Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia I stopnia

Podobne dokumenty
Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia I stopnia

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia

Karta (sylabus) modułu/przedmiotu FIZYKA Inżynieria Materiałowa Studia I stopnia

Plan Zajęć. Ćwiczenia rachunkowe

Fizyka - opis przedmiotu

SYLABUS/KARTA PRZEDMIOTU

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne

Karta (sylabus) modułu/przedmiotu Mechatronika Studia I stopnia. MT 1 S _1 Rok:

Fizyka - opis przedmiotu

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19

SPIS TREŚCI ««*» ( # * *»»

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Znajomość matematyki i fizyki na poziomie podstawowym szkoły ponadgimnazjalnej

Fizyka - opis przedmiotu

KARTA MODUŁU KSZTAŁCENIA

Kurs przygotowawczy NOWA MATURA FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY

Fizyka - opis przedmiotu

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Rok akademicki: 2013/2014 Kod: EIT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Zagadnienia na egzamin ustny:

Rok akademicki: 2017/2018 Kod: NIM s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Materiał jest podany zwięźle, konsekwentnie stosuje się w całej książce rachunek wektorowy.

Semestr I. Semestr zimowy. Wykład Ćwiczenia Laboratorium Projekt Inne

Program nauczania dla szkół ponadgimnazjalnych z fizyki z astronomią o zakresie rozszerzonym K. Kadowski Operon 593/1/2012, 593/2/2013, 593/3/2013,

PRZEWODNIK PO PRZEDMIOCIE. Fizyka I. Logistyka inżynierska. niestacjonarne. I stopnia. Instytut Fizyki, WIPiTM. Dr Joanna Gondro.

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Program zajęć wyrównawczych z fizyki dla studentów Kierunku Biotechnologia w ramach projektu "Era inżyniera - pewna lokata na przyszłość"

Karta (sylabus) modułu/przedmiotu [Mechanika i Budowa Maszyn] Studia drugiego stopnia

Fizyka. Inżynieria Środowiska I (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

I. KARTA PRZEDMIOTU FIZYKA

Pole elektrostatyczne

Z-ID-106. Inżynieria Danych I stopień Praktyczny Studia stacjonarne Wszystkie Katedra Matematyki i Fizyki Prof. dr hab.

Rok akademicki: 2015/2016 Kod: EIB s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Karta (sylabus) przedmiotu MECHANIKA I BUDOWA MASZYN Studia stopnia I o profilu A P

KARTA KURSU. Physics. Kod Punktacja ECTS* 4

Z-ID-204. Inżynieria Danych I stopień Praktyczny Studia stacjonarne Wszystkie Katedra Matematyki i Fizyki Prof. dr hab.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016

4. Ruch w dwóch wymiarach. Ruch po okręgu. Przyspieszenie w ruchu krzywoliniowym Rzut poziomy Rzut ukośny

PRZEWODNIK PO PRZEDMIOCIE

Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia

PRZEWODNIK PO PRZEDMIOCIE

EiT_S_I_F1. Elektronika I Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

PRZEWODNIK PO PRZEDMIOCIE

SPIS TREŚCI I. MECHANIKA Kinematyka nauka o ruchu Dynamika Praca Prawo grawitacji Dynamika bryły sztywnej

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Wiedza z zakresu analizy I i algebry I

Fizyka dla Oceanografów #

KARTA PROGRAMOWA - Sylabus -

Opis efektów kształcenia dla modułu zajęć

ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA

Zapoznanie studentów z pojęciem fali,rodzajami fal i wielkosciami opisującymi ruch falowy. Nauczenie studentów rozwiązywania zadań z ruchu falowego

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

SYLABUS. Cele zajęć z przedmiotu

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia

ZAKRES MATERIAŁU DO MATURY PRÓBNEJ KL III

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

Plan realizacji materiału z fizyki.

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii

Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Fizyka A (0310-CH-S1-009)

Mechanika i Budowa Maszyn I stopień ogólnoakademicki stacjonarne wszystkie Katedra Mechaniki Prof. dr hab. Andrzej Radowicz

Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Semestr pierwszy

Podstawy fizyki IV - Optyka, Fizyka wspólczesna - opis przedmiotu

Zakres materiału do testu przyrostu kompetencji z fizyki w kl. II

KARTA PRZEDMIOTU 2 1,5

Rok akademicki: 2016/2017 Kod: RIA s Punkty ECTS: 9. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia

przykładowa KARTA INFORMACYJNA MODUŁU

Fizyka - zakres materiału oraz kryteria oceniania. w zakresie rozszerzonym kl 2 i 3

Transport I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

KARTA KURSU. Bioinformatyka, I stopień, stacjonarne, 2018/2019, semestr 1. Opis kursu (cele kształcenia)

MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia

Wykłady z fizyki i ćwiczenia rachunkowe dla studentów chemii

Kierunek i poziom studiów: Ochrona środowiska, pierwszy poziom

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Rok akademicki: 2017/2018 Kod: CIM s Punkty ECTS: 9. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

KARTA MODUŁU KSZTAŁCENIA

Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Warunki uzyskania oceny wyższej niż przewidywana ocena końcowa.

Mechanika i budowa maszyn Studia drugiego stopnia. [Współrzędnościowa technika pomiarowa] Rodzaj przedmiotu: [Język polski/j

Podstawowe informacje o przedmiocie (niezależne od cyklu)

Automatyka i Robotyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Księgarnia PWN: M.A. Herman, A. Kalestyński, L. Widomski Podstawy fizyki dla kandydatów na wyższe uczelnie i studentów

FIZYKA IV etap edukacyjny zakres rozszerzony

Przedmiot i metody fizyki, definicje, prawa, rola pomiarów, wielkości i układy jednostek SI.

Wykład FIZYKA II. Wprowadzenie. Dr hab. inż. Władysław Artur Woźniak. Instytut Fizyki Politechniki Wrocławskiej

KARTA PRZEDMIOTU. 1. Informacje ogólne. Nazwa przedmiotu i kod (wg planu studiów): FIZYKA, B3. Nazwa przedmiotu (j. ang.): Specjalność/specjalizacja:

KARTA MODUŁU KSZTAŁCENIA

Rok akademicki: 2030/2031 Kod: CCE s Punkty ECTS: 9. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia II stopnia. Wymiana ciepła i wymienniki w budowie śmigłowców Rodzaj przedmiotu:

FIZYKA. ENERGETYKA I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Podstawy fizyki / Władysław Bogusz, Jerzy Garbarczyk, Franciszek Krok. Wyd. 5 popr. Warszawa, Spis treści

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia I stopnia. Podstawy elektrotechniki i elektroniki Rodzaj przedmiotu: Język polski

FIZYKA Physics. forma studiów: studia niestacjonarne Liczba godzin/tydzień: 1W e,1s, 1Ćw 1W e,1ćw, 1L

Transkrypt:

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia I stopnia Przedmiot: FIZYKA Rodzaj przedmiotu: Podstawowy/obowiązkowy/fakultatywny Kod przedmiotu: MBM 1 S 0 2 03-0_0 Rok: I Semestr: 1 Forma studiów: Studia stacjonarne/studia niestacjonarne Rodzaj zajęć i liczba godzin w semestrze: 75 Wykład 30 Ćwiczenia 15 Laboratorium 30 Projekt 0 Liczba punktów ECTS: 6 Sposób zaliczenia: Egzamin/zaliczenie Język wykładowy: Język polski Cel przedmiotu C1 Zdobycie poszerzonej wiedzy z podstawowych obszarów fizyki klasycznej. C2 Zdobycie podstawowej wiedzy z fizyki współczesnej pozwalającej zrozumieć budowę materii Zdobycie umiejętności rozpoznawania i analizy zjawisk fizycznych oraz rozwiązywania C3 zagadnień technicznych w oparciu o prawa fizyki. Zdobycie umiejętności przeprowadzania pomiarów podstawowych wielkości fizycznych, C4 opracowywania wyników pomiarów i określania niepewności pomiarowej. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Posiada wiedzę z fizyki w zakresie programowym dla szkół średnich kończących się maturą. Posiada dostateczne umiejętności z matematyki w zakresie programu szkół średnich, w tym z 2 działań algebraicznych, własności funkcji oraz rachunku wektorowego. EK1 EK2 EK3 EK4 EK5 EK6 EK7 Efekty kształcenia W zakresie wiedzy: Ma wiedzę w zakresie fizyki klasycznej z mechaniki, hydrodynamiki, termodynamiki, elektryczności i magnetyzmu oraz optyki. Zna podstawowe zagadnienia z fizyki relatywistycznej oraz mechaniki kwantowej i jej związku z budową materii. Ma wiedzę w zakresie wykorzystania zjawisk fizycznych w urządzeniach technicznych. W zakresie umiejętności: Potrafi wykorzystać prawa i metody mechaniki do rozwiązywania typowych zagadnień z tej dziedziny oraz odpowiednie narzędzia do pomiarów podstawowych wielkości mechanicznych. Potrafi zastosować prawa i metody elektromagnetyzmu do pomiarów i obliczeń wielkości elektrycznych oraz magnetycznych. Potrafi wykorzystać poznane zasady i prawa fizyki fal do rozwiązywania typowych zadań i wykonywania pomiarów z optyki i akustyki. Potrafi zinterpretować uzyskane rezultaty obliczeń i pomiarów podstawowych wielkości fizycznych.

W1 W2 W3 W4 W5 W6 W7 W8 W9 EK8 EK9 W zakresie kompetencji społecznych: Umie pracować w zespole i ponosić odpowiedzialność za wspólnie realizowane zadania. Rozumie potrzebę stałego kształcenia się i rzetelniej realizacji zadań. przedmiotu Forma zajęć wykłady Fizyka jako nauka. Zakres i metodyka badań. Prawa i zasady fizyczne oraz modele. Przydatność fizyki w naukach technicznych. Wielkości fizyczne podstawowe i pochodne - ich jednostki oraz pomiar. Układy jednostek miar. Dokładność pomiarów i obliczeń. Wielkości skalarne i wektorowe. Przypomnienie podstaw rachunku wektorowego. Prezentacja elementarnych wiadomości z rachunku różniczkowego i całkowego. Kinematyka ruchu postępowego. Klasyfikacja ruchów. Ruchy prostoliniowe i pojęcia: położenie, droga, prędkość/szybkość, przyspieszenie. Rzut pionowy. Ruchy krzywoliniowe w dwóch i trzech wymiarach. Ruch po okręgu i rzut ukośny. Względność ruchu i układy odniesienia. Transformacja Galileusza prędkości i przyspieszenia. Dynamika ruchu postępowego. Podstawowe siły w przyrodzie. Zasady dynamiki Newtona i pojęcia: układ inercjalny, siła, masa, pęd i popęd siły. Układy nieinercjalne i siły bezwładności w ruchu postępowym oraz obrotowym. Praca siły zewnętrznej a zmiana energii kinetycznej w ruchu postępowym. Siły zachowawcze i energia potencjalna. Pole grawitacyjne i prawo grawitacji Newtona. Ciężar ciała. Zachowanie energii mechanicznej. Siły niezachowawcze. Tarcie posuwiste i toczne. Opór ośrodka. Dynamika układu punktów materialnych. Środek masy oraz ruch środka masy. Zasady zachowania energii mechanicznej, pędu i momentu pędu. Zderzenia doskonale niesprężyste i sprężyste ciał. Bryła sztywna. Energia kinetyczna ruchu obrotowego bryły i jej moment bezwładności. Twierdzenie Steinera. Moment pędu bryły sztywnej i warunki jego zachowania. II zasada dynamiki bryły sztywnej. Elementy szczególnej teorii względności. Doświadczenie Michelsona-Morleya. Stałość prędkości światła. Transformacja Lorentza. Dylatacja czasu. Relatywistyczne dodawanie prędkości. Zależność masy ciała od jego prędkości. Równoważność energii i masy. Drgania harmoniczne. Parametry ruchu swobodnego oscylatora harmonicznego. Drgania tłumione i logarytmiczny dekrement tłumienia. Drgania wymuszone i zjawisko rezonansu. Fale mechaniczne. Powstawanie, rozchodzenie się i parametry fal dźwiękowych. Fala harmoniczna płaska i jej równanie. Gęstość energii i natężenie fali dźwiękowej. Nakładanie się fal biegnących w kierunkach zgodnych i przeciwnych. Zjawisko Dopplera. Stany skupienia materii: ciało stałe, ciecz i gaz. Warunki zmiany stanu skupienia/ przejścia fazowego na przykładzie wody. Odkształcenia sprężyste i prawo Hooke a. Elementy hydromechaniki. Ciśnienie hydrostatyczne i zasada naczyń połączonych. Ciecz idealna. Hydrodynamika przepływów laminarnych - prawo ciągłości strugi i prawo Bernoulliego. Ciecz rzeczywista i lepkość cieczy wzór Newtona. Przepływy burzliwe a liczba Reynoldsa. Termodynamika. Układ termodynamiczny i jego parametry. Równanie stanu gazu doskonałego. Kinetyczno-molekularny model gazu doskonałego. Energia wewnętrzna. Zasada ekwipartycji energii. Ciepło i praca. Przepływ ciepła przez warstwę materiału wzór Fouriera. I i II zasada termodynamiki. Ciepło molowe gazu. Procesy odwracalne i nieodwracalne. Przemiany gazu doskonałego: izochoryczna, izobaryczna, izotermiczna i adiabatyczna. Cykl i sprawność silnika Carnota. Gazy rzeczywiste. Rozkład Maxwella prędkości cząsteczek. Elektryczność. Ładunki elektryczne i ich oddziaływanie. Natężenie pola elektrycznego. Potencjał elektryczny i powierzchnie ekwipotencjalne. Dipol elektryczny oraz dielektryki w zewnętrznym polu elektrycznym. Przenikalność dielektryczna materiałów. Kondensator płaski. Natężenie i gęstość prądu elektrycznego. Przepływ prądu elektrycznego w przewodnikach w ujęciu mikroskopowym. Prawo Ohma. Zależność oporu elektrycznego od geometrii i materiału przewodnika oraz jego temperatury.

Magnetyzm. Cechy i źródła pola magnetycznego. Działanie pola magnetycznego na ładunki w ruchu i przewodniki z prądem. Związek natężenia pola magnetycznego z natężeniem i geometrią prądu elektrycznego - prawo Ampere'a i prawo Biota-Savarta. Pole magnetyczne W10 dla przypadków: przewodnik prostoliniowy, kołowy, solenoid, toroid. Moment magnetyczny atomów a magnetyzacja materiałów. Indukcja elektromagnetyczna. Prawo Faradaya i reguła Lenza. Prawa Maxwella. Fale elektromagnetyczne. Wytwarzanie i podstawowe własności fal elektromagnetycznych. Widmo fal elektromagnetycznych. Optyka geometryczna i falowa. Promień świetlny, odbicie i załamanie światła. Prawo Snelliusa. Zwierciadło sferyczne i soczewka cienka ogniskowa i konstrukcja obrazu. Aberracja sferyczna i chromatyczna. Układy soczewek. Lupa i mikroskop optyczny. W11 Całkowite wewnętrzne odbicie. Budowa światłowodu. Wyjaśnienie praw odbicia i załamania światła z zasady Huygensa-Fresnela. Dyfrakcja i interferencja światła. Doświadczenie Younga i siatka dyfrakcyjna. Polaryzacja światła. Podstawy fizyki kwantowej. Promieniowanie temperaturowe. Ciało doskonale czarne. Prawa Kirchhoffa, Wiena i Stefana-Boltzmanna. Wzór Plancka i jego znaczenie dla współczesnej fizyki. Zjawisko fotoelektryczne zewnętrzne. Fotony i ich energia oraz pęd. Zjawisko W12 Comptona. Dualizm korpuskularno-falowy. Hipoteza de Broglie'a o istnieniu fal materii i jej doświadczalne potwierdzenie. Statystyczna interpretacja fal materii wg. Borna. Zasada działania transmisyjnego mikroskopu elektronowego. Równanie Schrödingera. Skwantowanie energii cząstki w jednowymiarowym pudle potencjału. Fizyka atomowa. Widma emisyjne atomów. Wzór Balmera. Hipotezy budowy atomu. Doświadczenie Rutherforda i odkrycie struktury atomu. Model Bohra atomu wodoru. Poziomy energetyczne i serie emisyjne wodoru. Poziomy energetyczne i rozkład elektronów W13 innych atomów. Energia elektronów w ciele stałym. Pasma energetyczne elektronów w przewodnikach, półprzewodnikach i izolatorach. Półprzewodniki samoistne i niesamoistne. Dioda półprzewodnikowa. Zasada działania diody LED. Elementy fizyki ciała stałego. Sieci i struktury krystaliczne. Wiązania w kryształach. Energia wiązania atomu w kryształach jonowym na przykładzie NaCl oraz kryształów gazów szlachetnych na przykładzie Ar. Metody określania struktury ciał krystalicznych. Dyfrakcja W14 rentgenowska. Prawo Bragga. Promieniowanie synchrotronowe. Aktualne problemy badawcze fizyki prezentacja wybranych osiągnięć i badań służących rozwojowi współczesnej techniki. W15 Pisemne zaliczenie wykładu Forma zajęć ćwiczenia ĆW1 Obliczenia liczbowe i operacje na jednostkach oraz rachunek wektorowy ĆW2 Kinematyka ruchu punktu materialnego ĆW3 Dynamika ruchu punktów materialnych ĆW4 Zasady zachowania w dynamice ĆW5 Dynamika bryły sztywnej ĆW6 Ruch drgający ĆW7 Kolokwium ĆW8 Ruch płynów ĆW9 Termodynamika ĆW10 Pole elektrostatyczne ĆW11 Prąd elektryczny ĆW12 Pole magnetyczne ĆW13 Optyka falowa. ĆW14 Optyka geometryczna. ĆW15 Kolokwium Forma zajęć laboratoria

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 P1 P2 Metody opracowania wyników pomiarów i szacowania niepewności pomiarowej. Wyznaczanie modułu Younga. Wyznaczanie przyspieszenia ziemskiego. Wyznaczanie momentu bezwładności brył nieregularnych. Badanie ruchu wahadła sprężynowego. Pomiary oporu elektrycznego. Pomiar współczynnika temperaturowego oporu metali Wyznaczanie długości fal świetlnych przy pomocy siatki dyfrakcyjnej. Wyznaczanie współczynnika załamania. Wyznaczanie współczynnika lepkości cieczy. Forma zajęć projekt Metody dydaktyczne 1 Wykład tradycyjny wspomagany narzędziami multimedialnymi. 2 Uzyskiwanie rozwiązań analitycznych podczas pracy grupowej albo indywidualnej. 3 Samodzielne lub zespołowe wykonywanie doświadczeń. 4 Obliczanie wartości poszukiwanej wielkości fizycznej z odpowiednią dokładnością. Metody i kryteria oceny Symbol metody Opis metody oceny Próg zaliczeniowy oceny O1 Zaliczenie pisemne z wykładu 60% O2 Kolokwium z ćwiczeń rachunkowych 60% O3 Aktywność na ćwiczeniach rachunkowych - O4 Zaliczenie ustne lub pisemne z laboratorium 50% O5 Umiejętność obsługi urządzeń pomiarowych 100% O6 Sprawozdania z wykonanych doświadczeń laboratoryjnych 100% Obciążenie pracą studenta Średnia liczba godzin na zrealizowanie Forma aktywności aktywności Godziny kontaktowe z wykładowcą, 78 w tym: Godziny kontaktowe z wykładowcą, realizowane w formie wykładu, ćwiczeń i 75 laboratorium łączna liczba godzin w roku akademickim Godziny kontaktowe z wykładowcą, realizowane w formie konsultacji i egzaminu 3 łączna liczba godzin roku akademickim Praca własna studenta, w tym: 57 Samodzielne przemyślenie treści wykładu 15 łączna liczba godzin roku akademickim

Przygotowanie się do laboratoriów łączna liczba godzin roku akademickim 10 Samodzielne wykonanie sprawozdań doświadczeń wykonanych w laboratorium 10 Samodzielne przygotowanie się do ćwiczeń rachunkowych 6 Przygotowanie się do kolokwium z ćwiczeń rachunkowych, kolokwiów z laboratorium i 16 zaliczenia wykładu Łączny czas pracy studenta 135 Sumaryczna liczba punktów ECTS dla przedmiotu: 6 Liczba punktów ECTS w ramach zajęć o charakterze praktycznym (ćwiczenia, 4 laboratoria, projekty) Literatura podstawowa D. Halliday, R. Resnick, J. Walker, Podstawy fizyki, tomy 1-5, Wydawnictwo Naukowe PWN, 1 Warszawa, 2003 2 D. Halliday, R. Resnick, Fizyka, tom1 i 2 (PWN, Warszawa, 1993) Z. Kamiński, W. Kamiński, Fizyka, tom 1 i 2, Wydawnictwa Naukowo-Techniczne, Warszawa 3 2009 A. K. Wróblewski, J. A. Zakrzewski, Wstęp do fizyki, tom 1-3, Wyd. Naukowe PWN, 4 Warszawa, 1984 5 J. Kalisz, M. Massalska, M. Massalski Zbiór zadań z fizyki, PWN, Warszawa, 1987 J. Meldizon, Materiały pomocnicze z fizyki, Wydawnictwa Uczelniane Politechniki Lubelskiej, 6 1999, wydanie 2 A. Zięba, Analiza danych w naukach ścisłych i technice, Wydawnictwo Naukowe PWN, 7 Warszawa 2013 Literatura uzupełniająca St. Rząd, Fizyka - pomoc dla kandydatów na uczelnie techniczne i medyczne, KAPRINT, 1 Lublin, 2015 2 M. A. Herman, A. Kalestyński, L. Widomski, Podstawy fizyki, PWN, Warszawa, 1995 Materiały do ćwiczeń w pracowni fizyki Katedry Fizyki Stosowanej teoria do ćwiczeń, 3 http://kfs.pollub.pl/pracowniakfs/kfs2012.htm W. Polak, Niepewności pomiarowe w pracowni fizycznej, 4 http://kfs.pollub.pl/pracowniakfs/niep_pom.pdf 5 J. Przystawa, Odkryj smak fizyki, Wydawnictwa Naukowe PWN, Warszawa, 2011 6 A. K. Wróblewski, Historia fizyki, Wydawnictwo Naukowe PWN, Warszawa, 2006

Efekt kształcenia EK1 EK2 EK3 EK4 EK5 EK6 Odniesienie danego efektu kształcenia do efektów zdefiniowanych dla całego programu (PEK) MBM1A_W04 MBM1A_W16 MBM1A_W06 MBM1A_K01 MBM1A_W08 MBM1A_U07 MBM1A_U19 MBM1A_W18 IBM1A_W02 Macierz efektów kształcenia Cele przedmiotu C1 Treści programowe W1-4, W6-11, ĆW1-10, L2-10 Metody dydaktyczne Metody oceny 1, 2, 3, 4 O1, O2, O4 C2 W5, W12-14 1 O1 C1, C2, C4 C1, C3, C4 W1, W11-14, L1 W2-4, W6, ĆW2-6, L3-5 1, 3 O1, O5 2, 3, 4 C1, C3, C4 ĆW10-12, L6-7 2, 3, 4 C1, C3, C4 W6, W11, ĆW13-14, L8, L9 2, 3, 4 O2, O3, O4, O5, O6 O2, O3, O4, O5, O6 O2, O3, O4, O5, O6 EK7 MBM1A_U19 C3, C4 W1, L1-10 2, 4 O2, O3, O6 ĆW1-6, MBM1A_U04 EK8 C4 ĆW8-14 2, 3 O3, O5 MBM1A_K03 L1-10 EK9 MBM1A_K01 MBM1A_K04 C1, C2, C4 W1, W14-15 L1-10, ĆW7, CW15 1, 3, 4 O1, O2, O3, O4, O5, O6 Autor programu: Adres e-mail: Jednostka organizacyjna: Dr Wiesław Polak w.polak@pollub.pl Katedra Fizyki Stosowanej PL