System do klasyfikacji tekstu i analizy stylometrycznej
|
|
- Bartosz Szulc
- 8 lat temu
- Przeglądów:
Transkrypt
1 System do klasyfikacji tekstu i analizy stylometrycznej Maciej Eder, Maciej Piasecki IJP PAN / UP Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 maciejeder@gmail.com maciej.piasecki@pwr.edu.pl
2 Stylometria Warsztaty stylometria: porównanie drobnych cech językowych w korpusie testków, którego celem jest wyłonienie podobieństw i różnic pomiędzy tekstami poszczególne własności języka nie pozwalają na skuteczne porównanie tektsów, ale w większej liczbie owe drobne różnice zaczynają być znaczące największe nadzieje stylometria wiąże z atrybucją autorską
3 Atrybucja autorska Warsztaty Jeśli mamy: tekst o nieznanym autorstwie korpus porównawczy zawierający teksty znanych autorów to czy można wśród nich odnaleźć najbliższego sąsiada, czyli tekst najbardziej podobny spośród dostępnych w korpusie? Gdzie można szukać stylistycznego odcisku palca : słowa synsemantyczne, najczęstsze słowa, pary słów, częste sekwencje literowe...
4 Mierzalne cechy stylu Warsztaty Idea stylistycznego odcisku palca cechy języka niedostrzegalne gołym okiem poza kontrolą autora (nieświadome) odporne na imitację, parodię itp. chętnie wybierany znacznik: częstości najczęstszych słów inne cechy: np. n-gramy klas gramatycznych Czy styl jest jednoznacznie zależny od autora? (por. kod DNA, odcisk palca, wzór na źrenicy,...)
5 Różne znaczniki stylu (cechy) Warsztaty Dawnymi czasy Niechcicowie żyli mniej więcej tak, jak żyją wszyscy po dworach na wsi. formy gramatyczne: dawnymi czasy niechcicowie żyli mniej... bi-gramy form gramatycznych: dawnymi czasy czasy niechcicowie niechcicowie żyli... lemmaty: dawny czas niechcic żyć mniej więcej... tri-gramy klas gramatycznych: ADJ NN Pers NN Pers VB Pers VB ADV... i wiele, wiele innych możliwych cech
6 Różne znaczniki stylu (cechy) Warsztaty It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife. (J. Austen, Pride and Prejudice) the = 4.25% in = 3.45% of = 1.81%...
7 Metody wielowymiarowe Warsztaty
8 Kim jest Gall Anonim? Warsztaty
9 Kim jest Gall Anonim? Warsztaty
10 Nie tylko atrybucja... Warsztaty
11 Zmiana w języku (100 MFW) Warsztaty
12 Zmiana w języku (2-gramy POS) Warsztaty
13 Zmiana w języku (5000 MFW) Warsztaty
14 Analiza sekwencyjna Warsztaty
15 Biblia królowej Zofii (ok r.) Warsztaty
16 Patrologia Latina (5,281 tekstów) Warsztaty
17 Wyzwania Warsztaty Mierzenie relacji tekstowych w dużych korpusach Wyciąganie znaczników stylu, które nie polegają na zwykłym pocięciu tekstu na szeregi n liter: Przetwarzanie Języka Naturalnego (NLP): konieczność użycia dodatkowych narzędzi
18 Cyklotron (1937 r.) Warsztaty
19 Wielki Zderzacz Hadronów Warsztaty
20 System do stylometrii i klasyfikacji Warsztaty Idea: połączenie w ramach jednej aplikacji webowej systemu Stylo do stylometrii i narzędzi do analizy tekstu oraz klasyfikacji zapewnienie bogatego zestawu cech dla języka polskiego uwolnienie użytkownika z potrzeby instalowania Założenia: cechy opisujące tekst mogą dotyczyć dowolnego poziomu analizy języka ograniczeniem są dostępne narzędzia dla języka polskiego analizowane mogą być zarówno dokumenty jak i fragmenty tekstu tryby: grupowania i klasyfikacji
