
Semantyczne podobieństwo stron internetowych
Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Marcin Lamparski Nr albumu: 184198 Praca magisterska na kierunku Informatyka Semantyczne podobieństwo stron internetowych Praca wykonana
Analiza korespondencji
Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P2 KWIECIEŃ 2018 Zadanie 1. (0 1) 9) wyciąga wnioski wynikające z przesłanek
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
WK, FN-1, semestr letni 2010 Tworzenie list frekwencyjnych za pomocą korpusów i programu Poliqarp
WK, FN-1, semestr letni 2010 Tworzenie list frekwencyjnych za pomocą korpusów i programu Poliqarp Natalia Kotsyba, IBI AL UW 24 marca 2010 Plan zajęć Praca domowa na zapytania do Korpusu IPI PAN za pomocą
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
Wykład 10 Skalowanie wielowymiarowe
Wykład 10 Skalowanie wielowymiarowe Wrocław, 30.05.2018r Skalowanie wielowymiarowe (Multidimensional Scaling (MDS)) Główne cele MDS: przedstawienie struktury badanych obiektów przez określenie treści wymiarów
Odniesienie do efektów kształcenia dla obszaru nauk EFEKTY KSZTAŁCENIA Symbol
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział Informatyki i Zarządzania Kierunek studiów INFORMATYKA (INF) Stopień studiów - pierwszy Profil studiów - ogólnoakademicki Projekt v1.0 z 18.02.2015 Odniesienie do
I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE. Nie dotyczy. podstawowy i kierunkowy
1.1.1 Statystyka opisowa I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE STATYSTYKA OPISOWA Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: P6 Wydział Zamiejscowy w Ostrowie Wielkopolskim
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z INFORMATYKI II. Uczeń umie: Świadomie stosować się do zasad regulaminów (P).
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z INFORMATYKI II DZIAŁ I: KOMPUTER W ŻYCIU CZŁOWIEKA. 1. Lekcja organizacyjna. Zapoznanie uczniów z wymaganiami edukacyjnymi i PSP. 2. Przykłady zastosowań komputerów
Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny
Jednolity System Antyplagiatowy. Jak interpretować wynik?
Jednolity System Antyplagiatowy Jak interpretować wynik? 2018 Czym jest JSA? JSA Praca Raport PROMOTOR decyzja TAK/NIE Praca STUDENT Podstawy prawne Prawo o Szkolnictwie Wyższym i Nauce z dnia 20 lipca
Bioinformatyka. Ocena wiarygodności dopasowania sekwencji.
Bioinformatyka Ocena wiarygodności dopasowania sekwencji www.michalbereta.pl Załóżmy, że mamy dwie sekwencje, które chcemy dopasować i dodatkowo ocenić wiarygodność tego dopasowania. Interesujące nas pytanie
Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający
Numeryczna algebra liniowa
Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak podstawowe operacje na wektorach i macierzach, a także rozwiązywanie układów
SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY. Autorzy: M. Lewicka, K. Stańczyk
SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY Autorzy: M. Lewicka, K. Stańczyk Kraków 2008 Cel pracy projekt i implementacja systemu rozpoznawania twarzy, który na podstawie
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Transformacja wiedzy w budowie i eksploatacji maszyn
Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego