KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki

Podobne dokumenty
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

... KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki. Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie instrukcję.

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy. Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie instrukcję.

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP WOJEWÓDZKI

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Rejonowy

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

KONKURS PRZEDMIOTOWY MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW ETAP WOJEWÓDZKI

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM. Etap Wojewódzki

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/ minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2010/2011

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Rejonowy

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2016/2017

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY. 18 listopada 2013 r. godz. 13:00

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI

IV KROŚNIEŃSKI KONKURS MATEMATYCZNY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Rejonowy

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z MATEMATYKI dla uczniów szkół podstawowych 2018/2019

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Rejonowy

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

60 minut. Powodzenia! Pracuj samodzielnie. X Edycja Gminnego Turnieju Matematycznego dla uczniów klas VI szkół podstawowych Rachmistrz Gminy Jedlicze

KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2016/2017

60 minut. Powodzenia! Pracuj samodzielnie.

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

V KROŚNIEŃSKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z MATEMATYKI dla uczniów szkół podstawowych 2018/2019

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2016/ minut. Pracuj samodzielnie. Powodzenia! Finał 5 maja 2017 roku. Zestaw dla uczniów

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015

II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

WYPEŁNIA KOMISJA KONKURSOWA

120 min pkt. Skrót przedmiotowy konkursu gma /2019 (numer porządkowy z kodowania) Imię i nazwisko ucznia

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY

KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. Finał 20 kwietnia 2012 roku. Zestaw dla uczniów klas VI

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP Wojewódzki

Egzamin ósmoklasisty Matematyka

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018

WOJEWÓDZKI KONKURS MATEMATYCZNY

MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z MATEMATYKI dla uczniów szkół podstawowych 2018/2019

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2009/2010

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI

WYPEŁNIA KOMISJA KONKURSOWA. Nr zadania Razem Liczba punktów możliwych do zdobycia

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2016/2017

WOJEWÓDZKI KONKURS PRZEDMIOTOWY

TABELA ODPOWIEDZI. kod ucznia

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

Kuratorium Oświaty w Lublinie KONKURS MATEMATYCZNY DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ZESTAW ZADAŃ KONKURSOWYCH ROK SZKOLNY 2018/2019 ETAP TRZECI

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2017/2018 ETAP TRZECI

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2013/2014

WOJEWÓDZKI KONKURS MATEMATYCZNY

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2016/2017 ETAP SZKOLNY - 8 listopada 2016 roku

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013

KONKURS z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2017/2018 ETAP TRZECI

WOJEWÓDZKI KONKURS MATEMATYCZNY ROK SZKOLNY 2017/2018

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

WOJEWÓDZKI KONKURS MATEMATYCZNY

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP OKRĘGOWY. Instrukcja dla ucznia

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY

IV WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z MATEMATYKI dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów 2018/2019

III WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP:

KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. Finał 20 IV 2012 roku. Zestaw dla uczniów klas IV

Zestaw dla uczniów klas II

Transkrypt:

pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie instrukcję. Arkusz liczy 10 stron i zawiera 21 zadań oraz brudnopis. Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej. Zadania czytaj uważnie i ze zrozumieniem. Odpowiedzi wpisuj czarnym lub niebieskim długopisem bądź piórem. Dbaj o czytelność pisma i precyzję odpowiedzi. W zadaniach od 1 do 17 prawidłową odpowiedź zaznacz stawiając znak X na literze poprzedzającej treść wybranej odpowiedzi lub oceń każdą wypowiedź jako prawdziwą lub fałszywą stawiając znak X w odpowiedniej kolumnie w tabeli, lub uzupełnij lukę. Jeżeli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz znakiem X inną odpowiedź. W zadaniach otwartych (zadania od 18 do 21) przedstaw kompletny tok rozumowania prowadzący do rozwiązania. Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym. Obok każdego numeru zadania podaną masz maksymalną liczbę punktów możliwą do uzyskania za jego rozwiązanie. Pracuj samodzielnie. Postaraj się prawidłowo odpowiedzieć na wszystkie pytania. Nie używaj korektora. Jeśli się pomylisz, przekreśl błędną odpowiedź i wpisz poprawną. Nie używaj kalkulatora. Powodzenia! Czas pracy: 90 minut Liczba punktów możliwych do uzyskania: 50 Strona 1 z 10

Zadanie 1 (0 1) Dodając liczbę 2016 do największej liczby trzycyfrowej i dzieląc otrzymaną sumę przez największą liczbę jednocyfrową otrzymamy liczbę równą: A. 335 B. 235 C. 227 D. 353 Zadanie 2 (0 1) Arbuz jest o kg cięższy od tego arbuza. Ile waży arbuz? A. kg B. 4 kg C. 3 kg D. 4,5 kg Zadanie 3 (0 1) Liczby a i b spełniają warunki: a b 0 i a b 0. Wobec tego: A. a 0 i b 0 B. a 0 i b 0 C. a 0 i b 0 D. a b 0 Zadanie 4 (0 1) Bilet do kina, który kosztuje 15 zł można kupić w przedsprzedaży internetowej za 12 zł. O ile procent tańszy jest ten bilet w przedsprzedaży internetowej? A. o 20% B. o 25% C. o 30% D. o 15% Zadanie 5 (0 2) 360 zł podzielono w stosunku 5:4. Większą część podzielono następnie w stosunku 3:5. Najmniejsza z tych części jest równa: A. 270 zł B. 75 zł C. 60 z D. 125 zł Zadanie 6 (0 2) Na pierwszej półce stało x książek, a na drugiej y książek, przy czym x > y. Ela przełożyła z pierwszej półki na drugą jedną książkę. O ile więcej jest teraz książek na pierwszej półce niż na drugiej? A. x y - 2 B. x y + 1 C. x y 1 D. x 1 y + 1 Zadanie 7 (0 2) Pomalowano całą powierzchnię sześcianu i zużyto 3,63 litra farby. Potrzeba 0,5 litra farby na 1 m 2 powierzchni. Jaka jest suma długości wszystkich krawędzi sześcianu? A. 19,2 m B. 16,8 m C. 14,4 m D. 13,2 m Strona 2 z 10

Zadanie 8 (0 2) W prostokącie umieszczono 6 identycznych okręgów jak na rysunku. Wierzchołki małego prostokąta są środkami czterech z tych okręgów. Wiadomo, że obwód małego prostokąta jest równy 60 cm. Ile jest równy obwód dużego prostokąta? A. 90 cm C. 120 cm B. 140 cm D. 100 cm Zadanie 9 (0 3) Równoległobok, w którym stosunek długości sąsiednich boków wynosi 2:3, podzielono wzdłuż przekątnej o długości 13 cm na dwa przystające trójkąty. Obwód każdego z tych trójkątów jest równy 33 cm. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli zdanie jest fałszywe. Równoległobok ma obwód 40 cm. P F Równoległobok ma bok o długości 12 cm. P F Jeden z boków równoległoboku jest dwa razy krótszy od drugiego. P F Zadanie 10 (0 2) Na rysunku figura ABCD jest kwadratem, zaś ABE jest trójkątem równobocznym. Jaka jest miara kąta DEC w trójkącie DCE? A. 60 C. 135 B. 120 D. 150 Zadanie 11 (0 2) Kuba zapomniał 3 ostatnie cyfry numeru telefonu 656 729 - - -. Pamiętał jednak, że numer ten był liczbą podzielną przez 25. Jaka jest największa możliwa liczba prób wybrania właściwego numeru? A. 100 B. 40 C. 30 D. 18 Strona 3 z 10

Zadanie 12 (0 3) Dwie płyty CD mają tę samą cenę. Z pewnych przyczyn cenę jednej z nich obniżono o 5%, a cenę drugiej podwyższono o 15%. Po tej zmianie, ceny tych dwóch płyt różnią się o 12 zł. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli zdanie jest fałszywe. Droższa z płyt CD kosztuje teraz 69 zł. P F Przed zmianą cen za cztery takie płyty trzeba było zapłacić 220 zł. P F Za dwie tańsze płyty trzeba zapłacić 114 zł. P F Zadanie 13 (0 2) Boki prostokąta o polu 1 przedłużamy podwajając ich długość (jak na rysunku ). Jakie jest pole czworokąta ABCD? A. 4 C. 6 B. 5 D. 3 Zadanie 14 (0 2) Janek kolekcjonuje znaczki pocztowe krajowe i zagraniczne. W jego kolekcji liczba znaczków zagranicznych jest liczbą trzycyfrową, w której cyfra setek jest o 1 większa od cyfry dziesiątek, a cyfra jedności jest dwa razy mniejsza od cyfry setek. Liczba ta jest również podzielna przez 3. Uzupełnij zdanie, wpisując w wykropkowane miejsce odpowiednią liczbę. Janek ma w swojej kolekcji...... znaczki zagraniczne. Zadanie 15 (0 2) Symbolem n! ( czytaj: n silnia) oznaczamy iloczyn wszystkich liczb naturalnych od 1 do n, na przykład: 4! = 1 2 3 4 = 24. Uzupełnij zdanie, wpisując w wykropkowane miejsce odpowiednią liczbę. Wartość wyrażenia 12! : 9! + 2 4! jest równa....... Strona 4 z 10

Zadanie 16 (0 4) Wyobraź sobie, że układasz rzędami guziki żółte (ż) i białe (b) według reguły przedstawionej na schemacie: 1. rząd ż 2. rząd b ż b 3. rząd ż b ż b ż 4. Rząd b ż b ż b ż b 5. rząd ż b ż b ż b ż b ż 6. rząd b ż b ż b ż b ż b ż b 7. rząd................... W kolejnym rzędzie najpierw układasz guziki tak, jak w poprzednim rzędzie, a potem dokładasz na obu końcach po jednym guziku, dbając o to, by sąsiednie guziki w rzędzie różniły się kolorami. Uzupełnij podane zdania według wzoru. A. W 6. rzędzie jest...11... guzików, w tym... 6... białych i... 5... żółtych. B. W 7. rzędzie będzie...... guzików, w tym...... białych i...... żółtych. C. W 100. rzędzie będzie...... białych i...... żółtych guzików. D. W 101. rzędzie będzie...... białych i...... żółtych guzików. E. Jeśli n jest liczbą parzystą, to w rzędzie o numerze n będzie...... białych i...... żółtych guzików. Strona 5 z 10

Zadanie 17 (0 3) Powierzchnia działki w kształcie kwadratu wynosi 9 arów. Działkę postanowiono obsiać trawą i z trzech stron ogrodzić. Nasiona trawy można kupić w półkilogramowych opakowaniach. Według instrukcji na opakowaniu potrzeba 0,5 kg trawy na każde 25 m 2 powierzchni. Aby ogrodzić działkę należy wbić słupki w odstępach co 2 metry. Uzupełnij zdania wpisując w wykropkowane miejsca odpowiednie liczby. I. Trzeba zakupić...... opakowań trawy. II. W celu ogrodzenia działki z trzech stron wbito...... słupków. III. Na planie w skali 1 : 200 bok działki ma...... cm długości. Zadanie 18 (0 2) Długości boków trójkąta równoramiennego to x oraz 2x + 1, gdzie x > 0. Oblicz obwód tego trójkąta. Zapisz wszystkie obliczenia i odpowiedź. Odp... Strona 6 z 10

Zadanie 19 (0 4) Cena batoników Smakuś w hurtowni zależy od liczby zakupionych sztuk. Przy zakupie ponad 50 sztuk tych batoników, na każdy następny zakupiony batonik otrzymuje się stały procentowy rabat (obniżka ceny). Batonik kupiony z rabatem kosztuje 1,20 zł. Właściciel sklepu za 120 zakupionych batoników zapłacił 164 zł. Ile procent wynosi rabat? Zapisz wszystkie obliczenia i odpowiedź. Odp... Strona 7 z 10

Zadanie 20 (0 4) Do prostopadłościennego zbiornika o wymiarach 4 m x 2 m x 2 m prowadzą dwie rury. Pierwsza rura napełnia zbiornik wodą w ciągu 6 godzin, a druga w ciągu 4 godzin. W ciągu ilu godzin zostanie napełniony zbiornik przez obie rury? Ile litrów wody mieści się w tym zbiorniku? Zapisz wszystkie obliczenia i odpowiedź. Odp... Strona 8 z 10

Zadanie 21 (0 5) W trójkącie prostokątnym ABC przedłużono przeciwprostokątną AB i na tym przedłużeniu odłożono odcinek AD równy bokowi AC oraz odcinek BE równy bokowi BC. Jaką miarę ma powstały kąt DCE? Zapisz wszystkie obliczenia i odpowiedź. Odp... Strona 9 z 10

BRUDNOPIS Strona 10 z 10