System do klasyfikacji tekstu i analizy stylometrycznej

Wielkość: px
Rozpocząć pokaz od strony:

Download "System do klasyfikacji tekstu i analizy stylometrycznej"

Transkrypt

1 System do klasyfikacji tekstu i analizy stylometrycznej Maciej Eder, Maciej Piasecki IJP PAN / UP Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 maciejeder@gmail.com maciej.piasecki@pwr.edu.pl

2 Stylometria Warsztaty stylometria: porównanie drobnych cech językowych w korpusie testków, którego celem jest wyłonienie podobieństw i różnic pomiędzy tekstami poszczególne własności języka nie pozwalają na skuteczne porównanie tektsów, ale w większej liczbie owe drobne różnice zaczynają być znaczące największe nadzieje stylometria wiąże z atrybucją autorską

3 Atrybucja autorska Warsztaty Jeśli mamy: tekst o nieznanym autorstwie korpus porównawczy zawierający teksty znanych autorów to czy można wśród nich odnaleźć najbliższego sąsiada, czyli tekst najbardziej podobny spośród dostępnych w korpusie? Gdzie można szukać stylistycznego odcisku palca : słowa synsemantyczne, najczęstsze słowa, pary słów, częste sekwencje literowe...

4 Mierzalne cechy stylu Warsztaty Idea stylistycznego odcisku palca cechy języka niedostrzegalne gołym okiem poza kontrolą autora (nieświadome) odporne na imitację, parodię itp. chętnie wybierany znacznik: częstości najczęstszych słów inne cechy: np. n-gramy klas gramatycznych Czy styl jest jednoznacznie zależny od autora? (por. kod DNA, odcisk palca, wzór na źrenicy,...)

5 Różne znaczniki stylu (cechy) Warsztaty Dawnymi czasy Niechcicowie żyli mniej więcej tak, jak żyją wszyscy po dworach na wsi. formy gramatyczne: dawnymi czasy niechcicowie żyli mniej... bi-gramy form gramatycznych: dawnymi czasy czasy niechcicowie niechcicowie żyli... lemmaty: dawny czas niechcic żyć mniej więcej... tri-gramy klas gramatycznych: ADJ NN Pers NN Pers VB Pers VB ADV... i wiele, wiele innych możliwych cech

6 Różne znaczniki stylu (cechy) Warsztaty It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife. (J. Austen, Pride and Prejudice) the = 4.25% in = 3.45% of = 1.81%...

7 Metody wielowymiarowe Warsztaty

8 Kim jest Gall Anonim? Warsztaty

9 Kim jest Gall Anonim? Warsztaty

10 Nie tylko atrybucja... Warsztaty

11 Zmiana w języku (100 MFW) Warsztaty

12 Zmiana w języku (2-gramy POS) Warsztaty

13 Zmiana w języku (5000 MFW) Warsztaty

14 Analiza sekwencyjna Warsztaty

15 Biblia królowej Zofii (ok r.) Warsztaty

16 Patrologia Latina (5,281 tekstów) Warsztaty

17 Wyzwania Warsztaty Mierzenie relacji tekstowych w dużych korpusach Wyciąganie znaczników stylu, które nie polegają na zwykłym pocięciu tekstu na szeregi n liter: Przetwarzanie Języka Naturalnego (NLP): konieczność użycia dodatkowych narzędzi

18 Cyklotron (1937 r.) Warsztaty

19 Wielki Zderzacz Hadronów Warsztaty

20 System do stylometrii i klasyfikacji Warsztaty Idea: połączenie w ramach jednej aplikacji webowej systemu Stylo do stylometrii i narzędzi do analizy tekstu oraz klasyfikacji zapewnienie bogatego zestawu cech dla języka polskiego uwolnienie użytkownika z potrzeby instalowania Założenia: cechy opisujące tekst mogą dotyczyć dowolnego poziomu analizy języka ograniczeniem są dostępne narzędzia dla języka polskiego analizowane mogą być zarówno dokumenty jak i fragmenty tekstu tryby: grupowania i klasyfikacji

21 Schemat systemu 1. Załadowanie korpusu opis nazwami meta-danymi na różnych poziomach 2. Wybór cech opisowych 3. Określenie parametrów przetwarzania grupowanie lub klasyfikacja przetwarzanie cech, np. transformacja 4. Wstępne przetwarzanie automatyczne uruchomienie sekwencji narzędzi językowych 5. Obliczenie wartości cech zliczenie statystyk wystąpienia 6. Filtrowanie i/lub transformacja cech, np. odsianie zbyt rzadkich/ częstych cech wyliczenie miar istotności na podstawie częstości 7. Zasadnicze przetwarzanie albo grupowanie albo klasyfikacja 8. Prezentacja wyników wizualizacje dane liczbowe Warsztaty

22 Schemat systemu Warsztaty Any2txt WCRFT2 Liner2 Dokument (doc) okument (docx) Any2txt WCRFT2 Liner2... Fextor Cluto Diagram (PNG) Dokument (pdf) Any2txt WCRFT2 Liner2 Przykładowy przebieg przetwarzania równoległego zbioru dokumentów

23 Cechy dla języka polskiego Warsztaty Poziomy analizy języka Morfologiczny Morfo-syntaktyczny Semantyki leksykalnej Wykorzystywane narzędzia językowe program do segmentacji tekstu i analizy morfologicznej - MACA tager morfosyntaktyczny - WCFRT2 program do rozpoznawania nazw własnych - Liner2 program do ujednoznaczniania sensów słów - WoSeDon

24 Cechy morfologiczne Warsztaty Długość: dokumentu, akapitu, zdania Formy wyrazowe Znaki interpunkcyjne Pseudo-sufiksy ostatnie kilka liter Dowolne tokeny wyrazowe Lematy podstawowe formy morfologiczne wyznaczane z pomocą tagera morfosyntaktycznego Sekwencje n elementowe wyrazowych tokenów lematów dwuelementowe tzw. bigramy trzyelementowe tzw. trigramy

25 Cechy morfosyntaktyczne Warsztaty Części mowy wyznaczane na podstawie rozpoznania klas gramtycznych Klasy gramatyczne zgodnie z definicją w Narodowym Korpusie Języka Polskiego klas gramatycznych, np. pseudoimiesłowy (preat), formy nieprzeszłe (fin), przymiotniki przyprzymiotnikowe (adja) wyznaczane przez tager morfosyntaktyczny Połączenie klas i wartości kategorii gramatycznych np. czasowniki w osobie 1 lub 2 Sekwencje klas gramatycznych przybliżają do pewnego stopnia konstrukcje składniowe

26 Cechy semantyczne Warsztaty Znaczenia leksykalne (sensy słów) wyznaczane względem Słowosieci identyfikatory wyznaczonych synsetów Uogólnione znaczenia leksykalne hiperonimy wyznaczonych synsetów poziom hiperonimu decyduje o stopniu uogólnienia Pojęcia ze sformalizowanej ontologii SUMO Suggested Upper Merged Ontology Dziedziny tematycznie ze zbioru WordNet Domains pola tematyczne wyznaczone w sposób automatyczny

27 Transformacja i filtrowanie przykład Warsztaty Łączenie cech różnego typu np. częstości lematów i klas gramatycznych Przykład procesu przetwarzania nazwa: tf.idf transformacja ukierunkowana na opis semantyczny 1. obliczenie częstości występowania lematów 2. odrzucenie cech-lematów występujących rzadziej niż n=10 3. normalizacja częstości lematu a, tf(a) = częstość(a) maksymalną częstości w danym dokumencie 4. ważenie idf(a)= ln( liczba dokumentów dokumenty(a) ) 5. wyliczenie wagi dla lematu: tf(a) * idf(a)

28 Stylo Warsztaty biblioteka (zestaw funkcji) dla środowiska R darmowa i na licncji open-source (GPL) zaopatrzona w interfejs graficzny wyposażona w szereg metod nadzorowanych i nienadzorowanych prosta w obsłudze, ale nie banalnie prosta

29 Domyślne GUI w stylo Warsztaty

30 Wystarczy kilka(naście) tekstów Warsztaty

31 Stylo jako serwis on-line Warsztaty

32 Grupowanie oparte na Cluto Warsztaty System oparty na Cluto uniwersalny system do grupowania obiektów reprezentowanych jako wektory liczbowe często używany do grupowania tekstów Metody grupowania aglomeracyjna (hierarchiczna) budowana jest hierarchia co raz większych grup poczynając od dwuelementowych płaska zbiór jest dzielony na n grup, gdzie n jest zadane z góry aglomeracyjno-płaska najpierw wyznaczany jest podział na n grup później grupy te łączone są w hierarchię

33 System oparty na Cluto Warsztaty Miary podobieństwa kosinusowa kosinus kąta pomiędzy wektorami cech zależy od stosunku wartości cech, a nie ich bezwzględnych wartości schemat tf.idf do transformacji cech oparta na współczynniku korelacji euklidesowa odległość pomiędzy wektorami cech Jaccarda stosunek wspólnej części cech do sumy Dalsze możliwości rozszerzania opisu tekstu szerszy zbiór nazw własnych relacje leksykalno-syntaktyczne, np. modyfikowany_przez(mądry) struktury leksykalno-składniowe lub leksykalno-semantyczne

34 Klasyfikacja semantyczna Warsztaty Cel klasyfikacji: przypisanie do dokumentów tekstowych lub fragmentów tekstów klas semantycznych klasy są zdefiniowane przez użytkownika Rodzaje systemów klasyfikacji nienadzorowane: klasy są zdefiniowane opisowo program klasyfikatora jest konstruowany i dostrajany na podstawie dużej ilości danych nadzorowane klasy są zadana w postaci ręcznie anotowanych dokumentów lub fragmentów tekstu

