SYMULACJA PROCESU ODLEWANIA Z ZASTOSOWANIEM FORMY WIRTUALNEJ



Podobne dokumenty
SYMULACJA NUMERYCZNA KRZEPNIĘCIA KIEROWANEGO OCHŁADZALNIKAMI ZEWNĘTRZNYMI I WEWNĘTRZNYMI

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

IDENTYFIKACJA PODSTAWOWYCH ZASTĘPCZYCH WSPÓŁCZYNNIKÓW TERMOFIZYCZNYCH MASY FORMIERSKIEJ W ZALEŻNOŚCI OD GRUBOŚCI ŚCIANKI ODLEWU

TERMOFIZYCZNE PARAMETRY MATERIAŁÓW IZOLACYJNYCH W ZASTOSOWANIACH DO PROJEKTOWANIA ZASILANIA ODLEWÓW I SYMULACJI ICH KRZEPNIĘCIA

z wykorzystaniem pakiet MARC/MENTAT.

SPEKTRALNE CIEPŁO KRYSTALIZACJI ŻELIWA SZAREGO

EKSPERYMENTALNE MODELOWANIE STYGNIĘCIA ODLEWU W FORMIE

BADANIA ŻELIWA CHROMOWEGO NA DYLATOMETRZE ODLEWNICZYM DO-01/P.Śl.

OKREŚLANIE ZALEŻNOŚCI POMIĘDZY CZASEM KRYSTALIZACJI EUTEKTYCZNEJ A ZABIELANIEM ŻELIWA. Z. JURA 1 Katedra Mechaniki Teoretycznej Politechniki Śląskiej

IDENTYFIKACJA TERMOFIZYCZNYCH WŁAŚCIWOŚCI MAS FORMIERSKICH Z DODATKIEM MIKRO-OCHŁADZALNIKÓW. Al. Piastów 19, Szczecin

9/37 ZJAWISKA PRZEPŁYWU CIEPŁA I MASY W PROCESIE WYPEŁNIANIA FORMY CIEKŁYM METALEM

IDENTYFIKACJA ODDZIAŁYWANIA OCHŁADZALNIKÓW NA KRZEPNIĘCIE ODLEWÓW STALIWNYCH. Z. IGNASZAK 1 Politechnika Poznańska

POLE TEMPERA TUR W TECHNOLOGII WYKONANIA ODLEWÓW WARSTWOWYCH

WYKORZYSTANIE SYSTEMU Mathematica DO ROZWIĄZYWANIA ZAGADNIEŃ PRZEWODZENIA CIEPŁA

PRZYCZYNKI DO SYMULACJI KOMPUTEROWEJ KRZEPNIĘCIA ODLEWÓW STOSOWANYCH W PRZEMYŚLE. Instytut Odlewnictwa 2, 3

KOMPUTEROWA SYMULACJA POLA TWARDOŚCI W ODLEWACH HARTOWANYCH

WPŁYW SZYBKOŚCI KRZEPNIĘCIA NA UDZIAŁ GRAFITU I CEMENTYTU ORAZ TWARDOŚĆ NA PRZEKROJU WALCA ŻELIWNEGO.

LEJNOŚĆ KOMPOZYTÓW NA OSNOWIE STOPU AlMg10 Z CZĄSTKAMI SiC

ANALIZA PROCESU ZAPEŁNIENIA WNĘKI CIEKŁYM STOPEM W METODZIE PEŁNEJ FORMY.

WŁAŚCIWOŚCI TERMOFIZYCZNE OTULIN IZOLACYJNO- EGZOTERMICZNYCH OZNACZANE METODĄ ZAGADNIEŃ ODWROTNYCH

BADANIA SKURCZU LINIOWEGO W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA STOPU AlSi 6.9

WPŁYW DOBORU ZASTĘPCZEJ POJEMNOŚCI CIEPLNEJ ŻELIWA NA WYNIKI OBLICZEŃ NUMERYCZNYCH

BADANIA SKURCZU LINIOWEGO W OKRESIE KRZEPNIĘCIA I STYGNIĘCIA STOPU AlSi 5.4

PROBLEM KORELACJI KRYTERIÓW GRADIENTOWYCH ZE STANEM WAD SKURCZOWYCH

Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu

ŻELIWNE ŁOŻYSKA ŚLIZGOWE ODPORNE NA ZUŻYCIE ŚCIERNE

REJESTRACJA PROCESÓW KRYSTALIZACJI METODĄ ATD-AED I ICH ANALIZA METALOGRAFICZNA

KRZEPNIĘCIE KOMPOZYTÓW HYBRYDOWYCH AlMg10/SiC+C gr

WIELOMIANOWE MODELE WŁAŚCIWOŚCI MECHANICZNYCH STOPÓW ALUMINIUM

SZACOWANIE GRADIENTU W ANALITYCZNYM I NUMERYCZNYM ROZWIĄZANIU POLA TEMPERATURY

ASSESSMENT OF ANALYTICAL MATHODS OF SOLIDIFICATION PROCESS AND INGOT FEEDHEAD SIZE DETERMINATION

OKREŚLENIE WŁAŚCIWOŚCI MECHANICZNYCH SILUMINU AK132 NA PODSTAWIE METODY ATND.

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH

ODLEWNICTWO Casting. forma studiów: studia stacjonarne. Liczba godzin/tydzień: 2W, 1L PRZEWODNIK PO PRZEDMIOCIE

Numeryczna symulacja rozpływu płynu w węźle

WYZNACZANIE MINIMALNEJ GRUBOŚCI WLEWU DOPROWADZAJĄCEGO

Proces wykonywania modeli z nowej generacji mas modelowych stosowanych w metodzie wytapianych modeli analiza symulacyjna

ZASTOSOWANIE PAKIETU FLUX2D DO ANALIZY POLA ELEKTROMAGNETYCZNEGO I TEMPERATURY W NAGRZEWNICY INDUKCYJNEJ DO WSADÓW PŁASKICH

NUMERYCZNA SYMULACJA NAPRĘŻEŃ I DEFORMACJI W ODLEWACH MOŻLIWOŚCI I KOSZTY ANALIZY

ANALIZA BELKI DREWNIANEJ W POŻARZE

NUMERYCZNA SYMULACJA PROCESU KRZEPNIĘCIA NADLEWU W FORMIE Z MODUŁEM IZOLACYJNYM

OBRÓBKA CIEPLNA SILUMINU AK132

LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH

The development of the technological process in an integrated computer system CAD / CAM (SerfCAM and MTS) with emphasis on their use and purpose.

DWUTEOWA BELKA STALOWA W POŻARZE - ANALIZA PRZESTRZENNA PROGRAMAMI FDS ORAZ ANSYS

BADANIE DOKŁADNOŚCI WYMIAROWEJ W METODZIE ZGAZOWYWANYCH MODELI

WPŁYW SZYBKOŚCI STYGNIĘCIA NA PARAMETRY KRYSTALIZACJI ŻELIWA CHROMOWEGO

WPŁYW WŁAŚCIWOŚCI TERMOFIZYCZNYCH TWORZYWA NADSTAWKI NADLEWU NA GEOMETRIĘ JAMY SKURCZOWEJ

METODA ELEMENTÓW SKOŃCZONYCH

ANALIZA PROCESU ZALEWANIA I KRZEPNIĘCIA ODLEWÓW ZE STALIWA STOPOWEGO PRZEZNACZONEGO DO PRACY W NISKICH TEMPERATURACH

TEORETYCZNY MODEL PANEWKI POPRZECZNEGO ŁOśYSKA ŚLIZGOWEGO. CZĘŚĆ 3. WPŁYW ZUśYCIA PANEWKI NA ROZKŁAD CIŚNIENIA I GRUBOŚĆ FILMU OLEJOWEGO

EKSPERYMENTALNO SYMULACYJNY SPOSÓB IDENTYFIKACJI STREFY PRZEWILŻONEJ W FORMIE. ul. Piotrowo 3, Poznań 2 Odlewnia Żeliwa FERREX Sp. z o. o.

Rozkład wartości temperatury w monokrystalicznym odlewie z nadstopu niklu CMSX-4 wytwarzanym metodą Bridgmana

SIMULATION STUDY OF VIRTUAL MODEL OF CENTRIFUGAL CLUTCH WITH ADJUSTABLE TORQUE POWER TRANSFER IN ASPECT OF HEAT FLOW

ZASTOSOWANIE OCHŁADZALNIKA W CELU ROZDROBNIENIA STRUKTURY W ODLEWIE BIMETALICZNYM

Analiza wymiany ciepła w przekroju rury solarnej Heat Pipe w warunkach ustalonych

Materiały szkoleniowe

TEMPERATURY KRYSTALIZACJI ŻELIWA CHROMOWEGO W FUNKCJI SZYBKOŚCI STYGNIĘCIA ODLEWU

BADANIA SYMULACYJNE ROZKŁADU CIŚNIENIA AKUSTYCZNEGO W OBIEKTACH O RÓŻNEJ SKALI

WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA

MODELOWANIE NUMERYCZNE POWSTAWANIA NAPRĘŻEŃ W KRZEPNĄCYCH ODLEWACH

Badanie dylatometryczne żeliwa w zakresie przemian fazowych zachodzących w stanie stałym

EMPIRYCZNE WYZNACZENIE PRAWDOPODOBIEŃSTW POWSTAWANIA WARSTWY KOMPOZYTOWEJ

Badania charakterystyki sprawności cieplnej kolektorów słonecznych płaskich o zmniejszonej średnicy kanałów roboczych

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

WPL YW SPOSOBU DOPROW ADZENIA CIEKLEGO MET ALU DO FORMY MET AL OWEJ NA ELIMINACJĘ POROWATOŚCI TESTOWYCH ODLEWÓW

Recenzja rozprawy doktorskiej mgr inż. Joanny Wróbel

Tematy Prac Magisterskich Katedra Inżynierii Procesów Odlewniczych

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING

Odlewnicze procesy technologiczne Kod przedmiotu

1. Wprowadzenie: dt q = - λ dx. q = lim F

ANALIZA ODLEWANIA ŻELIWA CHROMOWEGO W FORMIE PIASKOWEJ - FIZYCZNE MODELOWANIE STYGNIĘCIA

IDENTYFIKACJA CHARAKTERYSTYCZNYCH TEMPERATUR KRZEPNIĘCIA ŻELIWA CHROMOWEGO

ANALIZA RUCHU CIEPŁA W MIKROOBSZARZE KOMPOZYTU ZBROJONEGO CZĄSTKAMI SiC

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej

Techniki wytwarzania - odlewnictwo

MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH ZEWNĘTRZNYCH WYKONANYCH Z UŻYCIEM LEKKICH KONSTRUKCJI SZKIELETOWYCH

OBLICZANIE POZIOMU CIEKŁEGO METALU W NADLEWACH ZA

WYKORZYSTANIE METODY ELEMENTÓW SKOŃCZONYCH W MODELOWANIU WYMIANY CIEPŁA W PRZEGRODZIE BUDOWLANEJ WYKONANEJ Z PUSTAKÓW STYROPIANOWYCH

ROLA TRWAŁOŚCI FRONTU KRYSTALIZACJI W ODLEWACH KRZEPNĄCYCH W POLU MAGNETYCZNYM

OKREŚLANIE WŁASNOŚCI MECHANICZNYCH SILUMINU AK20 NA PODSTAWIE METODY ATND

ZASTOSOWANIE SZTUCZNEJ SIECI NEURONOWEJ DO WYZNACZANIA PARAMETRÓW OBRÓBKI CIEPLNEJ ODLEWÓW STALIWNYCH

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów

STEROWANIE PROCESEM KRZEPNIĘCIA ODLEWU W TECHNOLOGII MODELI CIEPLNIE ZGAZOWYWANYCH. Instytut Odlewnictwa, ul. Zakopiańska 73, Kraków 3

PARAMETRY EUTEKTYCZNOŚCI ŻELIWA CHROMOWEGO Z DODATKAMI STOPOWYMI Ni, Mo, V i B

MODELOWANIE ODLEWANIA CIĄGŁEGO WLEWKÓW ZE STOPU AL

PRZEWODNIK PO PRZEDMIOCIE

FEM, generacja siatki, ciepło

PROPOZYCJA METODY OKREŚLANIA IZOLACYJNOŚCI CIEPLNEJ OKNA PODWÓJNEGO. 1. Wprowadzenie

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

WPŁYW TEMPERATURY ODLEWANIA NA INTENSYWNOŚĆ PRZEPŁYWU STOPÓW Al-Si W KANALE PRÓBY SPIRALNEJ BINCZYK F., PIĄTKOWSKI J., SMOLIŃSKI A.

SPOSÓB WYZNACZANIA MAKSYMALNEGO PRZYROSTU TEMPERATURY W PROCESIE TARCIA METALI

ZNACZENIE POWŁOKI W INŻYNIERII POWIERZCHNI

Modelowanie zagadnień cieplnych: analiza porównawcza wyników programów ZSoil i AnsysFluent

XIV KONFERENCJA CIEPŁOWNIKÓW

Tematy Prac Magisterskich Katedra Inżynierii Stopów i Kompozytów Odlewanych

METODA ELEMENTÓW SKOŃCZONYCH

Politechnika Poznańska. Zakład Mechaniki Technicznej. Metoda Elementów Skończonych Lab. Wykonali: Antoni Ratajczak. Jarosław Skowroński

ANALIZA NUMERYCZNA DEFORMACJI WALCOWEJ PRÓBKI W ZDERZENIOWYM TEŚCIE TAYLORA

Transkrypt:

2/38 Solidification of Metals and Alloys, No. 38, 1998 Krzepnięcie Metali i Stopów, nr 38, 1998 PAN Katowice PL ISSN 0208-9386 SYMULACJA PROCESU ODLEWANIA Z ZASTOSOWANIEM FORMY WIRTUALNEJ IGNASZAK Zenon Instytut Technologii Materiałów, Politechnika Poznańska 61-138 Poznań, ul. Piotrowo 3 STRESZCZENIE Podczas przygotowania obliczeń symulacyjnych (pre-processing) napotyka się na problem proporcji podobszarów (objętości) układu odlew forma. W metodach FDM i FEM stosowane są różne zabiegi podczas objętościowego siatkowania (meshing) zespołu formy, aby przypisać odlewowi maksimum elementów. W obu metodach możliwe jest zastąpienie formy rzeczywistej formą wirtualną (zwaną też formą implicit). W artykule omówiono zagadnienia związane ze stosowaniem form wirtualnych oraz podano sposób definiowania charakterystyk termofizycznych formy wirtualnej dwumateriałowej. 1. WPROWADZENIE Jednym z ważnych problemów jaki spotyka podczas przygotowywania komputerowej symulacji procesów w układzie odlew forma (faza pre-processingu), zarówno w metodzie różnic skończonych (FDM) jak i elementów skończonych (FEM), jest właściwe zdefiniowanie jego przestrzennej dyskretyzacji. Wiadomo, iż ze względu na szybkość obliczeń na stacji roboczej i/lub czas symulacji CPU (ograniczenia rzędu kilku do kilkunastu dni) nie jest uzasadnione maksymalizowanie ilości elementów. Ze względu na oczywisty i technologicznie uzasadniony stosunek objętości zajmowanej przez odlew i formę, w większości przypadków, odlew reprezentowany bywa np. przez 10-20 % elementów. Resztę zajmuje forma. Sytuacja ta bywa nieco korzystniejsza jeżeli stosowana jest metoda FEM (elementów skończonych). Stosowane są zatem w FDM i FEM różne zabiegi podczas objętościowego siatkowania (meshing) zespołu formy, tak aby przypisać odlewowi możliwie najwięcej elementów. Niemniej zarówno w metodzie FDM jak i w FEM opłacalne jest zastąpienie formy rzeczywistej formą wirtualną (zwaną też virtual, implicit - ang. lub paroi nodale - fran.). Jej formalne geometryczno fizyczne ukształtowanie stanowi powłoka. Trudność polega na odpowiednim zdefiniowaniu parametrów termofizycznych tej powłoki reprezentujących rzeczywiste cieplne oddziaływanie formy, podczas całego procesu odlewania.

20 W artykule omówiono zagadnienia związane ze stosowaniem form wirtualnych oraz podano przykład definiowania charakterystyk termofizycznych formy dwumateriałowej (forma piaskowa z ochładzalnikami). 2. PARAMETRY TERMOFIZYCZNE FORMY PARAMETRY I ICH MIEJSCE W BAZACH DANYCH KODÓW SYMULACYJNYCH Stosowany w symulacji procesów odlewniczych jako wiodący model przepływu ciepła Fouriera-Kirchhoffa umożliwia, mimo stosowania wielu uproszczeń, uzyskanie efektywnych opisów zjawisk i rozwiązań na drodze numerycznej [1]. Analiza zjawisk zachodzących w krzepnącym odlewie oraz w przejmującej ciepło formie prowadzi do stwierdzenia konieczności dysponowania odpowiednimi wartościami wielkości fizycznych (parametrów termofizycznych) wchodzących do zapisu modeli zjawisk, w których wymiana ciepła odgrywa pierwszorzędną rolę. Oznacza to po pierwsze, że formalny sens tych parametrów musi być zgodny z naturą prawa fizyki (równania) a po drugie powinien odpowiadać przyjętym w modelu uproszczeniom danego zjawiska w stosunku do jego rzeczywistego przydatność wyników symulacji wypełniania formy pod znakiem zapytania. Autor zaproponował także nowe i oryginalne w skali światowej ujęcie dynamicznych zmian cieplnej chłonności masy formierskiej wyrażonej zastępczym współczynnikiem przewodności cieplnej w funkcji aktualnej temperatury i stanu degradacji masy wyrażonej tzw. historią termiczną [3]. Biorąc jednak pod uwagę aktualne możliwości dostępnego dla odlewni sprzętu komputerowego jak i wzmiankowany znaczny udział ilości elementów reprezentują- przebiegu. Na przykład, przewodność cieplna masy formierskiej (jako złożonego wieloskładnikowego ciała porowatego, o niskiej stabilności termicznej) musi być interpretowana w kategoriach współczynnika pozornego zwanego też zastępczym [2]. Dla matematycznej poprawności modelu (Fouriera-Kirchhoffa) wystarczająca jest jego konkretna wartość liczbowa. W takim przypadku zatraca się fizyczne aspekty zachodzących w masie zjawisk, które dla wielu twórców oraz użytkowników odlewniczych kodów symulacyjnych mają znaczenie drugorzędne. Głównym celem symulacji jest odlew i prognozowanie jego jakości, a więc zjawiska bezpośredniego powstawania struktury odlewu i kreowania jego właściwości użytkowych. Stąd formie biorącej udział w procesie odlewania, zachodzącym w niej pod wpływem temperatury procesom fizyko-chemicznym i dynamicznym zmianom jej zdolności do przejmowania energii cieplnej, poświęca się mniej uwagi. Autor od wielu lat prowadzi badania nad możliwościami opisu termofizycznych charakterystyk materiałów formy [2,3]. Uporządkował i podał zasady stosowania tych charakterystyk do symulacji zjawisk cieplnych w układzie odlew forma. Jak wykazano w pracy [4], biorąc pod uwagę rzeczywiste rozproszenie parametrów termofizycznych, największy wpływ na potencjalny błąd wyniku obliczeń ma wynikająca z analizy zagadnienia niepewność co do współczynnika przewodności cieplnej materiału formy (rys. 1). Problem ten jest niezwykle istotny np. wtedy, gdy proces ma charakter szoku cieplnego (zalewanie formy) lub materiał formy ulega silnym przemianom fizykochemicznym (otuliny izolacyjne). Obliczony z symulacji spadek (a więc i rozkład) temperatury metalu po odlaniu do formy często odbiega rażąco od rzeczywistości, co stawia

21 cych masę w układzie odlew forma, sposób ten może być stosowany na razie do małych zadań, o relatywnie małej ilości elementów. Error in solid.time, % 10 5 0-5 -10 density spec.heat therm.conduct. latent heat -25-20 -15-10 -5 0 5 10 15 20 25 Error in steel properties, % Error in solid.time, % 100 75 50 25 0-25 -50 thermal conductivity density & specific heat -50-40 -30-20 -10 0 10 20 30 40 50 Error in sand properties, % Rys. 1 Wpływ rzeczywistych błędów parametrów termofizycznych staliwa i masy na względny błąd czasów krzepnięcia odlewów. Fig. 1 Influence of thermophysical parameters real errors of steel and mold sand on the relative error in solidification time of castings. Poszczególne kody symulacyjne proponują do tej pory w swoich bazach dane dotyczące mas formierskich i warunków brzegowych odlew forma (rzadko podając źródła) w postaci stałych wartości współczynników (λ przewodność cieplna, c ciepło właściwe, ρ gęstość pozorna, α uogólniony lub umowny współczynnik przejmowania ciepła) lub wartości j.w. w funkcji temperatury (w postaci tablic). Niestety są one jeszcze dalekie od doskonałości a czasem zawierają ewidentne błędy. Sposobem proponowanym także przez niektóre kody (Simulor, ProCast) lub możliwym do wprowadzenia w innych jest zastąpienie formy przez warunek brzegowy (forma implicit). W kodzie Simulor wprowadzono pojęcie ściany węzłowej (paroi nodale). Dla jej zdefiniowania należy podać uśrednione współczynniki (λ,c,ρ) oraz średnią grubość warstwy masy w formie[5]. W kodzie ProCast pojęciu forma wirtualna odpowiada skrzynka piaskowa (sand box), której przypisuje się wymiary a także podstawowe właściwości a odpowiednia procedura (analytical solution) wylicza rozpływ ciepła w formie z uwzględnieniem kształtu

22 odlewu, uwzględniając m.in obecność rdzeni i węzłów cieplnych [6]. W obu kodach operator nie może ingerować w istotę procedury obliczenia zastępczego warunku brzegowego. W [7] zaproponowano odtworzenie parametrów definiujących warunek brzegowy II lub III rodzaju przez pomiar i dopasowywanie wyników symulacji do przebiegu zarejestrowanej temperatury w odlewie w funkcji czasu. Ten sposób może być stosowany tylko dla odlewów o prostych kształtach, np. typu walec, płyta, bez węzłów cieplnych i form jednolitych. 3. FORMA WIRTUALNA DWUMATERIAŁOWA Przedstawione powyżej sposoby definiowania formy wirtualnej były oparte o założenie, że reprezentowana forma jest wykonana z jednolitej masy. Stosowanie ochładzalników zewnętrznych formalnie uniemożliwia bezpośrednie korzystanie z tego uproszczenia formy. Dla potrzeb konkretnego odlewu z żeliwa (27 ton) autor zaproponował praktyczne rozwiązanie tego problemu. Znając powierzchnie kontaktu odlew forma odpowiednio zajmowanej przez ochładzalniki i przez masę piaskową (F och i F pias ) oraz z wartości zastępczego współczynnika akumulacji ciepła dla form z ochładzalnikami (własne badania), obliczono efektywne (stałe) wartości λ e (od 2,76 do 1,80 W/m K), c e (od 796 do 910 J/kg K) oraz ρ e (od 3300 do 5580 kg/m 3 ), w zależności od sposobu rozmieszczenia ochładzalników [8]. Dokładniejsze rozwiązanie przypadku formy z ochładzalnikami wymagało poszerzenia programu badań [9,10]. Przyjęto następującą procedurę dla odtworzenia warunku brzegowego (rozwiązanie zadania odwrotnego): - opracowanie geometryczne cząstkowego modelu systemu O-F (reprezentatywny fragment układu O-F) i jego rozwiązanie symulacyjne (stosowano m.in. kod ABAQUS), - uwiarygodnienie (walidacja) wyników modelowania numerycznego z użyciem danych eksperymentalnych, modyfikacja danych materiałowych i warunków brzegowych, - wyznaczenie parametru reprezentującego zastępczy warunek brzegowy, - przygotowanie modelu pełnej geometrii odlewu z wykorzystaniem obliczonego warunku brzegowego i realizacja obliczeń symulacyjnych wraz z końcową walidacją przez porównanie z eksperymentem. Zadanie sprowadzało się zatem do wyznaczenia takiej zależności na współczynnik wymiany ciepła - α, aby strumień ciepła q przepływający z odlewu do formy był równoważny strumieniowi ciepła wg warunku Newtona (III rodzaju): q = α (T o -T ot ) gdzie T o jest temperaturą w powierzchniowym (lub przypowierzchniowym) węźle odlewu a T ot -temperaturą środowiska (otoczenie o nieograniczonej pojemności cieplnej). Obliczone dla okresu krzepnięcia odlewu staliwnego zmiany zastępczego współczynnika wymiany ciepła między odlewem i ochładzalnikiem wyrażono w funkcji temperatury T o : α och = 0,69 T o - 620 [W/m 2 K] a między odlewem a formą piaskową: α p = 20 W/m 2 K (dla temperatury powierzchni odlewu poniżej 1490 o C), α p = 4,266 T o - 6337 (dla temperatury powierzchni odlewu powyżej 1490 o C). W przypadku ochładzalnika, w α och uwzględniono istnienie szczeliny ze średnim współczynnikiem wymiany ciepła α= 500 W/m 2 K, wynikającym z charakteru procesu skur-

23 czowego i zwilżalności ochładzalnika stalowego przez warstwę krzepnącego staliwa. Wartość ta pochodzi z uśrednienia rzeczywistej zmienności cieplnego oporu szczeliny, która to wartość szybko rośnie z czasem nagrzewania ochładzalnika. Odpowiadająca wartość współczynnika wymiany ciepła maleje zatem od wartości równej kilka tysięcy na początku procesu do 200-300 W/m 2 K. α och α pias 100 ODLEW α pias a. b. ochładz alnik piase k 38 38 38 38 40 78 122 166 99 101 103 109 128 179 246 296 187 191 200 217 254 320 385 425 311 320 338 370 425 488 538 570 486 498 523 563 616 666 704 727 683 696 721 755 795 830 856 872 843 853 872 900 929 954 973 984 938 946 961 982 1005 1024 1041 1049 948 956 969 988 1009 1028 1043 1053 416 416 416 416 416 416 416 418 piasek ochładza lnik pias ek 38 38 38 38 38 76 132 193 105 105 105 110 132 197 296 367 197 201 209 229 272 359 449 502 332 340 359 395 463 545 609 648 517 531 559 606 670 730 777 802 723 737 766 805 851 894 926 944 887 901 923 955 987 1019 1040 1054 990 1001 1019 1044 1069 1093 1111 1122 1012 1019 1033 1054 1079 1101 1118 1129 438 438 438 438 438 438 438 438 piasek Rys. 2 Porównanie obliczonych czasów krzepnięcia [s] odlewu staliwnego w formie dwumateria- łowej, a odlew w formie rzeczywistej, b odlew w formie wirtualnej (współczynniki zastępcze).

24 Fig. 2 Comparison of calculated solidification times [s] of the steel cast in the bi-material mould, a cast in the real mould, b cast in the virtual mould (substitutional coefficients). Na rys. 2 porównano czasy krzepnięcia odlewu staliwnego (płyta 100 mm) we wszystkich węzłach siatki podziału odlewu (zagadnienie osiowo symetryczne): z symulacji zawierającej pełne ujęcie materiałowe i z symulacji z zastosowaniem warunków brzegowych [9]. Wyniki tych obliczeń świadczą o zadowalającej zgodności czasów krzepnięcia w poszczególnych węzłach, bowiem generalnie różnice nie przekraczają 10%. Maksymalny czas krzepnięcia w osi cieplnej jest zgodny z eksperymentem wykonanym w ramach pracy [11]. LITERATURA [1] Mochnacki B., SuchyJ.S. Modelowanie i symulacja krzepnięcia odlewów. PWN Warszawa, 1993. [2] Ignaszak Z. Właściwości termofizyczne materiałów formy w aspekcie sterowania procesem krzepnięcia odlewów. Rozprawy nr 211, Wydawnictwo Politechniki Poznańskiej, Poznań 1989. [3] Ignaszak Z. La conductivité thermique substitutive du moule. Une nouvelle méthode de mesure pour la simulation de la solidification des pièces. Fond.- Fond. d'aujourd'hui 121, janvier 1993. [4] Ignaszak Z., Hueber N. Discussion on the Simulation Model Sensivity to the Material Properties. Proceedings of International Conference MECHANIKA 96, KTU, Kaunas, 2-3 april 1996. [5] Rigaut C. i in. SIMULOR - code de calcul de simulation. Version 2.2, wyd. PECHINEY, Voreppe 1995. [6] UES / Calcom What is new in ProCast. Version 3.1.0, September 1997. [7] Zhao L., Sahajwalla V., Pehlke R.D. An engineering approach to dynamic boundary conditions in numerical simulation of casting solidification processes. Int.J.Cast Metals Res., 1997, nr 10, s.125-129. [8] Ignaszak Z. Conditions paroi nodale pour une pièce en fonte GS. Rapport interne. Ferry- Capitain, janvier 1997. [9] Ignaszak Z. i in. Aplikacja zastępczego warunku brzegowego złożonego układu termomechanicznego dla potrzeb symulacji procesów z przemianą fazową. Badania statutowe IKB PP 11-0/ DPB/97. [10] Ignaszak Z. I inni Heat transfer substitute boundary condition for multimaterial system. Proceedings of XIII Polish Conference on Computer Methods in Mechanics, 5-8 may 1997, Poznań, Poland. [11] Z.Ignaszak i inni - Niekonwencjonalna metoda doskonalenia ścisłości odlewów z identyfikacją i weryfikacją procesów..., Proj.bad KBN 7 T08B 024, Poznań 1997. CASTING PROCESS SIMULATION WITH APPLICATION OF VIRTUAL MOULD ABSTRACT During simulation pre-processing preparation, the problem of sand cast metal proportion is observed. In both FDM and FEM methods the different meshing interventions are used to

25 maximize a quantity of metal elements. The virtual (implicite) mould is considerated as a the correct and possible solution. In the paper these problems are described as well as one example of virtual bi-material mould parameters are presented.