WebSty otwarty webowy system do analiz stylometrycznych
|
|
- Zofia Angelika Baran
- 7 lat temu
- Przeglądów:
Transkrypt
1 WebSty otwarty webowy system do analiz stylometrycznych Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Katedra Informatyki Technicznej IJP PAN / UP Kraków maciejeder@gmail.com
2 Stylometria Stylometria: porównanie drobnych cech językowych w korpusie tekstów, którego celem jest wyłonienie podobieństw i różnic pomiędzy tekstami Poszczególne własności języka nie pozwalają na skuteczne porównanie tekstów, ale w większej liczbie owe drobne różnice zaczynają być znaczące Typowe zastosowania: atrybucja autorska (potwierdzenie, ustalenie autorstwa, wykrycie autorów), analiza stylu, cech autora i wybranych cech kontekstu powstania utworu.
3 WebSty- System do stylometrii Idea: połączenie w ramach jednej aplikacji webowej narzędzi do analizy tekstu, analizy stylometrycznej zapewnienie bogatego zestawu cech dla języka polskiego zmniejszenie barier technologicznej i wiedzy dla użytkowników Założenia: cechy opisujące tekst mogą dotyczyć dowolnego poziomu analizy języka ograniczeniem są dostępne narzędzia dla języka polskiego analizowane mogą być zarówno dokumenty jak i fragmenty tekstu grupowanie wizualizacja wyników
4 Schemat systemu 1. Załadowanie korpusu z różnych źródeł 2. Wybór cech opisowych 3. Określenie parametrów przetwarzania przetwarzanie cech, np. transformacja liczba grup 4. Wstępne przetwarzanie automatyczne uruchomienie sekwencji narzędzi językowych 5. Obliczenie wartości cech zliczenie statystyk wystąpienia 6. Filtrowanie i/lub transformacja cech, np. odsianie zbyt rzadkich/częstych cech ważenie cech wyznaczenie miar podobieństwa/odległości między tekstami 7. Grupowanie 8. Identyfikacja cech charakterystycznych grupa vs pozostałe 9. Prezentacja wyników dane liczbowe wizualizacje wkalowanie wielowymiarowe
5 Schemat potoków przetwarzania Any2txt WCRFT2 Liner2 Fextor Document (doc) Any2txt WCRFT2 Liner2 Fextor FeatFilt Cluto Document (docx) Wynik... Any2txt WCRFT2 Liner2 Fextor Document (pdf) FeatSel Wynik z Cluto Wynik Wynik z Cluto MDS Wynik SubFeatSel
6 Architektura rozwiązania Problemy: Różne środowiska programistyczne: Java, C++, Python, R Duże modele Długie czasy przetwarzania Udostępnianie jako aplikacja webowa Język modelowania (LPMN): urlzip( any2txt wcrft2 fextor({"features":"base"}) dir featfilt({"similarity":"jaccard }) cluto({"no_clusters":3}) 6
7 Architektura rozwiązania Samba Worker 1 (Any2txt) Worker 3 (WCRFT2) REST NLPREST2 RabbitMQ Worker 2 (fextor) Worker n (featfilt) Data base LPMN engine Wydajność przetwarzanie asynch. skalowanie synchronizacja po zadaniu zew. baza danych LPMN Engine Wykonanie LPMN model asynchroniczny => 0.01 procesora RabbitMQ 7
8 Cechy dla języka polskiego Poziomy analizy języka Morfologiczny Morfo-syntaktyczny Semantyki leksykalnej Wykorzystywane narzędzia językowe program do segmentacji tekstu i analizy morfologicznej - MACA tager morfosyntaktyczny - WCFRT2 program do rozpoznawania nazw własnych - Liner2
9 Cechy morfologiczne i morfosyntaktyczne Formy wyrazowe Znaki interpunkcyjne Lematy podstawowe formy morfologiczne wyznaczane z pomocą tagera morfosyntaktycznego Części mowy Klasy gramatyczne zgodnie z definicją w Narodowym Korpusie Języka Polskiego klas gramatycznych, np. pseudoimiesłowy (preat), formy nieprzeszłe (fin), przymiotniki przyprzymiotnikowe (adja) wyznaczane przez tager morfosyntaktyczny Sekwencje klas gramatycznych przybliżają do pewnego stopnia konstrukcje składniowe