35 Proces budowy klasyfikatora Warsztaty 1. Identyfikacja źródeł 2. Pozyskanie korpusu tekstów 3. Wstępne przetwarzanie korpusu 4. Ręczna anotacja podkorpusu treningowo-testowego 5. Automatyczna anotacja korpusu 6. Analiza i udostępnienie anotowanego korpusu * Przyrostowa automatyczna anotacja: powtarzanie etapów 4-6

36 Przykład: Cindirela klasyfikacja listów pożegnalnych Warsztaty 1) Identyfikacja źródeł Cel: rozróżnianie pomiędzy prawdziwymi listami pożegnalnymi i listami napisanymi jako próba oszustwa określenie cech lingwistycznych listów prawdziwych rozpoznawanie tekstów jako wykazujących cechy listu pożegnalnego 2) Pozyskanie korpusu tekstów Polski Korpus Listów Pożegnalnych (Zaśko-Zielińska,2013) około 1000 listów prawdziwych i 320 listów sfałszowanych lub udawanych Teksty zebrane z internetu: dowolne oraz takie, które mają charakter listu, ale nie są listami pożegnalnymi

37 Przykład: Cindirela klasyfikacja listów pożegnalnych Warsztaty 3) Wstępne przetwarzanie korpusu Wykorzystanie wyników ręcznej transkrypcji i korekty tekstów (inaczej byłoby zbyt łatwo) Tager morfo-syntaktyczny WCRFT Rozpoznawanie nazw własnych Liner2 Ujednoznacznienie sensów słów i rzutowanie na ontologię WoSeDon 4) Ręczna anotacja podkorpusu treningowo-testowego dwie klasy: prawdziwe listy pożegnalne teksty, które nie są prawdziwymi listami pożegnalnymi

38 Cindirela wyniki eksperymentu 1 (klasyfikator SVM(RBF)) Warsztaty Cechy: Rezultat interp_per_sentence, interp_signs, avg_num, avg_verbs, avg_nouns avg_adjps avg_adverbs avg_interps avg_tok_count proper_nam_person_last proper_nam_person_first proper_nam_roads proper_nam_country proper_nam_city big_letter verb_per ppron12_per base TP: 982 FN: 272 FP: 168 TN: 3218 Accuracy: (TP+TN) / (TP+TN+FP+FN) = 90,52% Precision: TP / (TP+FP) = 85,39% TN / (TN+FN) = 92,21% Sensitivity: TP / (TP+FN) = 78,31% Specificity: TN / (TN+FP) = 95,04%

39 Cindirela wyniki eksperymentu 1 Warsztaty Rozkład decyzji pomiędzy klasami Forumowisko psychologia 'false': 601, 'true': 15 Forumowisko inne 'false': 1026, 'true': 11 Bryk 'false': 333, 'true': 21 Wikipedia 'false': 997, 'true': 1 Blog czytamwwannie 'false': 42, 'true': 2 sfałszowane listy 'false': 219, 'true': 118 prawdziwe listy 'true': 982, 'false': 272

40 Cindirela wyniki eksperymentu 2: Warsztaty Dodatkowe cechy: synsety i hiperonimy ze Słowosieci Poprawa dokładności rozpoznania Przykład cech znaczących verb_per ppron12_per avg_verbs interp_signs:dash big_letter interp_signs:fullstop interp_signs:comma avg_nouns interp_signs:question_mark avg_adverbs hypernym5:czasownik_- _STAN_NDK_oznaczający_stan_ emocjonalny-1(cst) hypernym5:czuć-2(cczuj) odczuwać-1(cczuj) avg_num hypernym5:mój-1(jak) synset:mój-1(jak) hypernym5:być-3(cst) avg_interps synset:kochanie-2(os) synset:kochanie-1(czy) obdarzanie_uczuciem-1(czy) darzenie_uczuciem-2(czy) darzenie_miłością-1(czy) obdarzanie_miłością-1(czy)

41 Dziękuję bardzo za uwagę

WebSty otwarty webowy system do analiz stylometrycznych

WebSty otwarty webowy system do analiz stylometrycznych WebSty otwarty webowy system do analiz stylometrycznych Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 maciej.piasecki@pwr.edu.pl

Bardziej szczegółowo

Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2

Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2 Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2 ws.clarin-pl.eu/websty.shtml Tomasz Walkowiak, Maciej Piasecki Politechnika Wrocławska Grupa Naukowa G4.19 Katedra Inteligencji Obliczeniowej

Bardziej szczegółowo

WebSty - otwarty sieciowy system do analizy stylometrycznej i semantycznej tekstów