21 Schemat systemu 1. Załadowanie korpusu opis nazwami meta-danymi na różnych poziomach 2. Wybór cech opisowych 3. Określenie parametrów przetwarzania grupowanie lub klasyfikacja przetwarzanie cech, np. transformacja 4. Wstępne przetwarzanie automatyczne uruchomienie sekwencji narzędzi językowych 5. Obliczenie wartości cech zliczenie statystyk wystąpienia 6. Filtrowanie i/lub transformacja cech, np. odsianie zbyt rzadkich/ częstych cech wyliczenie miar istotności na podstawie częstości 7. Zasadnicze przetwarzanie albo grupowanie albo klasyfikacja 8. Prezentacja wyników wizualizacje dane liczbowe Warsztaty
22 Schemat systemu Warsztaty Any2txt WCRFT2 Liner2 Dokument (doc) okument (docx) Any2txt WCRFT2 Liner2... Fextor Cluto Diagram (PNG) Dokument (pdf) Any2txt WCRFT2 Liner2 Przykładowy przebieg przetwarzania równoległego zbioru dokumentów
23 Cechy dla języka polskiego Warsztaty Poziomy analizy języka Morfologiczny Morfo-syntaktyczny Semantyki leksykalnej Wykorzystywane narzędzia językowe program do segmentacji tekstu i analizy morfologicznej - MACA tager morfosyntaktyczny - WCFRT2 program do rozpoznawania nazw własnych - Liner2 program do ujednoznaczniania sensów słów - WoSeDon
24 Cechy morfologiczne Warsztaty Długość: dokumentu, akapitu, zdania Formy wyrazowe Znaki interpunkcyjne Pseudo-sufiksy ostatnie kilka liter Dowolne tokeny wyrazowe Lematy podstawowe formy morfologiczne wyznaczane z pomocą tagera morfosyntaktycznego Sekwencje n elementowe wyrazowych tokenów lematów dwuelementowe tzw. bigramy trzyelementowe tzw. trigramy
25 Cechy morfosyntaktyczne Warsztaty Części mowy wyznaczane na podstawie rozpoznania klas gramtycznych Klasy gramatyczne zgodnie z definicją w Narodowym Korpusie Języka Polskiego klas gramatycznych, np. pseudoimiesłowy (preat), formy nieprzeszłe (fin), przymiotniki przyprzymiotnikowe (adja) wyznaczane przez tager morfosyntaktyczny Połączenie klas i wartości kategorii gramatycznych np. czasowniki w osobie 1 lub 2 Sekwencje klas gramatycznych przybliżają do pewnego stopnia konstrukcje składniowe
26 Cechy semantyczne Warsztaty Znaczenia leksykalne (sensy słów) wyznaczane względem Słowosieci identyfikatory wyznaczonych synsetów Uogólnione znaczenia leksykalne hiperonimy wyznaczonych synsetów poziom hiperonimu decyduje o stopniu uogólnienia Pojęcia ze sformalizowanej ontologii SUMO Suggested Upper Merged Ontology Dziedziny tematycznie ze zbioru WordNet Domains pola tematyczne wyznaczone w sposób automatyczny
27 Transformacja i filtrowanie przykład Warsztaty Łączenie cech różnego typu np. częstości lematów i klas gramatycznych Przykład procesu przetwarzania nazwa: tf.idf transformacja ukierunkowana na opis semantyczny 1. obliczenie częstości występowania lematów 2. odrzucenie cech-lematów występujących rzadziej niż n=10 3. normalizacja częstości lematu a, tf(a) = częstość(a) maksymalną częstości w danym dokumencie 4. ważenie idf(a)= ln( liczba dokumentów dokumenty(a) ) 5. wyliczenie wagi dla lematu: tf(a) * idf(a)
28 Stylo Warsztaty biblioteka (zestaw funkcji) dla środowiska R darmowa i na licncji open-source (GPL) zaopatrzona w interfejs graficzny wyposażona w szereg metod nadzorowanych i nienadzorowanych prosta w obsłudze, ale nie banalnie prosta
29 Domyślne GUI w stylo Warsztaty
30 Wystarczy kilka(naście) tekstów Warsztaty
31 Stylo jako serwis on-line Warsztaty
32 Grupowanie oparte na Cluto Warsztaty System oparty na Cluto uniwersalny system do grupowania obiektów reprezentowanych jako wektory liczbowe często używany do grupowania tekstów Metody grupowania aglomeracyjna (hierarchiczna) budowana jest hierarchia co raz większych grup poczynając od dwuelementowych płaska zbiór jest dzielony na n grup, gdzie n jest zadane z góry aglomeracyjno-płaska najpierw wyznaczany jest podział na n grup później grupy te łączone są w hierarchię
33 System oparty na Cluto Warsztaty Miary podobieństwa kosinusowa kosinus kąta pomiędzy wektorami cech zależy od stosunku wartości cech, a nie ich bezwzględnych wartości schemat tf.idf do transformacji cech oparta na współczynniku korelacji euklidesowa odległość pomiędzy wektorami cech Jaccarda stosunek wspólnej części cech do sumy Dalsze możliwości rozszerzania opisu tekstu szerszy zbiór nazw własnych relacje leksykalno-syntaktyczne, np. modyfikowany_przez(mądry) struktury leksykalno-składniowe lub leksykalno-semantyczne
34 Klasyfikacja semantyczna Warsztaty Cel klasyfikacji: przypisanie do dokumentów tekstowych lub fragmentów tekstów klas semantycznych klasy są zdefiniowane przez użytkownika Rodzaje systemów klasyfikacji nienadzorowane: klasy są zdefiniowane opisowo program klasyfikatora jest konstruowany i dostrajany na podstawie dużej ilości danych nadzorowane klasy są zadana w postaci ręcznie anotowanych dokumentów lub fragmentów tekstu
35 Proces budowy klasyfikatora Warsztaty 1. Identyfikacja źródeł 2. Pozyskanie korpusu tekstów 3. Wstępne przetwarzanie korpusu 4. Ręczna anotacja podkorpusu treningowo-testowego 5. Automatyczna anotacja korpusu 6. Analiza i udostępnienie anotowanego korpusu * Przyrostowa automatyczna anotacja: powtarzanie etapów 4-6
36 Przykład: Cindirela klasyfikacja listów pożegnalnych Warsztaty 1) Identyfikacja źródeł Cel: rozróżnianie pomiędzy prawdziwymi listami pożegnalnymi i listami napisanymi jako próba oszustwa określenie cech lingwistycznych listów prawdziwych rozpoznawanie tekstów jako wykazujących cechy listu pożegnalnego 2) Pozyskanie korpusu tekstów Polski Korpus Listów Pożegnalnych (Zaśko-Zielińska,2013) około 1000 listów prawdziwych i 320 listów sfałszowanych lub udawanych Teksty zebrane z internetu: dowolne oraz takie, które mają charakter listu, ale nie są listami pożegnalnymi
37 Przykład: Cindirela klasyfikacja listów pożegnalnych Warsztaty 3) Wstępne przetwarzanie korpusu Wykorzystanie wyników ręcznej transkrypcji i korekty tekstów (inaczej byłoby zbyt łatwo) Tager morfo-syntaktyczny WCRFT Rozpoznawanie nazw własnych Liner2 Ujednoznacznienie sensów słów i rzutowanie na ontologię WoSeDon 4) Ręczna anotacja podkorpusu treningowo-testowego dwie klasy: prawdziwe listy pożegnalne teksty, które nie są prawdziwymi listami pożegnalnymi
38 Cindirela wyniki eksperymentu 1 (klasyfikator SVM(RBF)) Warsztaty Cechy: Rezultat interp_per_sentence, interp_signs, avg_num, avg_verbs, avg_nouns avg_adjps avg_adverbs avg_interps avg_tok_count proper_nam_person_last proper_nam_person_first proper_nam_roads proper_nam_country proper_nam_city big_letter verb_per ppron12_per base TP: 982 FN: 272 FP: 168 TN: 3218 Accuracy: (TP+TN) / (TP+TN+FP+FN) = 90,52% Precision: TP / (TP+FP) = 85,39% TN / (TN+FN) = 92,21% Sensitivity: TP / (TP+FN) = 78,31% Specificity: TN / (TN+FP) = 95,04%
39 Cindirela wyniki eksperymentu 1 Warsztaty Rozkład decyzji pomiędzy klasami Forumowisko psychologia 'false': 601, 'true': 15 Forumowisko inne 'false': 1026, 'true': 11 Bryk 'false': 333, 'true': 21 Wikipedia 'false': 997, 'true': 1 Blog czytamwwannie 'false': 42, 'true': 2 sfałszowane listy 'false': 219, 'true': 118 prawdziwe listy 'true': 982, 'false': 272