10 Transformacja i filtrowanie przykład Różne metody oceny istotności cechy dla dokumentu/próbki Łączenie cech różnego typu np. częstości lematów i klas gramatycznych Przykład procesu przetwarzania miara tf.idf 1. obliczenie częstości występowania lematów 2. odrzucenie cech-lematów występujących rzadziej niż n=10 3. normalizacja częstości lematu a, tf(a) = częstość(a) maksymalną częstości w danym dokumencie 4. ważenie idf(a)= ln( liczba dokumentów dokumenty(a) ) 5. wyliczenie wagi dla lematu: tf(a) * idf(a)
11 Wyznaczanie podobieństwa Na wejściu macierz wag Wiersze reprezentują dokument Opcjonalna transformacja Redukcja wymiarowości Np. SVD Wyznaczanie podobieństwa Miary z narzędzia SuperMatrix, np. kosinusowa Odległości z narzędzia Stylo Przeliczanie na podobieństwo Grupowanie Cluto
12 Wykorzystane pakiety: Stylo System opracowany przez Macieja Edera (Uniwersytet Pedagogiczny w Krakowie, Instytut Języka Polskiego PAN) Biblioteka (zestaw funkcji) dla środowiska R Darmowa i na licncji open-source (GPL Zaopatrzona w interfejs graficzny Wyposażona w szereg metod nadzorowanych i nienadzorowanych Prosta w obsłudze, ale nie banalnie prosta
13 ws.clarin-pl.eu/demo2/websty.html
14 WebSty system do stylometrii
15 WebSty system do stylometrii
16 WebSty system do stylometrii
17 WebSty: wydobywanie cech Cel Wydobycie cech charakterystycznych dla danej grupy lub dokumentu (planowane) porównywanie korpusów Schematy przetwarzania Grupa vs pozostałe grupy razem Rozkład cech względem grup Metody Narzędzia: Weka, scipy, scikit-learn Grupy metod Weka (miary informacyjne) Testy statystyczne Drzewa losowe Eliminacja cech i algorytmy supervised
18 WebSty: interfejs do cech
19 Przykład cech Przetwarzanie: WebSty, korpusie 1000 klasycznych dzieł, cechy leksykalne, interpunkcja, bigramy; ważenie PMI, selekcja Mann-Whitney Kraszewski_syn_jazdona_1880 Kraszewski_krakow-za-loktka_1880 Kraszewski_pogrobek_1880 Kraszewski_kunigas_1882 Kraszewski_boleszczyce_1877 Kraszewski_stara-basn-tom-III_1876 Kraszewski_braciazmartwychwstancy_1876 Kraszewski_banita_1885 Kraszewski_strzemienczyk_1883 Kraszewski_stara-basn-tom-I_1876 Kraszewski_bialy-ksiaze_1882 Kraszewski_jelita_1881 Kraszewski_caprea-i-roma_1860 Kraszewski_stara-basn-tom-II_1876 Stryjkowski_stryjkowski_kronika-polskalitewska-zmudzka-i-wszystkiej-rusi_1846 bigrams:inf_imps bigrams:inf_praet bigrams:ppron3_pcon bigrams:ppas_pcon bigrams:imps_interp bigrams:ppron3_pant bigrams:pant_interp lex_classes:imps_count bigrams:subst_pant bigrams:interj_inf base:wszyscy bigrams:siebie_pcon base:on base:choć base:gdy bigrams:praet_pant bigrams:ppron3_imps bigrams:adj_pant bigrams:pant_pact
20 Dziękuję bardzo za uwagę
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wroc awska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl
Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2
Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2 ws.clarin-pl.eu/websty.shtml Tomasz Walkowiak, Maciej Piasecki Politechnika Wrocławska Grupa Naukowa G4.19 Katedra Inteligencji Obliczeniowej
WebSty - otwarty sieciowy system do analizy stylometrycznej i semantycznej tekstów
IJP PAN / UP Kraków maciejeder@gmail.com WebSty - otwarty sieciowy system do analizy stylometrycznej i semantycznej tekstów ws.clarin-pl.eu/websty.shtml Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika
Centrum Technologii Językowych: repozytorium zasobów językowych i podstawowe usługi
CLARIN-PL Centrum Technologii Językowych: repozytorium zasobów językowych i podstawowe usługi Marcin Pol, Tomasz Walkowiak Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19
System do klasyfikacji tekstu i analizy stylometrycznej
System do klasyfikacji tekstu i analizy stylometrycznej Maciej Eder, Maciej Piasecki IJP PAN / UP Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 maciejeder@gmail.com maciej.piasecki@pwr.edu.pl
Repozytorium Centrum Technologii Językowych: deponowanie i upowszechnianie zasobów i narzędzi językowych, gromadzenie korpusów tekstowych
CLARIN-PL Repozytorium Centrum Technologii Językowych: deponowanie i upowszechnianie zasobów i narzędzi językowych, gromadzenie korpusów tekstowych Marcin Pol, Tomasz Walkowiak, Marcin Oleksy Politechnika
Centrum Technologii Językowych CLARIN- PL: deponowanie i upowszechnianie zasobów oraz narzędzi językowych dla języka polskiego
Centrum Technologii Językowych CLARIN- PL: deponowanie i upowszechnianie zasobów oraz narzędzi językowych dla języka polskiego Maciej Piasecki, Tomasz Walkowiak Politechnika ska Katedra Inteligencji Obliczeniowej
Narzędzia do automatycznego wydobywania kolokacji
Narzędzia do automatycznego wydobywania kolokacji Jan Kocoń, Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji Obliczeniowej marek.maziarz@pwr.edu.pl
Narzędzia do automatycznego wydobywania kolokacji
Narzędzia do automatycznego wydobywania kolokacji Jan Kocoń, Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji Obliczeniowej marek.maziarz@pwr.edu.pl
Analiza listów pożegnalnych w oparciu o metody lingwistyki informatycznej i klasyfikacji semantycznej tekstów
Analiza listów pożegnalnych w oparciu o metody lingwistyki informatycznej i klasyfikacji semantycznej tekstów Maciej Piasecki, Jan Kocoń Politechnika Wrocławska Katedra InteligencjiObliczeniowej Grupa
Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych
Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra
Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur
Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur Maciej Piasecki, Paweł Kędzia Politechnika ska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Plan prezentacji
CLARIN rozproszony system technologii językowych dla różnych języków europejskich
CLARIN rozproszony system technologii językowych dla różnych języków europejskich Maciej Piasecki Politechnika Wrocławska Instytut Informatyki G4.19 Research Group maciej.piasecki@pwr.wroc.pl Projekt CLARIN
Mapa Literacka analiza odniesień geograficznych w tekstach literackich
CLARIN-PL Mapa Literacka analiza odniesień geograficznych w tekstach literackich Michał Marcińczuk Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl
Program warsztatów CLARIN-PL
W ramach Letniej Szkoły Humanistyki Cyfrowej odbędzie się III cykl wykładów i warsztatów CLARIN-PL w praktyce badawczej. Narzędzia cyfrowe do analizy języka w naukach humanistycznych i społecznych 17-19
CLARIN infrastruktura naukowa technologii językowych
CLARIN infrastruktura naukowa technologii językowych Maciej Piasecki Politechnika ska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 maciej.piasecki@pwr.edu.pl Przykład: analiza pojęcia Problem:
Grafika i Systemy Multimedialne (IGM)
Nowa Specjalność na Kierunku Informatyka Informatyka Techniczna (ITN) Grafika i Systemy Multimedialne (IGM) dr inż. Jacek Mazurkiewicz (K-9) Motywacja 2 narastająca potrzeba aktualizacji, modernizacji
Open Access w technologii językowej dla języka polskiego
Open Access w technologii językowej dla języka polskiego Marek Maziarz, Maciej Piasecki Grupa Naukowa Technologii Językowych G4.19 Zakład Sztucznej Inteligencji, Instytut Informatyki, W-8, Politechnika
Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego
Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego Witold Kieraś Łukasz Kobyliński Maciej Ogrodniczuk Instytut Podstaw Informatyki PAN III Konferencja DARIAH-PL Poznań 9.11.2016
Narzędzia do automatycznej analizy odniesień w tekstach
CLARIN-PL Narzędzia do automatycznej analizy odniesień w tekstach Michał Marcińczuk Jan Kocoń Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl
Co wylicza Jasnopis? Bartosz Broda
Co wylicza Jasnopis? Bartosz Broda Analiza języka polskiego Ekstrakcja tekstu Dokument narzędzie do mierzenia zrozumiałości Analiza morfologiczna Analiza morfosyntaktyczna Indeksy Klasa trudności:
AUTOMATYKA INFORMATYKA
AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów
Włodzimierz Gruszczyński * Maciej Ogrodniczuk ** Marcin Woliński ** *IJP PAN **IPI PAN
Włodzimierz Gruszczyński * Maciej Ogrodniczuk ** Marcin Woliński ** *IJP PAN **IPI PAN Wystąpienie przygotowane w ramach projektu Elektroniczny korpus tekstów polskich z XVII i XVIII w. (do roku 1772)
SZKOLENIA SAS. ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie
SZKOLENIA SAS ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie DANIEL KUBIK ŁUKASZ LESZEWSKI ROLE ROLE UŻYTKOWNIKÓW MODUŁU
LEM wydobywanie statystyk z korpusów
LEM wydobywanie statystyk z korpusów Maciej Piasecki, Tomasz Walkowiak Politechnika Wroc awska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej Maryl Instytut Bada Literackich Polska Akademia
Inforex - zarządzanie korpusami i ich anotacja
Inforex - zarządzanie korpusami i ich anotacja Marcin Oleksy marcin.oleksy@pwr.edu.pl Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Technologii
Morfeusz 2 analizator i generator fleksyjny dla języka polskiego
Morfeusz 2 analizator i generator fleksyjny dla języka polskiego Marcin Woliński i Anna Andrzejczuk Zespół Inżynierii Lingwistycznej Instytut Podstaw Informatyki Polskiej Akademii Nauk Warsztaty CLARIN-PL,
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Zarządzanie i anotowanie korpusów tekstowych w systemie Inforex
Zarządzanie i anotowanie korpusów tekstowych w systemie Inforex Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy marcin.oleksy@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji Obliczeniowej
INŻYNIERIA OPROGRAMOWANIA
INSTYTUT INFORMATYKI STOSOWANEJ 2013 INŻYNIERIA OPROGRAMOWANIA Inżynieria Oprogramowania Proces ukierunkowany na wytworzenie oprogramowania Jak? Kto? Kiedy? Co? W jaki sposób? Metodyka Zespół Narzędzia
Projekt i implementacja systemu wspomagania planowania w języku Prolog
Projekt i implementacja systemu wspomagania planowania w języku Prolog Kraków, 29 maja 2007 Plan prezentacji 1 Wstęp Czym jest planowanie? Charakterystyka procesu planowania 2 Przeglad istniejacych rozwiazań
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Grafika i Systemy Multimedialne (IGM)
Nowa Specjalność na Kierunku Informatyka Informatyka Techniczna (ITN) Grafika i Systemy Multimedialne (IGM) dr inż. Jacek Mazurkiewicz (K-9) Motywacja 2 narastająca potrzeba aktualizacji, modernizacji
Kurs Chemometrii Poznań 28 listopad 2006
Komisja Nauk Chemicznych Polskiej Akademii Nauk Oddział w Poznaniu Wydział Technologii Chemicznej Politechniki Poznańskiej w Poznaniu GlaxoSmithKline Pharmaceuticals S.A. w Poznaniu Stowarzyszenie ISPE
Inforex - zarządzanie korpusami i ich anotacja. Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Technologii Językowych G4.
Inforex - zarządzanie korpusami i ich anotacja Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy Jan Wieczorek Jan Kocoń marcin.oleksy@pwr.edu.pl jan.wieczorek@pwr.edu.pl jan.kocon@pwr.edu.pl
OpenAI Gym. Adam Szczepaniak, Kamil Walkowiak
OpenAI Gym Adam Szczepaniak, Kamil Walkowiak Plan prezentacji Programowanie agentowe Uczenie przez wzmacnianie i problemy związane z rozwojem algorytmów Charakterystyka OpenAI Gym Biblioteka gym Podsumowanie
CLARIN-PL wielka infrastruktura badawcza technologii j zykowych dla nauk humanistycznych i spo ecznych
wielka infrastruktura badawcza technologii j zykowych dla nauk humanistycznych i spo ecznych Maciej Piasecki Politechnika Wroc awska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Technologii J
Technologie informacyjne - wykład 12 -
Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski
HURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego
Metody Analiz Przestrzennych Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego mgr Marcin Semczuk Zakład Przedsiębiorczości i Gospodarki Przestrzennej Instytut
dr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych
- Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 14 listopada 2011 roku 1 - - 2 3 4 5 - The purpose of computing is insight, not numbers Richard Hamming Motywacja - Mamy informację,
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY
Kontekstowe modele efektywności nauczania po I etapie edukacyjnym
Kontekstowe modele efektywności nauczania po I etapie edukacyjnym Aleksandra Jasińska (a.jasinska@ibe.edu.pl) Instytut Badań Edukacyjnych ul. Górczewska 8 01-180 Warszawa Czy dobrze uczymy? Metody oceny
WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO
Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność
Narzędzia do automatycznej analizy odniesień w tekstach
CLARIN-PL Narzędzia do automatycznej analizy odniesień w tekstach Michał Marcińczuk Jan Kocoń Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl
ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia
ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych
Odniesienie do efektów kształcenia dla obszaru nauk EFEKTY KSZTAŁCENIA Symbol
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział Informatyki i Zarządzania Kierunek studiów INFORMATYKA (INF) Stopień studiów - pierwszy Profil studiów - ogólnoakademicki Projekt v1.0 z 18.02.2015 Odniesienie do
Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3)
Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna
System wspomagania harmonogramowania przedsięwzięć budowlanych
System wspomagania harmonogramowania przedsięwzięć budowlanych Wojciech Bożejko 1 Zdzisław Hejducki 2 Mariusz Uchroński 1 Mieczysław Wodecki 3 1 Instytut Informatyki, Automatyki i Robotyki Politechnika
Automatyzacja procesu tworzenia i zarządzania Wirtualnymi Organizacjami w oparciu o wiedzę w zastosowaniu do architektur zorientowanych na usługi
IT-SOA Automatyzacja procesu tworzenia i zarządzania Wirtualnymi Organizacjami w oparciu o wiedzę w zastosowaniu do architektur zorientowanych na usługi Dariusz Król, W. Funika, B. Kryza, R. Słota, J.
SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Wyszukiwanie informacji w internecie. Nguyen Hung Son
Wyszukiwanie informacji w internecie Nguyen Hung Son Jak znaleźć informację w internecie? Wyszukiwarki internetowe: Potężne machiny wykorzystujące najnowsze metody z różnych dziedzin Architektura: trzy
Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych
dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo
Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych
Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
Sprzętowo wspomagane metody klasyfikacji danych
Sprzętowo wspomagane metody klasyfikacji danych Jakub Botwicz Politechnika Warszawska, Instytut Telekomunikacji Plan prezentacji 1. Motywacje oraz cele 2. Problemy klasyfikacji danych 3. Weryfikacja integralności
Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym
POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?