WebSty - otwarty sieciowy system do analizy stylometrycznej i semantycznej tekstów IJP PAN / UP Kraków maciejeder@gmail.com WebSty - otwarty sieciowy system do analizy stylometrycznej i semantycznej tekstów ws.clarin-pl.eu/websty.shtml Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika

Bardziej szczegółowo

WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu

WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl

Bardziej szczegółowo

WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu

WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl

Bardziej szczegółowo

WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu

WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wroc awska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl

Bardziej szczegółowo

WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu

WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu WebSty - otwarty sieciowy system do analizy stylometrycznej tekstu Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej.Piasecki@pwr.edu.pl

Bardziej szczegółowo

Analiza listów pożegnalnych w oparciu o metody lingwistyki informatycznej i klasyfikacji semantycznej tekstów

Analiza listów pożegnalnych w oparciu o metody lingwistyki informatycznej i klasyfikacji semantycznej tekstów Analiza listów pożegnalnych w oparciu o metody lingwistyki informatycznej i klasyfikacji semantycznej tekstów Maciej Piasecki, Jan Kocoń Politechnika Wrocławska Katedra InteligencjiObliczeniowej Grupa

Bardziej szczegółowo

CLARIN rozproszony system technologii językowych dla różnych języków europejskich

CLARIN rozproszony system technologii językowych dla różnych języków europejskich CLARIN rozproszony system technologii językowych dla różnych języków europejskich Maciej Piasecki Politechnika Wrocławska Instytut Informatyki G4.19 Research Group maciej.piasecki@pwr.wroc.pl Projekt CLARIN

Bardziej szczegółowo

Zarządzanie i anotowanie korpusów tekstowych w systemie Inforex

Zarządzanie i anotowanie korpusów tekstowych w systemie Inforex Zarządzanie i anotowanie korpusów tekstowych w systemie Inforex Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy marcin.oleksy@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji Obliczeniowej

Bardziej szczegółowo

Narzędzia do automatycznego wydobywania kolokacji

Narzędzia do automatycznego wydobywania kolokacji Narzędzia do automatycznego wydobywania kolokacji Jan Kocoń, Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji Obliczeniowej marek.maziarz@pwr.edu.pl

Bardziej szczegółowo

Narzędzia do automatycznego wydobywania kolokacji

Narzędzia do automatycznego wydobywania kolokacji Narzędzia do automatycznego wydobywania kolokacji Jan Kocoń, Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji Obliczeniowej marek.maziarz@pwr.edu.pl

Bardziej szczegółowo

Program warsztatów CLARIN-PL

Program warsztatów CLARIN-PL W ramach Letniej Szkoły Humanistyki Cyfrowej odbędzie się III cykl wykładów i warsztatów CLARIN-PL w praktyce badawczej. Narzędzia cyfrowe do analizy języka w naukach humanistycznych i społecznych 17-19

Bardziej szczegółowo

Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur

Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur Maciej Piasecki, Paweł Kędzia Politechnika ska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Plan prezentacji

Bardziej szczegółowo

Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych

Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra

Bardziej szczegółowo

Inforex - zarządzanie korpusami i ich anotacja

Inforex - zarządzanie korpusami i ich anotacja Inforex - zarządzanie korpusami i ich anotacja Marcin Oleksy marcin.oleksy@pwr.edu.pl Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Technologii

Bardziej szczegółowo

Inforex - zarządzanie korpusami i ich anotacja. Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Technologii Językowych G4.

Inforex - zarządzanie korpusami i ich anotacja. Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Technologii Językowych G4. Inforex - zarządzanie korpusami i ich anotacja Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy Jan Wieczorek Jan Kocoń marcin.oleksy@pwr.edu.pl jan.wieczorek@pwr.edu.pl jan.kocon@pwr.edu.pl

Bardziej szczegółowo

KPWr (otwarty korpus języka polskiego o wielowarstwowej anotacji) Inforex (system do budowania, anotowania i przeszukiwania korpusów)

KPWr (otwarty korpus języka polskiego o wielowarstwowej anotacji) Inforex (system do budowania, anotowania i przeszukiwania korpusów) KPWr (otwarty korpus języka polskiego o wielowarstwowej anotacji) Inforex (system do budowania, anotowania i przeszukiwania korpusów) Marcin Oleksy Michał Marcińczuk Politechnika ska Instytut Informatyki

Bardziej szczegółowo

Centrum Technologii Językowych: repozytorium zasobów językowych i podstawowe usługi

Centrum Technologii Językowych: repozytorium zasobów językowych i podstawowe usługi CLARIN-PL Centrum Technologii Językowych: repozytorium zasobów językowych i podstawowe usługi Marcin Pol, Tomasz Walkowiak Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Centrum Technologii Językowych CLARIN- PL: deponowanie i upowszechnianie zasobów oraz narzędzi językowych dla języka polskiego

Centrum Technologii Językowych CLARIN- PL: deponowanie i upowszechnianie zasobów oraz narzędzi językowych dla języka polskiego Centrum Technologii Językowych CLARIN- PL: deponowanie i upowszechnianie zasobów oraz narzędzi językowych dla języka polskiego Maciej Piasecki, Tomasz Walkowiak Politechnika ska Katedra Inteligencji Obliczeniowej

Bardziej szczegółowo

Ujednoznacznianie sensów słów

Ujednoznacznianie sensów słów ł ę ł ń ł Warsztaty Ujednoznacznianie sensów słów Ujednoznacznianie sensów słów Idea ujednoznaczniania sensów słów: zamek Warsztaty Ujednoznacznianie sensów słów Idea ujednoznaczniania sensów słów (cd.):

Bardziej szczegółowo

Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego

Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego Witold Kieraś Łukasz Kobyliński Maciej Ogrodniczuk Instytut Podstaw Informatyki PAN III Konferencja DARIAH-PL Poznań 9.11.2016

Bardziej szczegółowo

Co wylicza Jasnopis? Bartosz Broda

Co wylicza Jasnopis? Bartosz Broda Co wylicza Jasnopis? Bartosz Broda Analiza języka polskiego Ekstrakcja tekstu Dokument narzędzie do mierzenia zrozumiałości Analiza morfologiczna Analiza morfosyntaktyczna Indeksy Klasa trudności:

Bardziej szczegółowo

Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania

Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

CLARIN infrastruktura naukowa technologii językowych

CLARIN infrastruktura naukowa technologii językowych CLARIN infrastruktura naukowa technologii językowych Maciej Piasecki Politechnika ska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 maciej.piasecki@pwr.edu.pl Przykład: analiza pojęcia Problem:

Bardziej szczegółowo

Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa

Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa Paweł Ke dzia, Marek Maziarz, Maciej Piasecki Politechnika Wrocławska Katedra Inteligencji

Bardziej szczegółowo

Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa

Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa Paweł Ke dzia, Marek Maziarz, Maciej Piasecki Politechnika ska Katedra Inteligencji

Bardziej szczegółowo

CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w pracy humanistów i tłumaczy

CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w pracy humanistów i tłumaczy Cykl wykładów i warsztatów CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w pracy humanistów i tłumaczy 13 15 kwietnia 2015 roku Warszawa, Pałac Staszica, ul. Nowy Świat 72, sala 144

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

Narzędzia do automatycznej analizy odniesień w tekstach

Narzędzia do automatycznej analizy odniesień w tekstach CLARIN-PL Narzędzia do automatycznej analizy odniesień w tekstach Michał Marcińczuk Jan Kocoń Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl

Bardziej szczegółowo

Open Access w technologii językowej dla języka polskiego

Open Access w technologii językowej dla języka polskiego Open Access w technologii językowej dla języka polskiego Marek Maziarz, Maciej Piasecki Grupa Naukowa Technologii Językowych G4.19 Zakład Sztucznej Inteligencji, Instytut Informatyki, W-8, Politechnika

Bardziej szczegółowo

LEM wydobywanie statystyk z korpusów

LEM wydobywanie statystyk z korpusów LEM wydobywanie statystyk z korpusów Maciej Piasecki, Tomasz Walkowiak Politechnika Wroc awska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej Maryl Instytut Bada Literackich Polska Akademia

Bardziej szczegółowo

II cykl wykładów i warsztatów. CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w naukach humanistycznych i społecznych

II cykl wykładów i warsztatów. CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w naukach humanistycznych i społecznych II cykl wykładów i warsztatów CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w naukach humanistycznych i społecznych 18-20 maja 2015 roku Politechnika Wrocławska, Centrum Kongresowe,

Bardziej szczegółowo

CLARIN-PL wielka infrastruktura badawcza technologii językowych dla nauk humanistycznych i społecznych

CLARIN-PL wielka infrastruktura badawcza technologii językowych dla nauk humanistycznych i społecznych wielka infrastruktura badawcza technologii językowych dla nauk humanistycznych i społecznych Maciej Piasecki Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Technologii Językowej

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

AUTOMATYKA INFORMATYKA

AUTOMATYKA INFORMATYKA AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów

Bardziej szczegółowo

Wyszukiwanie informacji w internecie. Nguyen Hung Son

Wyszukiwanie informacji w internecie. Nguyen Hung Son Wyszukiwanie informacji w internecie Nguyen Hung Son Jak znaleźć informację w internecie? Wyszukiwarki internetowe: Potężne machiny wykorzystujące najnowsze metody z różnych dziedzin Architektura: trzy

Bardziej szczegółowo

Rozróżnianie sensów polskich słów za pomoca rozwinięcia metody Leska

Rozróżnianie sensów polskich słów za pomoca rozwinięcia metody Leska Rozróżnianie sensów polskich słów za pomoca rozwinięcia metody Leska Seminarium przetwarzania języka naturalnego Mateusz Kopeć Instytut Podstaw Informatyki Polskiej Akademii Nauk 6 lutego 2012 Plan 1 Zadanie

Bardziej szczegółowo

Zapytanie ofertowe nr 1/2016

Zapytanie ofertowe nr 1/2016 to Zapytanie ofertowe nr 1/2016 z dnia 11052016 Espeo Software Sp z oo 2 Zapytanie ofertowe nr 1/2016 z dnia 11052016 Zapytanie ofertowe nr 1/2016 z dnia 11052016 Zamawiający: Espeo Software Sp z oo Adres:

Bardziej szczegółowo

Morfeusz 2 analizator i generator fleksyjny dla języka polskiego

Morfeusz 2 analizator i generator fleksyjny dla języka polskiego Morfeusz 2 analizator i generator fleksyjny dla języka polskiego Marcin Woliński i Anna Andrzejczuk Zespół Inżynierii Lingwistycznej Instytut Podstaw Informatyki Polskiej Akademii Nauk Warsztaty CLARIN-PL,

Bardziej szczegółowo

Zaawansowane narzędzie do analizy korpusu w oparciu o reguły

Zaawansowane narzędzie do analizy korpusu w oparciu o reguły CLARIN-PL Zaawansowane narzędzie do analizy korpusu w oparciu o reguły Michał Marcińczuk Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl 2015-04-13

Bardziej szczegółowo

Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych

Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji

Bardziej szczegółowo

Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować?

Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Algorytm k-nn Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Jak daleko są położone obiekty od siebie? knn k nearest neighbours jest

Bardziej szczegółowo

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po

Bardziej szczegółowo

CLARIN infrastruktura naukowa technologii językowych i jej potencjał jako narzędzia badawczego

CLARIN infrastruktura naukowa technologii językowych i jej potencjał jako narzędzia badawczego CLARIN infrastruktura naukowa technologii językowych i jej potencjał jako narzędzia badawczego Maciej Piasecki Politechnika Wrocławska Instytut Informatyki Grupa Naukowa G4.19 maciej.piasecki@pwr.wroc.pl

Bardziej szczegółowo

EmotiWord, semantyczne powiązanie i podobieństwo, odległość znaczeniowa

EmotiWord, semantyczne powiązanie i podobieństwo, odległość znaczeniowa , semantyczne powiązanie i podobieństwo, odległość Projekt przejściowy ARR Politechnika Wrocławska Wydział Elektroniki Wrocław, 22 października 2013 Spis treści 1 językowa 2, kryteria 3 Streszczenie artykułu

Bardziej szczegółowo

Systemy uczące się Lab 4

Systemy uczące się Lab 4 Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego

Bardziej szczegółowo

Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne:

Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne: WYDOBYWANIE I WYSZUKIWANIE INFORMACJI Z INTERNETU Forma wykład: 30 godzin laboratorium: 30 godzin Główny cel kursu W ramach kursu studenci poznają podstawy stosowanych powszechnie metod wyszukiwania informacji

Bardziej szczegółowo

Indukowane Reguły Decyzyjne I. Wykład 8

Indukowane Reguły Decyzyjne I. Wykład 8 Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne

Bardziej szczegółowo

Włodzimierz Gruszczyński * Maciej Ogrodniczuk ** Marcin Woliński ** *IJP PAN **IPI PAN

Włodzimierz Gruszczyński * Maciej Ogrodniczuk ** Marcin Woliński ** *IJP PAN **IPI PAN Włodzimierz Gruszczyński * Maciej Ogrodniczuk ** Marcin Woliński ** *IJP PAN **IPI PAN Wystąpienie przygotowane w ramach projektu Elektroniczny korpus tekstów polskich z XVII i XVIII w. (do roku 1772)

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Narzędzia do automatycznej analizy odniesień w tekstach

Narzędzia do automatycznej analizy odniesień w tekstach CLARIN-PL Narzędzia do automatycznej analizy odniesień w tekstach Michał Marcińczuk Jan Kocoń Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl

Bardziej szczegółowo

Repozytorium Centrum Technologii Językowych: deponowanie i upowszechnianie zasobów i narzędzi językowych, gromadzenie korpusów tekstowych

Repozytorium Centrum Technologii Językowych: deponowanie i upowszechnianie zasobów i narzędzi językowych, gromadzenie korpusów tekstowych CLARIN-PL Repozytorium Centrum Technologii Językowych: deponowanie i upowszechnianie zasobów i narzędzi językowych, gromadzenie korpusów tekstowych Marcin Pol, Tomasz Walkowiak, Marcin Oleksy Politechnika

Bardziej szczegółowo

Ocena dokładności diagnozy

Ocena dokładności diagnozy Ocena dokładności diagnozy Diagnoza medyczna, w wielu przypadkach może być interpretowana jako działanie polegające na podjęciu jednej z dwóch decyzji odnośnie stanu zdrowotnego pacjenta: 0 pacjent zdrowy

Bardziej szczegółowo

Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek

Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Cel projektu Celem projektu jest przygotowanie systemu wnioskowania, wykorzystującego wybrane algorytmy sztucznej inteligencji; Nabycie

Bardziej szczegółowo

Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe.

Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe. Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe. Autor: Mariusz Sasko Promotor: dr Adrian Horzyk Plan prezentacji 1. Wstęp 2. Cele pracy 3. Rozwiązanie 3.1. Robot

Bardziej szczegółowo

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1 Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie

Bardziej szczegółowo

Mapa Literacka analiza odniesień geograficznych w tekstach literackich

Mapa Literacka analiza odniesień geograficznych w tekstach literackich CLARIN-PL Mapa Literacka analiza odniesień geograficznych w tekstach literackich Michał Marcińczuk Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl

Bardziej szczegółowo

Zautomatyzowane tworzenie korpusów błędów dla języka polskiego

Zautomatyzowane tworzenie korpusów błędów dla języka polskiego Zautomatyzowane tworzenie korpusów błędów dla języka polskiego Marcin Miłkowski Instytut Filozofii i Socjologii PAN Zakład Logiki i Kognitywistyki Adres projektu: morfologik.blogspot.com Korpusy błędów

Bardziej szczegółowo

Grafika i Systemy Multimedialne (IGM)

Grafika i Systemy Multimedialne (IGM) Nowa Specjalność na Kierunku Informatyka Informatyka Techniczna (ITN) Grafika i Systemy Multimedialne (IGM) dr inż. Jacek Mazurkiewicz (K-9) Motywacja 2 narastająca potrzeba aktualizacji, modernizacji

Bardziej szczegółowo

Instrukcja. opracował Marcin Oleksy

Instrukcja. opracował Marcin Oleksy Instrukcja opracował Marcin Oleksy Wstęp Zarządzanie korpusem Flagi Flagowanie korpusu Usuwanie i edytowanie flag Użytkownicy Przypisywanie użytkowników Role użytkowników Cofnięcie dostępu Podkorpusy Tworzenie

Bardziej szczegółowo

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

Analiza danych tekstowych i języka naturalnego

Analiza danych tekstowych i języka naturalnego Kod szkolenia: Tytuł szkolenia: ANA/TXT Analiza danych tekstowych i języka naturalnego Dni: 3 Opis: Adresaci szkolenia Dane tekstowe stanowią co najmniej 70% wszystkich danych generowanych w systemach

Bardziej szczegółowo

Automatyzacja procesu tworzenia i zarządzania Wirtualnymi Organizacjami w oparciu o wiedzę w zastosowaniu do architektur zorientowanych na usługi

Automatyzacja procesu tworzenia i zarządzania Wirtualnymi Organizacjami w oparciu o wiedzę w zastosowaniu do architektur zorientowanych na usługi IT-SOA Automatyzacja procesu tworzenia i zarządzania Wirtualnymi Organizacjami w oparciu o wiedzę w zastosowaniu do architektur zorientowanych na usługi Dariusz Król, W. Funika, B. Kryza, R. Słota, J.

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

Spis treści Wstęp 1. Językoznawstwo sądowe

Spis treści Wstęp 1. Językoznawstwo sądowe Spis treści Podziękowania... 11 Wstęp... 13 1. Językoznawstwo sądowe... 17 1.1. Język a prawo... 17 1.2. Językoznawstwo sądowe metody badań... 20 1.2.1. Metody ilościowe... 20 1.2.1.1. Stylometria i metody

Bardziej szczegółowo

Technologie informacyjne - wykład 12 -

Technologie informacyjne - wykład 12 - Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski

Bardziej szczegółowo

TADEUSZ KWATER 1, ROBERT PĘKALA 2, ALEKSANDRA SALAMON 3

TADEUSZ KWATER 1, ROBERT PĘKALA 2, ALEKSANDRA SALAMON 3 Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 4/18/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.4.46 TADEUSZ KWATER 1, ROBERT PĘKALA 2, ALEKSANDRA SALAMON

Bardziej szczegółowo

Narzędzia do automatycznej analizy odniesień w tekstach

Narzędzia do automatycznej analizy odniesień w tekstach CLARIN-PL Narzędzia do automatycznej analizy odniesień w tekstach Michał Marcińczuk Jan Kocoń Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl

Bardziej szczegółowo

KORBA Elektroniczny korpus tekstów polskich z XVII i XVIII w. (do 1772 r.) Pracownia Historii Języka Polskiego XVII i XVIII wieku IJP PAN

KORBA Elektroniczny korpus tekstów polskich z XVII i XVIII w. (do 1772 r.) Pracownia Historii Języka Polskiego XVII i XVIII wieku IJP PAN KORBA Elektroniczny korpus tekstów polskich z XVII i XVIII w. (do 1772 r.) Pracownia Historii Języka Polskiego XVII i XVIII wieku IJP PAN Podstawowe informacje o projekcie Projekt realizowany przez IJP

Bardziej szczegółowo

Widzenie komputerowe (computer vision)

Widzenie komputerowe (computer vision) Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja

Bardziej szczegółowo

CLARIN-PL wielka infrastruktura badawcza technologii j zykowych dla nauk humanistycznych i spo ecznych

CLARIN-PL wielka infrastruktura badawcza technologii j zykowych dla nauk humanistycznych i spo ecznych wielka infrastruktura badawcza technologii j zykowych dla nauk humanistycznych i spo ecznych Maciej Piasecki Politechnika Wroc awska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Technologii J

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 ZĘŚĆ 1. JĘZYK POLSKI ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P7 KWIEIEŃ 2018 Zadanie 1. (0 1) 9) wyciąga wnioski wynikające z przesłanek zawartych

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

9. Praktyczna ocena jakości klasyfikacji

9. Praktyczna ocena jakości klasyfikacji Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)

Bardziej szczegółowo

Rozpoznawanie obiektów na podstawie zredukowanego zbioru cech. Piotr Porwik Uniwersytet Śląski w Katowicach

Rozpoznawanie obiektów na podstawie zredukowanego zbioru cech. Piotr Porwik Uniwersytet Śląski w Katowicach Rozpoznawanie obiektów na podstawie zredukowanego zbioru cech Piotr Porwik Uniwersytet Śląski w Katowicach ?? It is obvious that more does not mean better, especially in the case of classifiers!! *) *)

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

O czym w Sejmie piszczy? Analiza tekstowa przemówień poselskich

O czym w Sejmie piszczy? Analiza tekstowa przemówień poselskich O czym w Sejmie piszczy? Analiza tekstowa przemówień poselskich mgr Aleksander Nosarzewski Szkoła Główna Handlowa w Warszawie pod kierunkiem naukowym dr hab. Bogumiła Kamińskiego, prof. SGH Problem Potrzeba

Bardziej szczegółowo

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Cezary Dendek Wydział Matematyki i Nauk Informacyjnych PW Plan prezentacji Plan prezentacji Wprowadzenie

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed

Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury Paweł Kobojek, prof. dr hab. inż. Khalid Saeed Zakres pracy Przegląd stanu wiedzy w dziedzinie biometrii, ze szczególnym naciskiem

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Ontologie, czyli o inteligentnych danych

Ontologie, czyli o inteligentnych danych 1 Ontologie, czyli o inteligentnych danych Bożena Deka Andrzej Tolarczyk PLAN 2 1. Korzenie filozoficzne 2. Ontologia w informatyce Ontologie a bazy danych Sieć Semantyczna Inteligentne dane 3. Zastosowania

Bardziej szczegółowo

OpenAI Gym. Adam Szczepaniak, Kamil Walkowiak

OpenAI Gym. Adam Szczepaniak, Kamil Walkowiak OpenAI Gym Adam Szczepaniak, Kamil Walkowiak Plan prezentacji Programowanie agentowe Uczenie przez wzmacnianie i problemy związane z rozwojem algorytmów Charakterystyka OpenAI Gym Biblioteka gym Podsumowanie

Bardziej szczegółowo

Wydobywanie informacji oraz cech tekstów: analiza frekwencyjna

Wydobywanie informacji oraz cech tekstów: analiza frekwencyjna Wydobywanie informacji oraz cech tekstów: analiza frekwencyjna Maciej Piasecki, Tomasz Walkowiak Politechnika Wrocławska Grupa Naukowa G4.19 Katedra Inteligencji Obliczeniowej Wydział Informatyki i Zarządzania

Bardziej szczegółowo

SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY. Autorzy: M. Lewicka, K. Stańczyk

SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY. Autorzy: M. Lewicka, K. Stańczyk SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY Autorzy: M. Lewicka, K. Stańczyk Kraków 2008 Cel pracy projekt i implementacja systemu rozpoznawania twarzy, który na podstawie

Bardziej szczegółowo

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania

Bardziej szczegółowo

Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa

Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa Metody eksploracji danych w odkrywaniu wiedzy (MED) projekt, dokumentacja końcowa Konrad Miziński 14 stycznia 2015 1 Temat projektu Grupowanie hierarchiczne na podstawie algorytmu k-średnich. 2 Dokumenty

Bardziej szczegółowo

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów

Bardziej szczegółowo

Publikacja w repozytorium i przetwarzanie w systemie DSpace

Publikacja w repozytorium i przetwarzanie w systemie DSpace Publikacja w repozytorium i przetwarzanie w systemie DSpace Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy marcin.oleksy@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji Obliczeniowej

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P7 KWIECIEŃ 2019 Zadanie 1. (0 1) PF Zadanie 2. (0 1) II. Analiza i interpretacja

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo