Analiza wpływu właściwości dynamicznych przyrządów pomiarowych na dokładność pomiarów wybranych parametrów środowiska

Podobne dokumenty
Regulacja adaptacyjna w anemometrze stałotemperaturowym

Skuteczność korekcji temperaturowej w termoanemometrycznych systemach pomiarowych

Analiza statycznych warunków pracy czujnika termoanemometrycznego w układzie stałotemperaturowym w zależności od średnicy włókna pomiarowego

Metodyka analizy wzorcowych przepływów wykorzystywanych w badaniach własności anemometrycznych przyrządów pomiarowych

Zaawansowane narzędzia metrologiczne w pomiarach wybranych parametrów środowiska. Optymalizowany dynamicznie termoanemometryczny system pomiarowy

Analiza właściwości dynamicznych detektorów propagacji fali temperaturowej w przepływie powietrza i mieszaniny powietrze dwutlenek węgla

Modyfikacja metody wyznaczania pasma przenoszenia anemometru z nagrzanym elementem pomiarowym

Laboratoryjny system do badania charakterystyk kątowych czujników anemometrycznych

Zintegrowana sonda do wielopunktowych, współczasowych pomiarów pól temperatury i prędkości przepływu gazu

Badania przepływów dynamicznych w tunelu aerodynamicznym przy użyciu cyfrowej anemometrii obrazowej

Termoanemometr z możliwością wyznaczania wektora prędkości w płaszczyźnie

PRZEGLĄD GÓRNICZY 2015

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Badania właściwości metrologicznych zintegrowanych głowic do wielopunktowych pomiarów pól prędkości i temperatury przepływu gazu

WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych

Wykorzystanie naturalnych fluktuacji parametrów przepływu do pomiaru wektora prędkości

Instytut Mechaniki Górotworu PAN, ul Reymonta 27; Kraków. Streszczenie

Własności dynamiczne przetworników pierwszego rzędu

Aplikacja wspomagająca pomiary termoanemometryczne

PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL

Zastosowanie złożonych wymuszeń fali temperaturowej w absolutnej metodzie pomiaru prędkości przepływu gazów

Charakterystyki metrologiczne cienkowarstwowych sensorów platynowych w zastosowaniu do wielopunktowych pomiarów pola prędkości przepływu

NIEPEWNOŚĆ POMIARÓW POZIOMU MOCY AKUSTYCZNEJ WEDŁUG ZNOWELIZOWANEJ SERII NORM PN-EN ISO 3740

Analiza właściwości filtrów dolnoprzepustowych

Optymalizacja rozmieszczenia czujników w sondzie do monitorowania oddechu w aspekcie pomiaru zwrotu wektora prędkości przepływu

Pomiary strumienia objętości przepływu w aspekcie dynamiki anemometrycznych czujników pomiarowych

Hybrydowy termoanemometryczny system pomiaru składowych wektora prędkości przepływu powietrza. np. w wyrobisku górniczym.

Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:

Analiza pola prędkości wokół anemometru skrzydełkowego

Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej

Badania wpływu zaburzeń profilu prędkości powietrza na pomiary wykonywane anemometrami stacjonarnymi różnych typów

Analiza właściwości filtra selektywnego

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G

LABORATORIUM PODSTAW TELEKOMUNIKACJI

Optymalizacja konfiguracji przestrzennej układu pomiarowego nadajnik-detektory w metodzie fal cieplnych

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

Anemometr z falą cieplną generowanie i analiza sygnału

ATU2001 PROGRAM. wersja 2.6 PROGRAM DO OBSŁUGI OŚMIOKANAŁOWEGO MODUŁU TERMOANEMOMETRU STAŁOTEMPERATUROWEGO I TERMOMETRU STAŁOPRĄDOWEGO

Sposoby opisu i modelowania zakłóceń kanałowych

Koncepcja precyzyjnego pomiaru parametrów przepływów gazów w zakresie małych prędkości z uwzględnieniem zmiany zwrotu i temperatury

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji

Metody analizy sygnału anemometru z drgającym grzanym włóknem

Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej

Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi:

OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA

BŁĘDY W POMIARACH BEZPOŚREDNICH

STEROWANIE STRUKTUR DYNAMICZNYCH Model fizyczny semiaktywnego zawieszenia z tłumikami magnetoreologicznymi

Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia:

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna

BADANIA WYBRANYCH CZUJNIKÓW TEMPERATURY WSPÓŁPRACUJĄCYCH Z KARTAMI POMIAROWYMI W LabVIEW

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych

Właściwości dynamiczne cyfrowego anemometru skrzydełkowego

Badanie widma fali akustycznej

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Nowa metoda pomiaru małych prędkości w tunelu aerodynamicznym

METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH

Optymalizacja właściwości dynamicznych anemometru z wirującym elementem pomiarowym

Układy regulacji i pomiaru napięcia zmiennego.

Intensywność turbulencji w nowym tunelu aerodynamicznym Instytutu Mechaniki Górotworu PAN cz. I

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

Tranzystor bipolarny LABORATORIUM 5 i 6

Politechnika Białostocka

Numeryczna symulacja rozpływu płynu w węźle

WZMACNIACZ NAPIĘCIOWY RC

WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej

Imię i nazwisko (e mail) Grupa:

Ćwiczenie - 7. Filtry

Laboratorium Elektroniczna aparatura Medyczna

INSTRUKCJA DO ĆWICZENIA NR 7

Sposób wielopunktowego sprawdzania anemometrów skrzydełkowych w rzeczywistych warunkach ich pacy

WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych

Struktura oprogramowania i możliwości metrologiczne sterowanego komputerowo wielokanałowego termoanemometrycznego systemu pomiarowego

Wybrane algorytmy sterowania eksperymentalnymi badaniami termoanemometrycznymi

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

PRZEWODNIK PO PRZEDMIOCIE

POMIAR HAŁASU ZEWNĘTRZNEGO SAMOLOTÓW ŚMIGŁOWYCH WG PRZEPISÓW FAR 36 APPENDIX G I ROZDZ. 10 ZAŁ. 16 KONWENCJI ICAO

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku

Filtry aktywne filtr środkowoprzepustowy

POMIAR CZĘSTOTLIWOŚCI NAPIĘCIA W URZĄDZENIACH AUTOMATYKI ELEKTROENERGETYCZNEJ

Analiza teoretyczna i opracowanie założeń oraz prognozowanie niepewności i obszaru aplikacyjnego systemu pomiarowego anemometru wibracyjnego

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

ATU 08 OŚMIOTOROWY MODUŁ STAŁOTEMPERATUROWO STAŁOPRĄDOWY DO POMIARÓW ANEMOMETRYCZNO TERMOMETRYCZNYCH

Badanie możliwości wykorzystania siły poosiowej anemometru skrzydełkowego do kompensacji zawyżania wyniku pomiaru prędkości zmiennych

Weryfikacja numeryczna modelu propagacji fal cieplnych w płynącym gazie

E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

A3 : Wzmacniacze operacyjne w układach liniowych

Ćw. 1&2: Wprowadzenie do obsługi przyrządów pomiarowych oraz analiza błędów i niepewności pomiarowych

Wykresy statystyczne w PyroSim, jako narzędzie do prezentacji i weryfikacji symulacji scenariuszy pożarowych

Badania przepływów dynamicznych w tunelu aerodynamicznym przy użyciu termoanemometru trójwłóknowego

KOOF Szczecin:

Źródła zasilania i parametry przebiegu zmiennego

Implementacja metod znaczników termicznych w pomiarach prędkości przepływu gazów w aerologii górniczej

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNEJ D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 7. Badanie jakości regulacji dwupołożeniowej.

Podstawy elektroniki i miernictwa

Transkrypt:

Prace Instytutu Mechaniki Górotworu PAN Tom 16, nr 3-4, grudzień 14, s. 31-36 Instytut Mechaniki Górotworu PAN Analiza wpływu właściwości dynamicznych przyrządów pomiarowych na dokładność pomiarów wybranych parametrów środowiska PAWEŁ JAMRÓZ, KATARZYNA SOCHA, PAWEŁ LIGĘZA, ELŻBIETA POLESZCZYK, PRZEMYSŁAW SKOTNICZNY, MACIEJ BUJALSKI Instytut Mechaniki Górotworu PAN; ul. Reymonta 27, 30-09 Kraków Streszczenie W artykule przedstawiono analizę właściwości dynamicznych termoanemometrów stosowanych jako wzorce dynamiczne w pomiarach niestacjonarnych przepływów prędkości. Na podstawie wybranych termoanemometrycznych czujników do pomiaru prędkości przepływu dokonano analizy generowanego sygnału prędkości przez moduł wymuszeń dynamicznych w tunelu aerodynamicznym. Słowa kluczowe: dynamika aparatury pomiarowej, pomiary w przepływach niestacjonarnych 1. Wstęp Systemy i urządzenia pomiarowe opisywane są zwyczajowo zestawem parametrów mówiących o ich zakresach pomiarowych, rozdzielczości, szeroko pojętej dokładności, czy warunkach środowiskowych, w jakich dany przyrząd może funkcjonować. Parametry te często stanowią podstawę wyboru danego urządzenia w określonej aplikacji pomiarowej i niejednokrotnie są one wystarczające, aby taki wybór mógł być dokonany właściwie. Istnieje jednak grupa pomiarów, dla których konieczne staje się uzupełnienie stawianych wymagań dla przyrządów pomiarowych o parametry opisujące ich własności dynamiczne. Grupę tą stanowią pomiary wielkości fizycznych zmiennych w czasie. W przypadku takich pomiarów kluczowe staje się pytanie czy dane urządzenie pomiarowe nadąży za zmianami sygnału mierzonego i jaki wpływ na wynik pomiaru posiadać będzie mała inercja wykorzystywanego czujnika. Ma to szczególne znaczenie w poszukiwaniach i badaniach wzorców wymuszeń dynamicznych dla różnych wielkości fizycznych. Problem wykorzystania włóknowego czujnika termoanemometrycznego o znikomej inercji jako wzorca w pomiarach niestacjonarnych przepływów o zmiennej prędkości i temperaturze przedstawiony został w [1] i [2]. W przeprowadzonych badaniach wykazano, że pomimo zastosowania włókna o średnicy 3 μm jako wzorca w pomiarze zmiennej temperatury, jej wpływ okazał się na tyle duży, że wyniki pomiarów, mających na celu zbadanie zależności między właściwościami dynamicznymi wolniejszych czujników, wykazywały cechy niejednoznaczności. W przypadku konieczności kompleksowego określenia cech przepływu związanych z jego prędkością, naturalnym staje się wybór termoanemometrycznej aparatury pomiarowej jako narzędzia pomiarowego. Ma to związek z unikalnymi cechami termoanemometrów wykorzystujących cienkie włókna pomiarowe, pozwalające wykonywać pomiary sygnałów, w których występują składowe o wysokich częstotliwościach. Termoanemometry takie wykorzystano między innymi jako wzorce odniesienia w badaniach metod wyznaczania własności dynamicznych anemometrycznych czujników termistorowych i napylanych wykorzystywanych do pomiaru niskich prędkości [3].

32 Paweł Jamróz, Katarzyna Socha, Paweł Ligęza, Elżbieta Poleszczyk, Przemysław Skotniczny... 2. Wpływ właściwości dynamicznych termoanemometru na wynik pomiaru niestacjonarnej prędkości przepływu Parametry, związane z własnościami dynamicznymi przyrządów pomiarowych, wykorzystujących sygnał elektryczny jako informację o wartości mierzonej wielkości fizycznej, opisywane są przy pomocy zestawu charakterystyk związanych z ich pasmem przenoszenia. W klasycznej interpretacji pasmo przenoszenia układów obejmuje zakres częstotliwości sygnałów, w którym tłumienie sygnału nie jest większe niż 3 db. W przypadku termoanemometrów, przyjmuje się, że w zależności od rodzaju urządzenia, grubości włókna, poziomu nagrzania włókna, czy prędkości przepływu pasmo przenoszenia dla sond o średnicy 3 μm oscyluje w okolicach 80 khz, natomiast dla sond μm 0 khz. Z uwagi na brak możliwości generowania okresowych, szybkozmiennych przepływów w rzeczywistych warunkach, dynamika termoanemometrów wyznaczana jest na podstawie testów częstotliwościowych, w których zaburzenie generowane jest przez generator wpięty w jedną z gałęzi mostka termoanemometru, a częstotliwość graniczna określana jest na podstawie odpowiedzi układu pomiarowego na to zaburzenie [4]. Uzyskanie charakterystyk opisujących dynamiczne własności termoanemometrów z wykorzystaniem zmiennego przepływu możliwe jest na drodze symulacyjnej. W tym celu opracowuje się modele wybranych układów termoanemometrycznych i na ich podstawie przeprowadza badania tak jak to przedstawiono w [] i [6]. Na podstawie takich modeli możliwe było opracowanie charakterystyki amplitudowo częstotliwościowej dla sondy 3 i μm przy prędkości średniej przepływu m/s. Wynik symulacji przedstawiono na rysunku 1. Wzmocnienie [db] 0-3 - Sonda 3 m Sonda m -1 1 0 80 0 0 Cz stotliwo [khz] Rys. 1. Pasmo przenoszenia termoanemometru Wyznaczone pasma przenoszenia dla poszczególnych sond pomiarowych odpowiadają wartościom opisywanym przez producentów różnych układów termoanemometrycznych. Należy jednak pamiętać, że każdy układ tego typu musi być rozpatrywany indywidualnie, z uwagi na silną zależność własności dynamicznych od indywidualnych nastaw i parametrów elektronicznych całego systemu, a nie jedynie sondy pomiarowej. W przypadku pomiarów mających na celu określenie własności wzorcowych wymuszeń dynamicznych użyteczniejsza do analizy jest postać umożliwiająca określenie chwilowych wartości błędów dynamicznych powstających przy sygnałach zawierających składowe różnych częstotliwości. Na rysunku 2 przedstawiono odpowiedź modelu termoanemometru na dynamiczne wymuszenie sinusoidalne o częstotliwościach od 0,1 do 0 khz. Prezentacja taka pozwala zobaczyć różnice między chwilowymi wartościami sygnału wymuszenia, a odpowiedzią modelowanego termoanemometru. W analizowanym przypadku dla sondy 3 μm do częstotliwości 7 khz oraz 4 khz dla sondy μm, sygnał wymuszenia i odpowiedzi pokrywają się, po czym wraz ze wzrostem częstotliwości sygnału wymuszenia różnice pomiędzy nimi stają się coraz bardziej widoczne. W celu dokładnego określenia tych różnic wprowadzono kryterium maksymalnego błędu dynamicznego Δ max wyznaczonego z zależności (1). max max vm( i) vt( i) (1) gdzie: v m (i) kolejne (i-te) próbki modelowanej prędkości przepływu, v t (i) kolejne (i-te) próbki modelowanej odpowiedzi termoanemometru.

Analiza wpływu właściwości dynamicznych przyrządów pomiarowych na dokładność... 33 Rys. 2. Odpowiedź modelu termoanemometru na dynamiczne wymuszenie sinusoidalne max [m/s] 1.4 1.2 1 0.8 0.6 0.4 0.2 Sonda 3 m Sonda m 0 0 40 60 80 Cz stotliwo [khz] Rys. 3. Maksymalny błąd dynamiczny pomiaru termoanemometrem w funkcji częstotliwości wymuszenia Błąd ten został przedstawiony na rysunku 3. Obraz ilościowy uzyskanego wyniku symulacyjnego pokazuje, że pomimo pozornej zgodności sygnału wymuszenia i odpowiedzi w zakresie niskich częstotliwości istnieją pewne różnice między tymi sygnałami zarówno dla sondy μm, jak i dla sondy szybszej o średnicy włókna 3 μm. O różnicach tych należy pamiętać podczas analizowania wyników pomiarów z użyciem termoanemometrycznych sond włóknowych jako wzorców prędkości w pomiarach niestacjonarnych przepływów.

34 Paweł Jamróz, Katarzyna Socha, Paweł Ligęza, Elżbieta Poleszczyk, Przemysław Skotniczny... 3. Termoanemometr jako wzorzec prędkości dla wymuszeń dynamicznych Problematyka pomiarów z uwzględnieniem własności dynamicznych przyrządów pomiarowych i ich wpływu na wyniki pomiarów, stanowi aktualne zagadnienie poruszane w trakcie prowadzenia badań nad opracowywaną i wykorzystywaną aparaturą w Instytucie Mechaniki Górotworu PAN. Dotyczy to w szczególności aparatury związanej z pomiarem prędkości przepływu, tj. termoanemometrów oraz anemometrów skrzydełkowych [7]. W roku 13 Instytut Mechaniki Górotworu PAN zakupił nowe narzędzie do badań aparatury pomiarowej w postaci nowoczesnego tunelu aerodynamicznego wyposażonego w moduł generowania przepływów zmiennych w czasie [8]. Zadaniem tego modułu jest generowanie zaburzenia prędkości przepływu w sposób zbliżony do sinusoidalnego o częstotliwości nie mniejszej niż 1 Hz. Moduł ten w przyszłości ma posłużyć jako wzorcowe wymuszenie niestacjonarnego przepływu o zmiennej prędkości, na podstawie którego możliwe będzie badanie właściwości dynamicznych różnego rodzaju aparatury do pomiaru prędkości przepływu. Aby jednak moduł ten mógł być wykorzystany jako wzorzec wymuszeń dynamicznych koniecznym jest jego przebadanie i dokładne określenie rodzaju generowanego przez niego zmiennego przepływu. Z przeprowadzonej w rozdziale 2 analizy wynika, że dla generowanych częstotliwości sygnału prędkości w zakresie 1 Hz, możliwe jest wykorzystanie dowolnego włókna termoanemometrycznego spełniającego rolę dynamicznego wzorca pomiarowego. Na rysunku 4 przedstawiono przykładowe rejestracje pojedynczych okresów wymuszenia dynamicznego generowanego w tunelu, które zostały zarejestrowane przez sondy z włóknami o średnicach 3, i 8 μm z częstotliwością khz. 2 Sonda 3 m 1 0 0.1 0.2 0.3 0.4 0. 0.6 0.7 0.8 0.9 1 czas [s] Sonda m 2 1 0 0.1 0.2 0.3 0.4 0. 0.6 0.7 0.8 0.9 1 czas [s] Sonda 8 m 2 1 0 0.1 0.2 0.3 0.4 0. 0.6 0.7 0.8 0.9 1 czas [s] Rys. 4. Sygnał wymuszenia dynamicznego generowanego przez moduł wymuszeń dynamicznych Analiza uzyskanych wyników pomiarowych wskazuje na duże podobieństwo rejestrowanych wyników przez każdą z sond pomiarowych. Wszystkie zarejestrowały zamiany sygnału o podobnych amplitudach mieszczących się w granicach od, do 2 m/s. Wszystkie z użytych sond wykazały również silne zaburzenia w prędkości przepływu w przedziałach czasu, w których prędkość ta maleje. Na rysunku widoczne są silne stany dynamiczne począwszy od maksimum aż do wartości odpowiadającej minimum sygnału prędkości. Wykorzystanie termoanemometrów włóknowych, pomimo ich bardzo dobrych właściwości dynamicznych niejednokrotnie jest niemożliwe z uwagi na ich ograniczoną wytrzymałość mechaniczną i wrażliwość na zmienne warunki pomiarowe. W standardowych pomiarach używane są termoanemometry wykorzystujące termistory półprzewodnikowe, czujniki napylane oraz termorezystory w osłonach. Właściwości dynamiczne

Analiza wpływu właściwości dynamicznych przyrządów pomiarowych na dokładność... 3 14 12 8 6 4 2 Pt0 0,8 mm Pt0 1,4 mm 0 0 30 40 0 t [s] Rys.. Odpowiedź dynamiczna termoanemometrów Pt0 wymuszenie skokowe takich czujników uzależnione są od ich kształtów, rozmiarów oraz typów stosowanych osłon. Poznanie własności dynamicznych takich czujników sprowadza się w praktyce do badania każdego z nich z osobna. Jako przykład przeprowadzono badanie termoanemometrycznych sond pomiarowych wykorzystujących platynowe termorezystory Pt0 w osłonie ceramicznej o średnicach 0,8 oraz 1,4 mm. Z uwagi na dużą wytrzymałość, termoanemometry takie wykorzystywane są w trudnych warunkach pomiarowych np. w warunkach kopalnianych [9]. W celu analizy dynamiki takich czujników wykonano dwa eksperymenty. W pierwszym z nich na czujniki pomiarowe znajdujące się w stanie równowagi termicznej skierowano strugę powietrza o prędkości 12, m/s, symulując wymuszenie skokowe. Zarejestrowane przebiegi odpowiedzi dynamicznej badanych czujników na wymuszenie skokowe odpowiadają charakterystyce odpowiedzi skokowej obiektów inercyjnych pierwszego rzędu o niejednostkowym wzmocnieniu t vt () k 1 e gdzie: v(t) rejestrowana odpowiedź czujnika na wymuszenie skokowe, k współczynnik wzmocnienia, τ stała czasowa. Wykorzystując funkcję fminsearch w środowisku obliczeń numerycznych MATLAB wyznaczono wartości współczynników wzmocnienia i stałych czasowych, które wynoszą odpowiednio: wzmocnienie k = 12,8, stała czasowa τ = 2,7 s dla czujnika o średnicy 0,8 mm oraz k = 13,1, τ = 6,9 s dla czujnika o średnicy 1,4 mm. W drugim eksperymencie umieszczono badane czujniki w komorze wymuszenia dynamicznego w tunelu aerodynamicznym i rejestrowano ich odpowiedzi na okresowe zmiany prędkości. Równocześnie z badanymi czujnikami umieszczony został wzorcowy czujniki termoanemometryczny rejestrujący chwilowe zmiany prędkości. Zarejestrowane sygnały odpowiedzi badanych czujników przedstawiono na rysunku 6. Eksperyment wykazał, że wymuszenie w postaci 1 Hz fali realizowanej przez moduł wymuszeń dynamicznych nie może być zastosowane do testowania podobnych układów pomiarowych. Jest ono za szybkie i o zbyt dużym gradiencie prędkości w stanach dynamicznych, w związku z czym odpowiedzi dynamiczne badanych czujników nie nadążały za jego zmianami. (2) 2 wolfram 3 m Pt0 0,8 mm 2 wolfram 3 m Pt0 1,4 mm 1 1 0 0.2 0.4 0.6 0.8 1 t [s] 0 0.2 0.4 0.6 0.8 1 t [s] Rys. 6. Odpowiedź dynamiczna termoanemometrów Pt0 moduł wymuszeń dynamicznych

36 Paweł Jamróz, Katarzyna Socha, Paweł Ligęza, Elżbieta Poleszczyk, Przemysław Skotniczny... 4. Wnioski Przeprowadzone eksperymenty pomiarowe pokazują potencjalne możliwości wykorzystania modułu wymuszeń dynamicznych do testowania właściwości dynamicznych czujników prędkości przepływu. Aby jednak moduł ten mógł być wykorzystany wymagana jest analiza sygnału przez niego generowanego. W celu wykonywania złożonych badań, związanych z analizowaniem właściwości dynamicznych różnych czujników i systemów do pomiaru prędkości przepływu, konieczna jest też modernizacja stanowiska pomiarowego w celu zapewnienia płynnej regulacji częstotliwości generowanego sygnału w zakresie do 1 Hz. Praca została wykonana w roku 14 w ramach prac statutowych realizowanych w IMG PAN w Krakowie, finansowanych przez Ministerstwo Nauki i Szkolnictwa Wyższego. Literatura [1] Jamróz P., Nabielec J., Adaptive sensors for dynamic temperature measurements. [W:] K. Iniewski (red.), Smart Sensors for Industrial Applications, CRC Pres, 13. [2] Jamróz P., Nabielec J., Wzorcowanie w pomiarach dynamicznych. Pomiary Automatyka Kontrola, nr 06, s. 26-28, 13. [3] Melikov A., Popiolek Z., Comparison of different methods for the determination of dynamic characteristics of low velocity anemometers. Measurement Science and Technology, Vol. 1, p. 1709-171, 04. [4] Freymuth P., Frequency response and electronic testing for constant-temperature hot-wire anemometers. Journal of Physics E.: Scientific Instruments; vol. : p. 70-7, 1977. [] Ligęza P., Układy termoanemometryczne-struktura, modelowanie, przyrządy i systemy pomiarowe. vol. 98 from the series Rozprawy Monografie. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Cracow, 01. [6] Jamróz P & Ligęza P., Socha K., Dynamic properties of hot-wire anemometric measurement circuits in the aspect of measurements in mine condition. Archives of Mining Sciences, vol. 7, Issue 3, p. 699-714, 12. [7] Kruczkowski J., Wpływ własności dynamicznych czujnika anemometru skrzydełkowego na dokładność pomiaru prędkości przepływu powietrza w wyrobisku kopalnianym. Praca doktorska, IMG PAN, 1999. [8] Bujalski M., Gawor M., Sobczyk J. Tunel aerodynamiczny o obiegu zamkniętym, ze stabilizacją temperatury i wilgotności powietrza, przystosowany do pomiarów metodami optycznymi. Prace IMG PAN, Tom 1, nr 1-2, 13. [9] Ligęza P., Poleszczyk E. Skotniczny P. Method and the system of spatial measurement of velocity fi eld of air fl ow in a mining heading. Archives of Mining Sciences, Vol. 4, no 3, p. 419-440, 09. Impact of the dynamic properties of measuring instruments on the measurement accuracy of selected environmental parameters Abstract The article presents the analysis of the dynamic properties of the hot-wire sensor utilized as the measurement standard in case of the non-stationary flow condition. The analysis of the flow signal generated by the non-stationary flow generator was realized on the basis of the selected hot-wire anemometer sensors. Keywords: dynamic properties of the hot-wire sensors, non-stationary flow