40 Cindirela wyniki eksperymentu 2: Warsztaty Dodatkowe cechy: synsety i hiperonimy ze Słowosieci Poprawa dokładności rozpoznania Przykład cech znaczących verb_per ppron12_per avg_verbs interp_signs:dash big_letter interp_signs:fullstop interp_signs:comma avg_nouns interp_signs:question_mark avg_adverbs hypernym5:czasownik_- _STAN_NDK_oznaczający_stan_ emocjonalny-1(cst) hypernym5:czuć-2(cczuj) odczuwać-1(cczuj) avg_num hypernym5:mój-1(jak) synset:mój-1(jak) hypernym5:być-3(cst) avg_interps synset:kochanie-2(os) synset:kochanie-1(czy) obdarzanie_uczuciem-1(czy) darzenie_uczuciem-2(czy) darzenie_miłością-1(czy) obdarzanie_miłością-1(czy)
41 Dziękuję bardzo za uwagę
WebSty otwarty webowy system do analiz stylometrycznych
WebSty otwarty webowy system do analiz stylometrycznych Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 maciej.piasecki@pwr.edu.pl
Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2
Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2 ws.clarin-pl.eu/websty.shtml Tomasz Walkowiak, Maciej Piasecki Politechnika Wrocławska Grupa Naukowa G4.19 Katedra Inteligencji Obliczeniowej
WebSty - otwarty sieciowy system do analizy stylometrycznej i semantycznej tekstów
IJP PAN / UP Kraków maciejeder@gmail.com WebSty - otwarty sieciowy system do analizy stylometrycznej i semantycznej tekstów ws.clarin-pl.eu/websty.shtml Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wroc awska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu
WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl
Analiza listów pożegnalnych w oparciu o metody lingwistyki informatycznej i klasyfikacji semantycznej tekstów
Analiza listów pożegnalnych w oparciu o metody lingwistyki informatycznej i klasyfikacji semantycznej tekstów Maciej Piasecki, Jan Kocoń Politechnika Wrocławska Katedra InteligencjiObliczeniowej Grupa
CLARIN rozproszony system technologii językowych dla różnych języków europejskich
CLARIN rozproszony system technologii językowych dla różnych języków europejskich Maciej Piasecki Politechnika Wrocławska Instytut Informatyki G4.19 Research Group maciej.piasecki@pwr.wroc.pl Projekt CLARIN
Zarządzanie i anotowanie korpusów tekstowych w systemie Inforex
Zarządzanie i anotowanie korpusów tekstowych w systemie Inforex Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy marcin.oleksy@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji Obliczeniowej
Narzędzia do automatycznego wydobywania kolokacji
Narzędzia do automatycznego wydobywania kolokacji Jan Kocoń, Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji Obliczeniowej marek.maziarz@pwr.edu.pl
Narzędzia do automatycznego wydobywania kolokacji
Narzędzia do automatycznego wydobywania kolokacji Jan Kocoń, Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji Obliczeniowej marek.maziarz@pwr.edu.pl
Program warsztatów CLARIN-PL
W ramach Letniej Szkoły Humanistyki Cyfrowej odbędzie się III cykl wykładów i warsztatów CLARIN-PL w praktyce badawczej. Narzędzia cyfrowe do analizy języka w naukach humanistycznych i społecznych 17-19
Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur
Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur Maciej Piasecki, Paweł Kędzia Politechnika ska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Plan prezentacji
Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych
Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra
Inforex - zarządzanie korpusami i ich anotacja
Inforex - zarządzanie korpusami i ich anotacja Marcin Oleksy marcin.oleksy@pwr.edu.pl Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Technologii
Inforex - zarządzanie korpusami i ich anotacja. Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Technologii Językowych G4.
Inforex - zarządzanie korpusami i ich anotacja Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy Jan Wieczorek Jan Kocoń marcin.oleksy@pwr.edu.pl jan.wieczorek@pwr.edu.pl jan.kocon@pwr.edu.pl
KPWr (otwarty korpus języka polskiego o wielowarstwowej anotacji) Inforex (system do budowania, anotowania i przeszukiwania korpusów)
KPWr (otwarty korpus języka polskiego o wielowarstwowej anotacji) Inforex (system do budowania, anotowania i przeszukiwania korpusów) Marcin Oleksy Michał Marcińczuk Politechnika ska Instytut Informatyki
Centrum Technologii Językowych: repozytorium zasobów językowych i podstawowe usługi
CLARIN-PL Centrum Technologii Językowych: repozytorium zasobów językowych i podstawowe usługi Marcin Pol, Tomasz Walkowiak Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Centrum Technologii Językowych CLARIN- PL: deponowanie i upowszechnianie zasobów oraz narzędzi językowych dla języka polskiego
Centrum Technologii Językowych CLARIN- PL: deponowanie i upowszechnianie zasobów oraz narzędzi językowych dla języka polskiego Maciej Piasecki, Tomasz Walkowiak Politechnika ska Katedra Inteligencji Obliczeniowej
Ujednoznacznianie sensów słów
ł ę ł ń ł Warsztaty Ujednoznacznianie sensów słów Ujednoznacznianie sensów słów Idea ujednoznaczniania sensów słów: zamek Warsztaty Ujednoznacznianie sensów słów Idea ujednoznaczniania sensów słów (cd.):
Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego
Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego Witold Kieraś Łukasz Kobyliński Maciej Ogrodniczuk Instytut Podstaw Informatyki PAN III Konferencja DARIAH-PL Poznań 9.11.2016
Co wylicza Jasnopis? Bartosz Broda
Co wylicza Jasnopis? Bartosz Broda Analiza języka polskiego Ekstrakcja tekstu Dokument narzędzie do mierzenia zrozumiałości Analiza morfologiczna Analiza morfosyntaktyczna Indeksy Klasa trudności:
Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania
Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
CLARIN infrastruktura naukowa technologii językowych
CLARIN infrastruktura naukowa technologii językowych Maciej Piasecki Politechnika ska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 maciej.piasecki@pwr.edu.pl Przykład: analiza pojęcia Problem:
Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa
Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa Paweł Ke dzia, Marek Maziarz, Maciej Piasecki Politechnika Wrocławska Katedra Inteligencji
Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa
Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa Paweł Ke dzia, Marek Maziarz, Maciej Piasecki Politechnika ska Katedra Inteligencji
CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w pracy humanistów i tłumaczy
Cykl wykładów i warsztatów CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w pracy humanistów i tłumaczy 13 15 kwietnia 2015 roku Warszawa, Pałac Staszica, ul. Nowy Świat 72, sala 144
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Narzędzia do automatycznej analizy odniesień w tekstach
CLARIN-PL Narzędzia do automatycznej analizy odniesień w tekstach Michał Marcińczuk Jan Kocoń Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl
Open Access w technologii językowej dla języka polskiego
Open Access w technologii językowej dla języka polskiego Marek Maziarz, Maciej Piasecki Grupa Naukowa Technologii Językowych G4.19 Zakład Sztucznej Inteligencji, Instytut Informatyki, W-8, Politechnika
LEM wydobywanie statystyk z korpusów
LEM wydobywanie statystyk z korpusów Maciej Piasecki, Tomasz Walkowiak Politechnika Wroc awska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej Maryl Instytut Bada Literackich Polska Akademia
II cykl wykładów i warsztatów. CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w naukach humanistycznych i społecznych
II cykl wykładów i warsztatów CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w naukach humanistycznych i społecznych 18-20 maja 2015 roku Politechnika Wrocławska, Centrum Kongresowe,
CLARIN-PL wielka infrastruktura badawcza technologii językowych dla nauk humanistycznych i społecznych
wielka infrastruktura badawcza technologii językowych dla nauk humanistycznych i społecznych Maciej Piasecki Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Technologii Językowej
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
AUTOMATYKA INFORMATYKA
AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów
Wyszukiwanie informacji w internecie. Nguyen Hung Son
Wyszukiwanie informacji w internecie Nguyen Hung Son Jak znaleźć informację w internecie? Wyszukiwarki internetowe: Potężne machiny wykorzystujące najnowsze metody z różnych dziedzin Architektura: trzy
Rozróżnianie sensów polskich słów za pomoca rozwinięcia metody Leska
Rozróżnianie sensów polskich słów za pomoca rozwinięcia metody Leska Seminarium przetwarzania języka naturalnego Mateusz Kopeć Instytut Podstaw Informatyki Polskiej Akademii Nauk 6 lutego 2012 Plan 1 Zadanie
Zapytanie ofertowe nr 1/2016
to Zapytanie ofertowe nr 1/2016 z dnia 11052016 Espeo Software Sp z oo 2 Zapytanie ofertowe nr 1/2016 z dnia 11052016 Zapytanie ofertowe nr 1/2016 z dnia 11052016 Zamawiający: Espeo Software Sp z oo Adres:
Morfeusz 2 analizator i generator fleksyjny dla języka polskiego
Morfeusz 2 analizator i generator fleksyjny dla języka polskiego Marcin Woliński i Anna Andrzejczuk Zespół Inżynierii Lingwistycznej Instytut Podstaw Informatyki Polskiej Akademii Nauk Warsztaty CLARIN-PL,
Zaawansowane narzędzie do analizy korpusu w oparciu o reguły
CLARIN-PL Zaawansowane narzędzie do analizy korpusu w oparciu o reguły Michał Marcińczuk Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl 2015-04-13
Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych
Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji
Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować?
Algorytm k-nn Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Jak daleko są położone obiekty od siebie? knn k nearest neighbours jest
Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl
Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po
CLARIN infrastruktura naukowa technologii językowych i jej potencjał jako narzędzia badawczego
CLARIN infrastruktura naukowa technologii językowych i jej potencjał jako narzędzia badawczego Maciej Piasecki Politechnika Wrocławska Instytut Informatyki Grupa Naukowa G4.19 maciej.piasecki@pwr.wroc.pl
EmotiWord, semantyczne powiązanie i podobieństwo, odległość znaczeniowa
, semantyczne powiązanie i podobieństwo, odległość Projekt przejściowy ARR Politechnika Wrocławska Wydział Elektroniki Wrocław, 22 października 2013 Spis treści 1 językowa 2, kryteria 3 Streszczenie artykułu
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne:
WYDOBYWANIE I WYSZUKIWANIE INFORMACJI Z INTERNETU Forma wykład: 30 godzin laboratorium: 30 godzin Główny cel kursu W ramach kursu studenci poznają podstawy stosowanych powszechnie metod wyszukiwania informacji
Indukowane Reguły Decyzyjne I. Wykład 8
Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne
Włodzimierz Gruszczyński * Maciej Ogrodniczuk ** Marcin Woliński ** *IJP PAN **IPI PAN
Włodzimierz Gruszczyński * Maciej Ogrodniczuk ** Marcin Woliński ** *IJP PAN **IPI PAN Wystąpienie przygotowane w ramach projektu Elektroniczny korpus tekstów polskich z XVII i XVIII w. (do roku 1772)
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Narzędzia do automatycznej analizy odniesień w tekstach
CLARIN-PL Narzędzia do automatycznej analizy odniesień w tekstach Michał Marcińczuk Jan Kocoń Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl
Repozytorium Centrum Technologii Językowych: deponowanie i upowszechnianie zasobów i narzędzi językowych, gromadzenie korpusów tekstowych
CLARIN-PL Repozytorium Centrum Technologii Językowych: deponowanie i upowszechnianie zasobów i narzędzi językowych, gromadzenie korpusów tekstowych Marcin Pol, Tomasz Walkowiak, Marcin Oleksy Politechnika
Ocena dokładności diagnozy
Ocena dokładności diagnozy Diagnoza medyczna, w wielu przypadkach może być interpretowana jako działanie polegające na podjęciu jednej z dwóch decyzji odnośnie stanu zdrowotnego pacjenta: 0 pacjent zdrowy
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Cel projektu Celem projektu jest przygotowanie systemu wnioskowania, wykorzystującego wybrane algorytmy sztucznej inteligencji; Nabycie
Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe.
Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe. Autor: Mariusz Sasko Promotor: dr Adrian Horzyk Plan prezentacji 1. Wstęp 2. Cele pracy 3. Rozwiązanie 3.1. Robot
Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1
Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie
Mapa Literacka analiza odniesień geograficznych w tekstach literackich
CLARIN-PL Mapa Literacka analiza odniesień geograficznych w tekstach literackich Michał Marcińczuk Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl
Zautomatyzowane tworzenie korpusów błędów dla języka polskiego
Zautomatyzowane tworzenie korpusów błędów dla języka polskiego Marcin Miłkowski Instytut Filozofii i Socjologii PAN Zakład Logiki i Kognitywistyki Adres projektu: morfologik.blogspot.com Korpusy błędów
Grafika i Systemy Multimedialne (IGM)
Nowa Specjalność na Kierunku Informatyka Informatyka Techniczna (ITN) Grafika i Systemy Multimedialne (IGM) dr inż. Jacek Mazurkiewicz (K-9) Motywacja 2 narastająca potrzeba aktualizacji, modernizacji
Instrukcja. opracował Marcin Oleksy
Instrukcja opracował Marcin Oleksy Wstęp Zarządzanie korpusem Flagi Flagowanie korpusu Usuwanie i edytowanie flag Użytkownicy Przypisywanie użytkowników Role użytkowników Cofnięcie dostępu Podkorpusy Tworzenie
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Analiza danych tekstowych i języka naturalnego
Kod szkolenia: Tytuł szkolenia: ANA/TXT Analiza danych tekstowych i języka naturalnego Dni: 3 Opis: Adresaci szkolenia Dane tekstowe stanowią co najmniej 70% wszystkich danych generowanych w systemach
Automatyzacja procesu tworzenia i zarządzania Wirtualnymi Organizacjami w oparciu o wiedzę w zastosowaniu do architektur zorientowanych na usługi
IT-SOA Automatyzacja procesu tworzenia i zarządzania Wirtualnymi Organizacjami w oparciu o wiedzę w zastosowaniu do architektur zorientowanych na usługi Dariusz Król, W. Funika, B. Kryza, R. Słota, J.
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Pattern Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors
Spis treści Wstęp 1. Językoznawstwo sądowe
Spis treści Podziękowania... 11 Wstęp... 13 1. Językoznawstwo sądowe... 17 1.1. Język a prawo... 17 1.2. Językoznawstwo sądowe metody badań... 20 1.2.1. Metody ilościowe... 20 1.2.1.1. Stylometria i metody
Technologie informacyjne - wykład 12 -
Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski
TADEUSZ KWATER 1, ROBERT PĘKALA 2, ALEKSANDRA SALAMON 3
Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 4/18/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.4.46 TADEUSZ KWATER 1, ROBERT PĘKALA 2, ALEKSANDRA SALAMON
Narzędzia do automatycznej analizy odniesień w tekstach
CLARIN-PL Narzędzia do automatycznej analizy odniesień w tekstach Michał Marcińczuk Jan Kocoń Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl
KORBA Elektroniczny korpus tekstów polskich z XVII i XVIII w. (do 1772 r.) Pracownia Historii Języka Polskiego XVII i XVIII wieku IJP PAN
KORBA Elektroniczny korpus tekstów polskich z XVII i XVIII w. (do 1772 r.) Pracownia Historii Języka Polskiego XVII i XVIII wieku IJP PAN Podstawowe informacje o projekcie Projekt realizowany przez IJP
Widzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
CLARIN-PL wielka infrastruktura badawcza technologii j zykowych dla nauk humanistycznych i spo ecznych
wielka infrastruktura badawcza technologii j zykowych dla nauk humanistycznych i spo ecznych Maciej Piasecki Politechnika Wroc awska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Technologii J
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 ZĘŚĆ 1. JĘZYK POLSKI ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P7 KWIEIEŃ 2018 Zadanie 1. (0 1) 9) wyciąga wnioski wynikające z przesłanek zawartych
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
9. Praktyczna ocena jakości klasyfikacji
Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)
Rozpoznawanie obiektów na podstawie zredukowanego zbioru cech. Piotr Porwik Uniwersytet Śląski w Katowicach
Rozpoznawanie obiektów na podstawie zredukowanego zbioru cech Piotr Porwik Uniwersytet Śląski w Katowicach ?? It is obvious that more does not mean better, especially in the case of classifiers!! *) *)
Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,
Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której
O czym w Sejmie piszczy? Analiza tekstowa przemówień poselskich
O czym w Sejmie piszczy? Analiza tekstowa przemówień poselskich mgr Aleksander Nosarzewski Szkoła Główna Handlowa w Warszawie pod kierunkiem naukowym dr hab. Bogumiła Kamińskiego, prof. SGH Problem Potrzeba
Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących
Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Cezary Dendek Wydział Matematyki i Nauk Informacyjnych PW Plan prezentacji Plan prezentacji Wprowadzenie
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed
Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury Paweł Kobojek, prof. dr hab. inż. Khalid Saeed Zakres pracy Przegląd stanu wiedzy w dziedzinie biometrii, ze szczególnym naciskiem
SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Ontologie, czyli o inteligentnych danych
1 Ontologie, czyli o inteligentnych danych Bożena Deka Andrzej Tolarczyk PLAN 2 1. Korzenie filozoficzne 2. Ontologia w informatyce Ontologie a bazy danych Sieć Semantyczna Inteligentne dane 3. Zastosowania
OpenAI Gym. Adam Szczepaniak, Kamil Walkowiak
OpenAI Gym Adam Szczepaniak, Kamil Walkowiak Plan prezentacji Programowanie agentowe Uczenie przez wzmacnianie i problemy związane z rozwojem algorytmów Charakterystyka OpenAI Gym Biblioteka gym Podsumowanie
Wydobywanie informacji oraz cech tekstów: analiza frekwencyjna
Wydobywanie informacji oraz cech tekstów: analiza frekwencyjna Maciej Piasecki, Tomasz Walkowiak Politechnika Wrocławska Grupa Naukowa G4.19 Katedra Inteligencji Obliczeniowej Wydział Informatyki i Zarządzania
SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY. Autorzy: M. Lewicka, K. Stańczyk
SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY Autorzy: M. Lewicka, K. Stańczyk Kraków 2008 Cel pracy projekt i implementacja systemu rozpoznawania twarzy, który na podstawie
WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów
WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania
Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa
Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa Konrad Miziński 14 stycznia 2015 1 Temat projektu Grupowanie hierarchiczne na podstawie algorytmu k-średnich. 2 Dokumenty
Techniki uczenia maszynowego nazwa przedmiotu SYLABUS
Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów
Publikacja w repozytorium i przetwarzanie w systemie DSpace
Publikacja w repozytorium i przetwarzanie w systemie DSpace Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy marcin.oleksy@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji Obliczeniowej
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P7 KWIECIEŃ 2019 Zadanie 1. (0 1) PF Zadanie 2. (0 1) II. Analiza i interpretacja
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego