Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur

Wielkość: px
Rozpocząć pokaz od strony:

Download "Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur"

Transkrypt

1 Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur Maciej Piasecki, Paweł Kędzia Politechnika ska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19

2 Plan prezentacji Cel Ujednoznacznianie sensów słów (znaczeń leksykalnych) Wykrywanie ról semantycznych wewnątrz frazy NP System do ekstrakcyjnego streszczania tekstu System do wydobywania tekstowych słów kluczowych Relacje semantyczne między fragmentami tekstów

3 Cel Założenia: istniejące głębokie parsery semantyczne nie dają wyczerpującego pokrycia i nie radzą sobie z błędami językowymi wzbogacenie tekstu o częściowy opis semantyczny będzie korzystne dla wielu zastosowań, np. klasyfikacji semantycznej Cel zbudowanie zespołu narzędzi, które będą wzbogacać tekst o warstwy anotacji opisujące wybrane aspekty semantyki tekstu poziom zadań i poziom tekstu Realizacja punkt wyjścia: znaczenia leksykalne jako łącznik do zasobów wiedzy rozszerzenie opisu na frazy nominalne

4 Ujednoznacznianie sensów słów Proces polegający na przypisaniu słowu odpowiedniego znaczenia wybranego ze zbioru znaczeń słów, odpowiedniego dla tego słowa w danym kontekście.?

5 Ujednoznacznianie sensów słów stosowane podejścia Uczenie na podstawie oznaczeń w tekstach: Wymagane duże zasoby ręcznie oznaczonych tekstów Czasochłonność ręcznego oznaczania tekstów (koszty) - każde słowo z osobna posiada swoje anotacje Uczenie bez wstępnego oznaczania w tekście: Nie jest wymagane wstępne znakowanie znaczeń w tekstach Wykorzystanie istniejących struktur opisujących zależności między znaczeniami słów (Słowosieć)

6 WoSeDon - główna idea Nienadzorowane podejście oparte o przetwarzanie grafu. Wykorzystana idea algorytmu PageRank z własnymi modyfikacjami. Jako zasób znaczeń do przypisania wykorzystana została Słowosieć. Po powrocie z pracy zepsułem zamek w drzwiach. graf dla słowa zamek.

7 WoSeDon - udostępnianie Dostęp przez przeglądarkę: Możliwość instalacji lokalnie: git clone git@nlp.pwr.wroc.pl:wosedon WebWoSeDon: Narzędzie do generowania list frekwencyjnych znaczeń:

8 WebWoSeDon - DSpace

9 WebWoSeDon podstawowa funkcjonalność

10 WoSeDon - wyniki Ocena tylko na słowach polisemicznych Najlepsza precyzja osiągnięta na KPWr i Składnicy: KPWr Czas. Rzecz. Składnica Średnia Czas. Rzecz. Średnia 1 32,61 52,22 45,52 49,02 64,02 58, ,66 47,91 46,12 47,51 61,67 56, ,76 39,3 39,46 49,28 61,12 56,51 1: PPR, plwordnet 2.3synset+SUMO 2: Static, plwordnet 2.3LU plwordnet 2.3Synset re-ranking 10% 3: Static, plwordnet re-ranking 40%

11 Wykrywanie ról semantycznych Proces polegający na przypisywaniu do par słów z tekstu ról semantycznych jakie pełnią te słowa w strukturze semantycznej tekstu.

12 Wykrywanie ról semantycznych Role semantyczne wewnątrz frazy rzeczownikowej (NP) i przymiotnikowej (AdjP) Atrybut - łączy rzeczownik z jego cechą żółtyatrybut koc Ilość - jak liczny jest zbiór, bądź ilość niepoliczalnego dwadzieścia dwailość domy

13 Wykrywanie ról semantycznych Aktor - inicjator akcji, byt oddziałowujący na inny byt Pisanie Jankaaktor po tablicy Sposób - sposób wykonywania czynności np. Szybkisposób bieg Obiekt - byty lub sytuacje, które są w jakimś stanie, bądź ulegają zmianie stanu Złapanie piłkiobiekt

14 NPSemRel - przykładowa reguła Podejście regułowe: 101 wzorców WCCL dwuetapowe wykrywanie: określanie miejsca wykrywanie roli 200 losowych fraz z KPWr 331 instancji ról

15 NPSemRel - wyniki Ocena: na 26 tekstach KPWr na 100 tekstach NKJP 2+1 P R KPWr NKJP KPWr NKJP F KPWr NKJP aktor 58,3 91,5 30,4 34,4 40,0 50,0 obiekt 84,9 91,4 39,8 44,0 54,2 49,4 atrybut 43,8 44,6 58,3 75,8 50,0 56,2 ilość 83,3 62,4 55,6 43,6 66,7 51,4

16 MLNpSemRel Wykorzystanie maszynowego uczenia do wykrywania ról

17 MLNpSemRel Dwuetapowy proces klasyfikacji (+ generowanie par): a. Wyszukanie pary wyrazów, między który może zajść rola b. Wykrycie roli semantycznej

18 MLNpSemRel - wyniki Korpus: KPWr Ocena: walidacja krzyżowa, 10-cio krotna P R F aktor 0,758 0,715 0,736 obiekt 0,856 0,898 0,877 sposób 0,703 0,561 0,624 atrybut 0,856 0,919 0,886 ilość 0,904 0,789 0,843

19 Wykrywanie ról semantycznych NpSemRel oraz MLNpSemRel do pobrania: git clone

20 Streszczanie tekstu Ekstrakcyjne streszczanie tekstu polega na wyborze z tekstu tych zdań, które w najistotniejszy sposób opisują jego tematykę.

21 Ekstrakcyjne streszczanie tekstu Cel narzędzie do przeglądania wyników wyszukiwania lub przybliżonego porównywania dokumentów Założenia streszczanie ekstrakcyjne wybór z tekstu ograniczonej liczby zdań niosących najważniejsze informacje i zbudowanie z nich spójnego tekstu dostosowanie sprawdzonego systemu do języka polskiego i polskich narzędzi językowych

22 Streszczanie: system Schemat wstępne przetwarzanie tekstu ocena istotności zdań dla danego znaczenia danego tekstu wybór najistotniejszych zdań konwersja formatu, eliminacja słów o niskiej informacji utworzenie streszczenia zadanej długości połączenie najwyżej ocenionych zdań wg kolejności występowania w tekście Podstawa: system MEAD znany o modułowej konstrukcji, łatwy do dostosowania otwarta licencja

23 Zmodyfikowany system MEAD Charakterystyka MEAD Dostosowanie do języka polskiego (Tretter, 2015) cechy do oceny zdań: pozycja, długość, wartość centroidu, miara LexRank klasyfikator - funkcja z wartości cech pełne wsparcie dla kodowania UTF8 baza wag TF.IDF dla polskich lematów (Wikipedia) segmentacja - MACA lematyzacja - tager WCRFT zbudowanie korpusu streszczeń (crowdsourcing) Rozszerzenie rozpoznanie nazw własnych (Liner2)

24 Streszczanie tekstu git clone

25 Wydobywanie słów kluczowych Proces polegający na wydobyciu z tekstu słów, bądź ciągów słów charakteryzujących dany tekst.

26 Wydobywanie słów kluczowych Założenia ekstrakcyjne wydobywanie - słowa kluczowe z dokumentu nienadzorowane podejście - szerokie zastosowanie Podstawa - TextRank (Mihalcea i Tarau, 2004) graf powiązań słów na podstawie współwystępowania węzły - słowa znaczące (rzeczowniki i przymiotniki) granice współwystępowania: okno tekstowe lub zdanie ustalenie oceny węzłów za pomocą algorytmu PageRank wydobycie wielowyrazowych słów w oparciu o analizę wag węzłów TextRank dostosowany do języka polskiego segmentacja i lematyzacja - MACA i WCRFT wagi TF.IDF dla lematów policzone w oparciu o korpus Słowosieci problem: lematyzacja wielowyrazowych słów kluczowych

27 Relacje semantyczne między fragmentami tekstów Proces, podczas którego dla pary zdań przypisywana jest relacja zachodząca między nimi.

28 Relacje semantyczne Krzyżowanie się: Część informacji z S2 pokrywa się z S1. S1 przedstawia informacje X i Y, S2 przedstawia informacje X i Z S1: Samolot rozbił się, uderzając w 25 piętro budynku Pirelli znajdującego się w centrum miasta Milan. S2: Mały turystyczny samolot zderzył się z najwyższym budynkiem w Milanie. Parafraza: Dwa fragmenty tekstu zawierają dokładnie takie same informacje, ale wyrażone różnymi słowami S1: Wałęsa był agentem SB. S2: Lechu współpracował jako agent z SB.

29 Relacje semantyczne Zawieranie: S1 zawiera wszystkie informacje z S2, oraz dodatkowe informacje niewystępujące w S2. Oznacza to, że zdanie S1 ma bogatszą treść niż zdanie S2 S1: Z trzema zwycięstwami w tym roku Green Bay ma najlepszy wynik w lidze NFL. S2: Green Bay trzy razy osiągnął zwycięstwo w tym roku. Tożsamość: Dokładnie takie same zdania występują w dwóch różnych miejscach S1: Zgodnie z doniesieniami dym wydobywał się z dziury. S2: Zgodnie z doniesieniami dym wydobywał się z dziury.

30 Relacje semantyczne między fragmentami tekstów

31 Relacje semantyczne - statystyki Korpus uczący: Wikinewsy Automatyczna propozycja dokumentów podobnych (3) Wyszukiwanie podobnych zdań w paczkach 5 klasyfikatorów binarnych 4+1 Krzyżowanie się 4(3) 3(3) Suma Parafraza Tożsamość Zawieranie

32 Relacje semantyczne - wyniki Zbiór uczący Zbiór testowy R 0,784 0,721 Negative 0,738 0,608 0,667 Positive 0,643 0,818 0,739 0,531 R F-Measure Klasa 0,727 0,783 Negative 0,761 0,869 0,811 Positive 0,819 0,756 0,786 Negative 0,776 0,835 0,804 Positive R F-Measure Klasa 0,846 0,892 0,868 Negative 0,886 0,838 0,861 Positive 0,75 0,818 0,783 Negative 0,778 0,7 0,737 Positive Parafraza Zbiór testowy 0,618 Positive 0,847 P Zbiór uczący 0,72 Negative Krzyżowanie się Zbiór testowy Klasa 0,667 P Zbiór uczący F-Measure Brak relacji P

33 Relacje semantyczne - wyniki Zbiór uczący Zbiór testowy R 0,778 0,739 Negative 0,752 0,673 0,71 Positive 0,786 0,825 0,805 Negative 0,811 0,769 0,789 Positive R F-Measure 1 0,979 0, ,923 0,923 1 Klasa 0,989 Negative 0,99 Positive 0,96 Negative 0,96 Positive Tożsamość Zbiór testowy Klasa 0,704 P Zbiór uczący F-Measure Zawieranie P

34 Relacje semantyczne między fragmentami tekstów git clone

35 Podsumowanie - zastosowania Role jako cechy semantyczne: wykonawcy, obiekty czynności, atrybuty Znaczenia jako cechy semantyczne - hiperonimy itp. Relacje semantyczne - wykorzystanie w podobieństwie Słowa kluczowe - automatyczny opis słowami dokumentu Streszczanie - pomoc przy streszczaniu

36 Dziękujemy za uwagę!

Zarządzanie i anotowanie korpusów tekstowych w systemie Inforex

Zarządzanie i anotowanie korpusów tekstowych w systemie Inforex Zarządzanie i anotowanie korpusów tekstowych w systemie Inforex Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy marcin.oleksy@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji Obliczeniowej

Bardziej szczegółowo

Program warsztatów CLARIN-PL

Program warsztatów CLARIN-PL W ramach Letniej Szkoły Humanistyki Cyfrowej odbędzie się III cykl wykładów i warsztatów CLARIN-PL w praktyce badawczej. Narzędzia cyfrowe do analizy języka w naukach humanistycznych i społecznych 17-19

Bardziej szczegółowo

Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych

Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra

Bardziej szczegółowo

Narzędzia do automatycznego wydobywania kolokacji

Narzędzia do automatycznego wydobywania kolokacji Narzędzia do automatycznego wydobywania kolokacji Jan Kocoń, Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji Obliczeniowej marek.maziarz@pwr.edu.pl

Bardziej szczegółowo

Narzędzia do automatycznego wydobywania kolokacji

Narzędzia do automatycznego wydobywania kolokacji Narzędzia do automatycznego wydobywania kolokacji Jan Kocoń, Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji Obliczeniowej marek.maziarz@pwr.edu.pl

Bardziej szczegółowo

WebSty otwarty webowy system do analiz stylometrycznych

WebSty otwarty webowy system do analiz stylometrycznych WebSty otwarty webowy system do analiz stylometrycznych Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 maciej.piasecki@pwr.edu.pl

Bardziej szczegółowo

Analiza listów pożegnalnych w oparciu o metody lingwistyki informatycznej i klasyfikacji semantycznej tekstów

Analiza listów pożegnalnych w oparciu o metody lingwistyki informatycznej i klasyfikacji semantycznej tekstów Analiza listów pożegnalnych w oparciu o metody lingwistyki informatycznej i klasyfikacji semantycznej tekstów Maciej Piasecki, Jan Kocoń Politechnika Wrocławska Katedra InteligencjiObliczeniowej Grupa

Bardziej szczegółowo

Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2

Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2 Ekstrakcja informacji oraz stylometria na usługach psychologii Część 2 ws.clarin-pl.eu/websty.shtml Tomasz Walkowiak, Maciej Piasecki Politechnika Wrocławska Grupa Naukowa G4.19 Katedra Inteligencji Obliczeniowej

Bardziej szczegółowo

Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa

Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa Paweł Ke dzia, Marek Maziarz, Maciej Piasecki Politechnika ska Katedra Inteligencji

Bardziej szczegółowo

Inforex - zarządzanie korpusami i ich anotacja

Inforex - zarządzanie korpusami i ich anotacja Inforex - zarządzanie korpusami i ich anotacja Marcin Oleksy marcin.oleksy@pwr.edu.pl Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Technologii

Bardziej szczegółowo

Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa

Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen. Cześc c wiczeniowa Paweł Ke dzia, Marek Maziarz, Maciej Piasecki Politechnika Wrocławska Katedra Inteligencji

Bardziej szczegółowo

Open Access w technologii językowej dla języka polskiego

Open Access w technologii językowej dla języka polskiego Open Access w technologii językowej dla języka polskiego Marek Maziarz, Maciej Piasecki Grupa Naukowa Technologii Językowych G4.19 Zakład Sztucznej Inteligencji, Instytut Informatyki, W-8, Politechnika

Bardziej szczegółowo

Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego

Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego Korpusomat narzędzie do tworzenia przeszukiwalnych korpusów języka polskiego Witold Kieraś Łukasz Kobyliński Maciej Ogrodniczuk Instytut Podstaw Informatyki PAN III Konferencja DARIAH-PL Poznań 9.11.2016

Bardziej szczegółowo

KPWr (otwarty korpus języka polskiego o wielowarstwowej anotacji) Inforex (system do budowania, anotowania i przeszukiwania korpusów)

KPWr (otwarty korpus języka polskiego o wielowarstwowej anotacji) Inforex (system do budowania, anotowania i przeszukiwania korpusów) KPWr (otwarty korpus języka polskiego o wielowarstwowej anotacji) Inforex (system do budowania, anotowania i przeszukiwania korpusów) Marcin Oleksy Michał Marcińczuk Politechnika ska Instytut Informatyki

Bardziej szczegółowo

CLARIN rozproszony system technologii językowych dla różnych języków europejskich

CLARIN rozproszony system technologii językowych dla różnych języków europejskich CLARIN rozproszony system technologii językowych dla różnych języków europejskich Maciej Piasecki Politechnika Wrocławska Instytut Informatyki G4.19 Research Group maciej.piasecki@pwr.wroc.pl Projekt CLARIN

Bardziej szczegółowo

Narzędzia do automatycznej analizy odniesień w tekstach

Narzędzia do automatycznej analizy odniesień w tekstach CLARIN-PL Narzędzia do automatycznej analizy odniesień w tekstach Michał Marcińczuk Jan Kocoń Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl

Bardziej szczegółowo

Zaawansowane narzędzie do analizy korpusu w oparciu o reguły

Zaawansowane narzędzie do analizy korpusu w oparciu o reguły CLARIN-PL Zaawansowane narzędzie do analizy korpusu w oparciu o reguły Michał Marcińczuk Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl 2015-04-13

Bardziej szczegółowo

Narzędzia do automatycznej analizy odniesień w tekstach

Narzędzia do automatycznej analizy odniesień w tekstach CLARIN-PL Narzędzia do automatycznej analizy odniesień w tekstach Michał Marcińczuk Jan Kocoń Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl

Bardziej szczegółowo

Inforex - zarządzanie korpusami i ich anotacja. Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Technologii Językowych G4.

Inforex - zarządzanie korpusami i ich anotacja. Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Technologii Językowych G4. Inforex - zarządzanie korpusami i ich anotacja Michał Marcińczuk michal.marcinczuk@pwr.edu.pl Marcin Oleksy Jan Wieczorek Jan Kocoń marcin.oleksy@pwr.edu.pl jan.wieczorek@pwr.edu.pl jan.kocon@pwr.edu.pl

Bardziej szczegółowo

Co wylicza Jasnopis? Bartosz Broda

Co wylicza Jasnopis? Bartosz Broda Co wylicza Jasnopis? Bartosz Broda Analiza języka polskiego Ekstrakcja tekstu Dokument narzędzie do mierzenia zrozumiałości Analiza morfologiczna Analiza morfosyntaktyczna Indeksy Klasa trudności:

Bardziej szczegółowo

Rozróżnianie sensów polskich słów za pomoca rozwinięcia metody Leska

Rozróżnianie sensów polskich słów za pomoca rozwinięcia metody Leska Rozróżnianie sensów polskich słów za pomoca rozwinięcia metody Leska Seminarium przetwarzania języka naturalnego Mateusz Kopeć Instytut Podstaw Informatyki Polskiej Akademii Nauk 6 lutego 2012 Plan 1 Zadanie

Bardziej szczegółowo

Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe.

Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe. Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe. Autor: Mariusz Sasko Promotor: dr Adrian Horzyk Plan prezentacji 1. Wstęp 2. Cele pracy 3. Rozwiązanie 3.1. Robot

Bardziej szczegółowo

Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych

Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra Inteligencji

Bardziej szczegółowo

CLARIN infrastruktura naukowa technologii językowych

CLARIN infrastruktura naukowa technologii językowych CLARIN infrastruktura naukowa technologii językowych Maciej Piasecki Politechnika ska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 maciej.piasecki@pwr.edu.pl Przykład: analiza pojęcia Problem:

Bardziej szczegółowo

WebSty - otwarty sieciowy system do analizy stylometrycznej i semantycznej tekstów

WebSty - otwarty sieciowy system do analizy stylometrycznej i semantycznej tekstów IJP PAN / UP Kraków maciejeder@gmail.com WebSty - otwarty sieciowy system do analizy stylometrycznej i semantycznej tekstów ws.clarin-pl.eu/websty.shtml Maciej Piasecki, Tomasz Walkowiak, Maciej Eder Politechnika

Bardziej szczegółowo

CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w pracy humanistów i tłumaczy

CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w pracy humanistów i tłumaczy Cykl wykładów i warsztatów CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w pracy humanistów i tłumaczy 13 15 kwietnia 2015 roku Warszawa, Pałac Staszica, ul. Nowy Świat 72, sala 144

Bardziej szczegółowo

LEM wydobywanie statystyk z korpusów

LEM wydobywanie statystyk z korpusów LEM wydobywanie statystyk z korpusów Maciej Piasecki, Tomasz Walkowiak Politechnika Wroc awska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Maciej Maryl Instytut Bada Literackich Polska Akademia

Bardziej szczegółowo

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po

Bardziej szczegółowo

Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych

Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych Marcin Deptuła Julian Szymański, Henryk Krawczyk Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Katedra Architektury

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

Zapytanie ofertowe nr 1/2016

Zapytanie ofertowe nr 1/2016 to Zapytanie ofertowe nr 1/2016 z dnia 11052016 Espeo Software Sp z oo 2 Zapytanie ofertowe nr 1/2016 z dnia 11052016 Zapytanie ofertowe nr 1/2016 z dnia 11052016 Zamawiający: Espeo Software Sp z oo Adres:

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

Widzenie komputerowe (computer vision)

Widzenie komputerowe (computer vision) Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja

Bardziej szczegółowo

Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne:

Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne: WYDOBYWANIE I WYSZUKIWANIE INFORMACJI Z INTERNETU Forma wykład: 30 godzin laboratorium: 30 godzin Główny cel kursu W ramach kursu studenci poznają podstawy stosowanych powszechnie metod wyszukiwania informacji

Bardziej szczegółowo

Procesy integracji modeli danych do jednolitej struktury WBD. Tadeusz Chrobak, Krystian Kozioł, Artur Krawczyk, Michał Lupa

Procesy integracji modeli danych do jednolitej struktury WBD. Tadeusz Chrobak, Krystian Kozioł, Artur Krawczyk, Michał Lupa Procesy integracji modeli danych do jednolitej struktury WBD Tadeusz Chrobak, Krystian Kozioł, Artur Krawczyk, Michał Lupa Koncepcja Wielorozdzielczej Bazy Danych Kluczowe uwarunkowania systemu generalizacji:

Bardziej szczegółowo

CLARIN infrastruktura naukowa technologii językowych i jej potencjał jako narzędzia badawczego

CLARIN infrastruktura naukowa technologii językowych i jej potencjał jako narzędzia badawczego CLARIN infrastruktura naukowa technologii językowych i jej potencjał jako narzędzia badawczego Maciej Piasecki Politechnika Wrocławska Instytut Informatyki Grupa Naukowa G4.19 maciej.piasecki@pwr.wroc.pl

Bardziej szczegółowo

Analiza danych tekstowych i języka naturalnego

Analiza danych tekstowych i języka naturalnego Kod szkolenia: Tytuł szkolenia: ANA/TXT Analiza danych tekstowych i języka naturalnego Dni: 3 Opis: Adresaci szkolenia Dane tekstowe stanowią co najmniej 70% wszystkich danych generowanych w systemach

Bardziej szczegółowo

AUTOMATYKA INFORMATYKA

AUTOMATYKA INFORMATYKA AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów

Bardziej szczegółowo

RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk

RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk Wprowadzenie RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk Magdalena Deckert Politechnika Poznańska, Instytut Informatyki Seminarium ISWD, 21.05.2013 M. Deckert Przyrostowy

Bardziej szczegółowo

Bazy danych TERMINOLOGIA

Bazy danych TERMINOLOGIA Bazy danych TERMINOLOGIA Dane Dane są wartościami przechowywanymi w bazie danych. Dane są statyczne w tym sensie, że zachowują swój stan aż do zmodyfikowania ich ręcznie lub przez jakiś automatyczny proces.

Bardziej szczegółowo

W poszukiwaniu sensu w świecie widzialnym

W poszukiwaniu sensu w świecie widzialnym W poszukiwaniu sensu w świecie widzialnym Andrzej Śluzek Nanyang Technological University Singapore Uniwersytet Mikołaja Kopernika Toruń AGH, Kraków, 28 maja 2010 1 Podziękowania Przedstawione wyniki powstały

Bardziej szczegółowo

Semantyczny Monitoring Cyberprzestrzeni

Semantyczny Monitoring Cyberprzestrzeni Semantyczny Monitoring Cyberprzestrzeni Partnerzy projektu: Katedra Informatyki Ekonomicznej Uniwersytet Ekonomiczny w Poznaniu Partnerzy projektu: Zarys problemu Źródło internetowe jako zasób użytecznych

Bardziej szczegółowo

Centrum Technologii Językowych CLARIN- PL: deponowanie i upowszechnianie zasobów oraz narzędzi językowych dla języka polskiego

Centrum Technologii Językowych CLARIN- PL: deponowanie i upowszechnianie zasobów oraz narzędzi językowych dla języka polskiego Centrum Technologii Językowych CLARIN- PL: deponowanie i upowszechnianie zasobów oraz narzędzi językowych dla języka polskiego Maciej Piasecki, Tomasz Walkowiak Politechnika ska Katedra Inteligencji Obliczeniowej

Bardziej szczegółowo

Lokalizacja Oprogramowania

Lokalizacja Oprogramowania mgr inż. Anton Smoliński anton.smolinski@zut.edu.pl Lokalizacja Oprogramowania 16/12/2016 Wykład 6 Internacjonalizacja, Testowanie, Tłumaczenie Maszynowe Agenda Internacjonalizacja Testowanie lokalizacji

Bardziej szczegółowo

II cykl wykładów i warsztatów. CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w naukach humanistycznych i społecznych

II cykl wykładów i warsztatów. CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w naukach humanistycznych i społecznych II cykl wykładów i warsztatów CLARIN-PL w praktyce badawczej. Cyfrowe narzędzia do analizy języka w naukach humanistycznych i społecznych 18-20 maja 2015 roku Politechnika Wrocławska, Centrum Kongresowe,

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania

Bardziej szczegółowo

Bydgoskie Centrum Archiwizacji Cyfrowej sp. z o.o.

Bydgoskie Centrum Archiwizacji Cyfrowej sp. z o.o. STRONA GŁÓWNA ` Usługa earchiwizacja.pl przeznaczona jest zarówno dla osób indywidualnych, jak i firm. Wykorzystuje zasadę przetwarzania danych w chmurze. Pozwala to na dostęp do własnej bazy dokumentów

Bardziej szczegółowo

KorBa. Elektroniczny korpus tekstów polskich XVII i XVIII w. (do 1772 r.) Renata Bronikowska Instytut Języka Polskiego Polska Akademia Nauk

KorBa. Elektroniczny korpus tekstów polskich XVII i XVIII w. (do 1772 r.) Renata Bronikowska Instytut Języka Polskiego Polska Akademia Nauk KorBa Elektroniczny korpus tekstów polskich XVII i XVIII w. (do 1772 r.) Renata Bronikowska Instytut Języka Polskiego Polska Akademia Nauk ALLPPT.com _ Free PowerPoint Templates, Diagrams and Charts PODSTAWOWE

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

Słowosiec leksykalna siec semantyczna je zyka polskiego i jej zastosowania

Słowosiec leksykalna siec semantyczna je zyka polskiego i jej zastosowania Słowosiec 3.2 - leksykalna siec semantyczna je zyka polskiego i jej zastosowania Poziom rozszerzony Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 agnieszka.dziob@pwr.edu.pl

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18 Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)

Bardziej szczegółowo

Laboratorium technik optymalizacji: układanie uniwersyteckiego planu zajęć

Laboratorium technik optymalizacji: układanie uniwersyteckiego planu zajęć Laboratorium technik optymalizacji: układanie uniwersyteckiego planu zajęć Marek Kubiak Opis problemu Rozważany problem układania uniwersyteckiego planu zajęć (ang. University Course Timetabling Problem

Bardziej szczegółowo

Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści

Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop. 2017 Spis treści O autorach 9 0 recenzencie 10 Wprowadzenie 11 Rozdział 1. Pierwsze kroki 15 Wprowadzenie do nauki o danych

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Rodzaje danych oraz ich przetwarzanie Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 29, 2014 1 Dane tabelaryczne 2 Dane tekstowe 3 Dane sensoryczne 4 Dane multimedialne 5 Podsumowanie

Bardziej szczegółowo

Zastosowanie Wikipedii w przetwarzaniu języka naturalnego

Zastosowanie Wikipedii w przetwarzaniu języka naturalnego Zastosowanie Wikipedii w przetwarzaniu języka naturalnego Plan prezentacji Wikipedia Klasyfikacja Zastosowanie w NLP Plan prezentacji Wikipedia Klasyfikacja Zastosowanie w NLP Rysunek : http://img2.wikia.nocookie.net/

Bardziej szczegółowo

Ujednoznacznianie sensów słów

Ujednoznacznianie sensów słów ł ę ł ń ł Warsztaty Ujednoznacznianie sensów słów Ujednoznacznianie sensów słów Idea ujednoznaczniania sensów słów: zamek Warsztaty Ujednoznacznianie sensów słów Idea ujednoznaczniania sensów słów (cd.):

Bardziej szczegółowo

2

2 1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych.

mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych. mgr inż. Magdalena Deckert Poznań, 30.11.2010r. Metody przyrostowego uczenia się ze strumieni danych. Plan prezentacji Wstęp Concept drift i typy zmian Algorytmy przyrostowego uczenia się ze strumieni

Bardziej szczegółowo

Mapa Literacka analiza odniesień geograficznych w tekstach literackich

Mapa Literacka analiza odniesień geograficznych w tekstach literackich CLARIN-PL Mapa Literacka analiza odniesień geograficznych w tekstach literackich Michał Marcińczuk Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl

Bardziej szczegółowo

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki

Bardziej szczegółowo

Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych

Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych WMIM, Uniwersytet Warszawski ul. Banacha 2, 02-097 Warszawa, Polska andrzejanusz@gmail.com 13.06.2013 Dlaczego

Bardziej szczegółowo

CLARIN-PL wielka infrastruktura badawcza technologii językowych dla nauk humanistycznych i społecznych

CLARIN-PL wielka infrastruktura badawcza technologii językowych dla nauk humanistycznych i społecznych wielka infrastruktura badawcza technologii językowych dla nauk humanistycznych i społecznych Maciej Piasecki Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Technologii Językowej

Bardziej szczegółowo

Semantyczne podobieństwo stron internetowych

Semantyczne podobieństwo stron internetowych Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Marcin Lamparski Nr albumu: 184198 Praca magisterska na kierunku Informatyka Semantyczne podobieństwo stron internetowych Praca wykonana

Bardziej szczegółowo

Centrum Technologii Językowych: repozytorium zasobów językowych i podstawowe usługi

Centrum Technologii Językowych: repozytorium zasobów językowych i podstawowe usługi CLARIN-PL Centrum Technologii Językowych: repozytorium zasobów językowych i podstawowe usługi Marcin Pol, Tomasz Walkowiak Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19

Bardziej szczegółowo

Asocjacyjna reprezentacja danych i wnioskowanie

Asocjacyjna reprezentacja danych i wnioskowanie Asocjacyjna reprezentacja danych i wnioskowanie Wykorzystane technologie JetBrains PyCharm 504 Python 35 Struktura drzewa GRAPH PARAM PARAM ID1 ID2 ID_N params params params param_name_1: param_value_1

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Praca Magisterska. Automatyczna kontekstowa korekta tekstów na podstawie Grafu Przyzwyczajeń. internetowego dla języka polskiego

Praca Magisterska. Automatyczna kontekstowa korekta tekstów na podstawie Grafu Przyzwyczajeń. internetowego dla języka polskiego Praca Magisterska Automatyczna kontekstowa korekta tekstów na podstawie Grafu Przyzwyczajeń Lingwistycznych zbudowanego przez robota internetowego dla języka polskiego Marcin A. Gadamer Promotor: dr Adrian

Bardziej szczegółowo

Narzędzia do automatycznej analizy odniesień w tekstach

Narzędzia do automatycznej analizy odniesień w tekstach CLARIN-PL Narzędzia do automatycznej analizy odniesień w tekstach Michał Marcińczuk Jan Kocoń Politechnika Wrocławska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 michal.marcinczuk@pwr.edu.pl

Bardziej szczegółowo

Diagramy obiegu dokumentów a UML w modelowaniu procesów biznesowych. Stanisław Niepostyn, Ilona Bluemke Instytut Informatyki, Politechnika Warszawska

Diagramy obiegu dokumentów a UML w modelowaniu procesów biznesowych. Stanisław Niepostyn, Ilona Bluemke Instytut Informatyki, Politechnika Warszawska Diagramy obiegu dokumentów a UML w modelowaniu procesów biznesowych Stanisław Niepostyn, Ilona Bluemke Instytut Informatyki, Politechnika Warszawska Wprowadzenie Modelowanie biznesowe jest stykiem między

Bardziej szczegółowo

OpenAI Gym. Adam Szczepaniak, Kamil Walkowiak

OpenAI Gym. Adam Szczepaniak, Kamil Walkowiak OpenAI Gym Adam Szczepaniak, Kamil Walkowiak Plan prezentacji Programowanie agentowe Uczenie przez wzmacnianie i problemy związane z rozwojem algorytmów Charakterystyka OpenAI Gym Biblioteka gym Podsumowanie

Bardziej szczegółowo

Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen

Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen Słowosiec 3.0 - leksykalna siec semantyczna je zyka polskiego i jej zastosowanie w analizie znaczen Paweł Ke dzia, Marek Maziarz, Maciej Piasecki i Piotr Pe zik * Politechnika ska Katedra Inteligencji

Bardziej szczegółowo

EXSO-CORE - specyfikacja

EXSO-CORE - specyfikacja EXSO-CORE - specyfikacja System bazowy dla aplikacji EXSO. Elementy tego systemu występują we wszystkich programach EXSO. Może on ponadto stanowić podstawę do opracowania nowych, dedykowanych systemów.

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

3 grudnia Sieć Semantyczna

3 grudnia Sieć Semantyczna Akademia Górniczo-Hutnicza http://www.agh.edu.pl/ 1/19 3 grudnia 2005 Sieć Semantyczna Michał Budzowski budzow@grad.org 2/19 Plan prezentacji Krótka historia Problemy z WWW Koncepcja Sieci Semantycznej

Bardziej szczegółowo

Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych

Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Narzędzia do automatycznego wydobywania słowników kolokacji i do oceny leksykalności połączeń wyrazowych Agnieszka Dziob, Marek Maziarz, Maciej Piasecki, Michał Wendelberger Politechnika Wrocławska Katedra

Bardziej szczegółowo

Narzędzia do wydobywania słowników związków frazeologicznych i terminów

Narzędzia do wydobywania słowników związków frazeologicznych i terminów Narzędzia do wydobywania słowników związków frazeologicznych i terminów Marek Maziarz, Michał Wendelberger Politechnika Wrocławska Instytut Informatyki Grupa Naukowa G4.19 marek.maziarz@pwr.edu.pl michal.wendelberger@pwr.edu.pl

Bardziej szczegółowo

Co to jest znaczenie? Współczesne koncepcje znaczenia i najważn. i najważniejsze teorie semantyczne

Co to jest znaczenie? Współczesne koncepcje znaczenia i najważn. i najważniejsze teorie semantyczne Co to jest znaczenie? Współczesne koncepcje znaczenia i najważniejsze teorie semantyczne Uniwersytet Kardynała Stefana Wyszyńskiego 1 Koncepcje znaczenia 2 3 1. Koncepcje referencjalne znaczenie jako byt

Bardziej szczegółowo

KRYTERIA OCENIANIA Z JĘZYKA ANGIELSKIEGO DLA KLASY VI

KRYTERIA OCENIANIA Z JĘZYKA ANGIELSKIEGO DLA KLASY VI Ocena celująca KRYTERIA OCENIANIA Z JĘZYKA ANGIELSKIEGO DLA KLASY VI Poziom kompetencji językowej ucznia wykracza poza wiadomości i umiejętności przewidziane dla klasy szóstej. - uczeń potrafi przyjąć

Bardziej szczegółowo

Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS

Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów

Bardziej szczegółowo

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki

Bardziej szczegółowo

Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek

Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Cel projektu Celem projektu jest przygotowanie systemu wnioskowania, wykorzystującego wybrane algorytmy sztucznej inteligencji; Nabycie

Bardziej szczegółowo

Funkcjonalność słów kluczowych pozwala na przypisanie zestawu słów do wykładowców, grup i sal, w celach wyszukiwania danych.

Funkcjonalność słów kluczowych pozwala na przypisanie zestawu słów do wykładowców, grup i sal, w celach wyszukiwania danych. Słowa kluczowe... 1 Wprowadzenie... 1 Słowa kluczowe- przedmioty... 1 Słowa kluczowe- grupy... 4 Słowa kluczowe- wykładowcy i przedmioty... 4 Słowa kluczowe To rozszerzenie dostępne jest dla użytkowników,

Bardziej szczegółowo

WYKŁAD 6. Reguły decyzyjne

WYKŁAD 6. Reguły decyzyjne Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł

Bardziej szczegółowo

Systemy uczące się Lab 4

Systemy uczące się Lab 4 Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego

Bardziej szczegółowo

Składowanie i dostęp do danych w rozproszonym systemie ochrony własności intelektualnej ANDRZEJ SOBECKI, POLITECHNIKA GDAŃSKA INFOBAZY 2014

Składowanie i dostęp do danych w rozproszonym systemie ochrony własności intelektualnej ANDRZEJ SOBECKI, POLITECHNIKA GDAŃSKA INFOBAZY 2014 Składowanie i dostęp do danych w rozproszonym systemie ochrony własności intelektualnej ANDRZEJ SOBECKI, POLITECHNIKA GDAŃSKA INFOBAZY 2014 Podstawowy proces gromadzenia Trudności: Weryfikacja dokumentu

Bardziej szczegółowo

Podstawy Informatyki. Algorytmy i ich poprawność

Podstawy Informatyki. Algorytmy i ich poprawność Podstawy Informatyki Algorytmy i ich poprawność Błędy Błędy: językowe logiczne Błędy językowe Związane ze składnią języka Wykrywane automatycznie przez kompilator lub interpreter Prosty sposób usuwania

Bardziej szczegółowo

Semantyczna analiza języka naturalnego

Semantyczna analiza języka naturalnego Semantyczna analiza języka naturalnego Rozwiązanie Applica oparte o IBM SPSS Modeler Piotr Surma Applica 2 Agenda O Applica Analiza tekstu w języku polskim - wyzwania Rozwiązanie Applica Analiza Tekstu

Bardziej szczegółowo

Systemy uczące się wykład 1

Systemy uczące się wykład 1 Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej

Bardziej szczegółowo

Recenzja rozprawy doktorskiej

Recenzja rozprawy doktorskiej Dr hab. Hung Son Nguyen Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski email: son@mimuw.edu.pl Warszawa, 20/4/2019 Recenzja rozprawy doktorskiej Tytuł: Metody semantycznej kategoryzacji

Bardziej szczegółowo

Spis treści tomu pierwszego

Spis treści tomu pierwszego Spis treści tomu pierwszego WSTĘP.... 11 DŹWIĘK JAKO ZJAWISKO FIZYCZNE...15 CHARAKTERYSTYKA AKUSTYCZNA I AUDYTYWNA DŹWIĘKÓW MOWY.. 17 SŁUCH...20 WYŻSZE PIĘTRA UKŁADU SŁUCHOWEGO...22 EMISJE OTOAKUSTYCZNE...25

Bardziej szczegółowo

Wydobywanie informacji oraz cech tekstów: analiza frekwencyjna

Wydobywanie informacji oraz cech tekstów: analiza frekwencyjna Wydobywanie informacji oraz cech tekstów: analiza frekwencyjna Maciej Piasecki, Tomasz Walkowiak Politechnika Wrocławska Grupa Naukowa G4.19 Katedra Inteligencji Obliczeniowej Wydział Informatyki i Zarządzania

Bardziej szczegółowo

UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji

UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji UCZENIE MASZYNOWE I SZTUCZNA INTELIGENCJA Jako narzędzia wspomagania decyzji w zarządzaniu kapitałem ludzkim organizacji Filip Wójcik Wydział Zarządzania, Informatyki i Finansów Instytut Informatyki Ekonomicznej

Bardziej szczegółowo

Wydobywanie informacji oraz cech tekstów: tworzenie prostych statystyk Część 1

Wydobywanie informacji oraz cech tekstów: tworzenie prostych statystyk Część 1 Wydobywanie informacji oraz cech tekstów: tworzenie prostych statystyk Część 1 Jan Kocoń, Tomasz Walkowiak Politechnika Wrocławska Grupa Naukowa G4.19 Katedra Inteligencji Obliczeniowej Wydział Informatyki

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY

METODY INŻYNIERII WIEDZY METODY INŻYNIERII WIEDZY WALIDACJA KRZYŻOWA dla ZAAWANSOWANEGO KLASYFIKATORA KNN ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

SI w procesach przepływu i porządkowania informacji. Paweł Buchwald Wyższa Szkoła Biznesu

SI w procesach przepływu i porządkowania informacji. Paweł Buchwald Wyższa Szkoła Biznesu SI w procesach przepływu i porządkowania informacji Paweł Buchwald Wyższa Szkoła Biznesu Początki SI John MC Carthy prekursor SI Alan Thuring pomysłodawca testu na określenie inteligencji maszyn Powolny

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Systemy Uczące się Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 16, 2017 1 Wprowadzenie 2 Uczenie nadzorowane 3 Uczenie bez nadzoru 4 Uczenie ze wzmocnieniem Uczenie się - proces

Bardziej szczegółowo

Świat rzeczywisty i jego model

Świat rzeczywisty i jego model 2 Świat rzeczywisty i jego model Świat rzeczywisty (dziedzina problemu) Świat obiektów (model dziedziny) Dom Samochód Osoba Modelowanie 3 Byty i obiekty Byt - element świata rzeczywistego (dziedziny problemu),

Bardziej szczegółowo