INŻYNIERIA OPROGRAMOWANIA
INSTYTUT INFORMATYKI STOSOWANEJ 2014 Nowy blok obieralny! Testowanie i zapewnianie jakości oprogramowania INŻYNIERIA OPROGRAMOWANIA Inżynieria Oprogramowania Proces ukierunkowany na wytworzenie oprogramowania
Techniki uczenia maszynowego nazwa przedmiotu SYLABUS
Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów
CLARIN infrastruktura naukowa technologii językowych i jej potencjał jako narzędzia badawczego
CLARIN infrastruktura naukowa technologii językowych i jej potencjał jako narzędzia badawczego Maciej Piasecki Politechnika Wrocławska Instytut Informatyki Grupa Naukowa G4.19 maciej.piasecki@pwr.wroc.pl
Kryteria ocen z języka polskiego dla klasy V szkoły podstawowej
Kryteria ocen z języka polskiego dla klasy V szkoły podstawowej 1. Kształcenie literackie i kulturalne: Ocena dopuszczająca- uczeń: - poprawnie czyta i wygłasza tekst poetycki - wyodrębnia elementy świata
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska
Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska Podstawowe architektury sieci neuronowych Generowanie sztucznych danych Jak się nie przemęczyć Korzystanie z istniejących wag Zamrażanie
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych
Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
PROJEKT Z BAZ DANYCH
POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PROJEKT Z BAZ DANYCH System bazodanowy wspomagający obsługę sklepu internetowego AUTOR: Adam Kowalski PROWADZĄCY ZAJĘCIA: Dr inż. Robert Wójcik, W4/K-9 Indeks:
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
Dostawa oprogramowania. Nr sprawy: ZP /15
........ (pieczątka adresowa Oferenta) Zamawiający: Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu, ul. Staszica,33-300 Nowy Sącz. Strona: z 5 Arkusz kalkulacyjny określający minimalne parametry techniczne
Kurs wybieralny: Zastosowanie technik informatycznych i metod numerycznych w elektronice
Kurs wybieralny: Zastosowanie technik informatycznych i metod numerycznych w elektronice Opis kursu Przygotowanie praktyczne do realizacji projektów w elektronice z zastosowaniem podstawowych narzędzi
DZIAŁANIA NAPRAWCZE SPOSOBY REALIZACJI. KIEDY JAK CZĘSTO Dyskusja omawianie tekstów z podręcznika. Analiza i ocena postępowania bohaterów lektur.
KLASA VI A Przedstawianie cech i własności elementów Wykorzystywanie w sytuacji praktycznej własności liczb. Dyskusja omawianie tekstów z podręcznika. Analiza i ocena postępowania bohaterów lektur. język
Nadzorowanie stanu serwerów i ich wykorzystania przez użytkowników
Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Wydział Fizyki, Astronomii i Informatyki Stosowanej Tomasz Kapelak Nr albumu: 187404 Praca magisterska na kierunku Informatyka
Modelowanie Data Mining na wielką skalę z SAS Factory Miner. Paweł Plewka, SAS
Modelowanie Data Mining na wielką skalę z SAS Factory Miner Paweł Plewka, SAS Wstęp SAS Factory Miner Nowe narzędzie do data mining - dostępne od połowy 2015 r. Aktualna wersja - 14.1 Interfejs webowy
r. rok szkolny 2012/2013
04.04.2013r. rok szkolny 2012/2013 Do sprawdzianu po szkole podstawowej przystąpiło 71 uczniów. Wszyscy uczniowie pisali sprawdzian w wersji standardowej. Struktura arkusza sprawdzającego umiejętności
Wielowymiarowa analiza regionalnego zróżnicowania rolnictwa w Polsce
Wielowymiarowa analiza regionalnego zróżnicowania rolnictwa w Polsce Mgr inż. Agata Binderman Dzienne Studia Doktoranckie przy Wydziale Ekonomiczno-Rolniczym Katedra Ekonometrii i Informatyki SGGW Opiekun
Tematy prac dyplomowych inżynierskich
inżynierskich Oferujemy możliwość realizowania poniższych tematów w ramach projektu realizowanego ze środków Narodowego Centrum Badań i Rozwoju. Najlepszym umożliwimy realizację pracy dyplomowej w połączeniu
Symulacja obliczeń kwantowych
Model kwantowych bramek logicznych w NumPy Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 10 października 2007 Plan prezentacji 1 Python
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 ZĘŚĆ 1. JĘZYK POLSKI ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P7 KWIEIEŃ 2018 Zadanie 1. (0 1) 9) wyciąga wnioski wynikające z przesłanek zawartych
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P7 KWIECIEŃ 2016 Zadanie 1. (0 1) 9) wyciąga wnioski wynikające z przesłanek
Jarosław Żeliński analityk biznesowy, projektant systemów
Czy chmura może być bezpiecznym backupem? Ryzyka systemowe i prawne. Jarosław Żeliński analityk biznesowy, projektant systemów Agenda Definicja usługi backup i cloud computing Architektura systemu z backupem
Wydział Elektrotechniki, Informatyki i Telekomunikacji. Instytut Informatyki i Elektroniki. Instrukcja do zajęć laboratoryjnych
Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Informatyki i Elektroniki Instrukcja do zajęć laboratoryjnych wersja: 1.0 Nr ćwiczenia: 12, 13 Temat: Cel ćwiczenia: Wymagane przygotowanie
EXSO-CORE - specyfikacja
EXSO-CORE - specyfikacja System bazowy dla aplikacji EXSO. Elementy tego systemu występują we wszystkich programach EXSO. Może on ponadto stanowić podstawę do opracowania nowych, dedykowanych systemów.
Symulacyjne metody wyceny opcji amerykańskich
Metody wyceny Piotr Małecki promotor: dr hab. Rafał Weron Instytut Matematyki i Informatyki Politechniki Wrocławskiej Wrocław, 0 lipca 009 Metody wyceny Drzewko S 0 S t S t S 3 t S t St St 3 S t St St
STATYSTYKA MATEMATYCZNA
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz
Obliczenia równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 15 czerwca 2001 Spis treści Przedmowa............................................
I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE. Nie dotyczy. podstawowy i kierunkowy
1.1.1 Statystyka opisowa I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE STATYSTYKA OPISOWA Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: P6 Wydział Zamiejscowy w Ostrowie Wielkopolskim
PROGRAM SEMINARIUM ZAKOPANE 2011. czwartek, 1 grudnia 2011 r. Sesja przedpołudniowa
czwartek, 1 grudnia 2011 r. Sesja przedpołudniowa 9.30 9.40: 9.40 10.10: 10.10 10.40: 10.40 11.00: Otwarcie seminarium Prof. dr hab. inż. Tadeusz Czachórski prof. dr hab. inż. Robert Schaeffer, prezentacja:
CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w pracy humanistów i tłumaczy
Cykl wykładów i warsztatów CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w pracy humanistów i tłumaczy 13 15 kwietnia 2015 roku Warszawa, Pałac Staszica, ul. Nowy Świat 72, sala 144
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
Zagadnienia egzaminacyjne INFORMATYKA. stacjonarne. I-go stopnia. (INT) Inżynieria internetowa STOPIEŃ STUDIÓW TYP STUDIÓW SPECJALNOŚĆ
(INT) Inżynieria internetowa 1.Tryby komunikacji między procesami w standardzie Message Passing Interface. 2. HTML DOM i XHTML cel i charakterystyka. 3. Asynchroniczna komunikacja serwerem HTTP w technologii
Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe.
Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe. Autor: Mariusz Sasko Promotor: dr Adrian Horzyk Plan prezentacji 1. Wstęp 2. Cele pracy 3. Rozwiązanie 3.1. Robot
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo