ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Podobne dokumenty
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut

Czas pracy 170 minut

LUBELSKA PRÓBA PRZED MATURĄ

Czas pracy 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy M A T E M A T Y K A 28 LUTEGO Instrukcja dla zdającego Czas pracy: 170 minut

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 120 minut

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

LUBELSKA PRÓBA PRZED MATURĄ klasa 2b

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. (dla klas trzecich liceum i klas czwartych technikum)

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy 1 MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

Czas pracy 170 minut

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

I Liceum Ogólnokształcące w Warszawie

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

Transkrypt:

Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 01 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania 1..). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym.. W zadaniach zamkniętych (1..) zaznacz poprawną odpowiedź. 4. W rozwiązaniach zadań otwartych (4..) przedstaw tok rozumowania prowadzący do ostatecznego wyniku. 5. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 7. Zapisy w brudnopisie nie będą oceniane. 8. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania. 9. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. Życzymy powodzenia! Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów. Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO KOD ZDAJĄCEGO Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez zgody wydawcy zabronione. Wydawca zezwala na kopiowanie zadań przez dyrektorów szkół biorących udział w programie Próbna Matura z OPERONEM.

Poziom podstawowy Matematyka Matematyka. Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaniach od 1. do. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. () Wartość liczby a = 16 4 jest równa wartości liczby: 4 7 5 A. B. C. D. 14 Zadanie. () x 1 dla x, 4 Miejscem zerowym funkcji f określonej wzorem f( x) = 5x+ 10 dla x ( 4, ) x+ 4 dla x, + ) A. -4 B. - C. -1 D. 1 ( jest: Zadanie. () Funkcja f, określona wzorem f( x)= x x 4, przyjmuje wartości ujemne jedynie w przedziale: A., Zadanie 4. () log Wartość liczby 5 5 jest równa: B. (, 1) ( 4, + ) C. ( 14, ) D. 41, A. B. 4 C. 5 D. 5 Zadanie 5. () ( ) o wyrazie ogólnym a n Dany jest ciąg a n ciągu jest równa: ( ) n = + 16 dla n ³1. Liczba dodatnich wyrazów tego A. B. 4 C. 5 D. 7 Zadanie 6. () Kwotę 10000 zł wpłacamy do banku na 4 lata. Kapitalizacja odsetek jest dokonywana w tym banku co kwartał, a roczna stopa procentowa wynosi %. Po 4 latach kwotę na rachunku będzie można opisać wzorem: A. 10000 ( 1 0075) 4 ( ) ( ) ( ), B. 10000 10, 4 C. 10000 10, 16 D. 10000 1, 0075 16 Zadanie 7. () 5, y = 1 + 1, 5 1 z = 5 + tworzą rosnący ciąg arytmetyczny w ko- Dane liczby: x = lejności: A. z, yx, B. y, xz, C. x, y, z D. z, x, y

Matematyka. Poziom podstawowy BRUDNOPIS (nie podlega ocenie)

Zadanie 8. () Matematyka. Poziom podstawowy Suma n początkowych liczb naturalnych dodatnich parzystych jest równa: A. S = 8n + 4n B. S = 4n + n C. S = 4n + n D. S = n + n n Zadanie 9. () n W trójkącie równoramiennym wysokość jest dwa razy dłuższa od podstawy. Wynika stąd, że sinus kąta przy podstawie wynosi: A. 17 17 B. Zadanie 10. () 5 5 n C. 4 17 17 n D. 1 17 x Dziedziną funkcji f, określonej wzorem f( x)= 5, jest zbiór: x + 4 A. R \ 44, B. R \ 4 C. R D. R \ 5 { } { } {} Zadanie 11. () Liczbą przeciwną do liczby a= 5 jest: A. 5 B. -5 C. 5 - D. -5 Zadanie 1. () Wzór funkcji, której wykres powstaje przez przesunięcie wykresu funkcji f o 10 jednostek w dół, to: A. y = f( x+ 10 ) B. y = f( x) + 10 C. y = f( x 10 ) D. y = f( x) 10 Zadanie 1. () Rzucono sześcienną kostką do gry. Prawdopodobieństwo, że wyrzucona liczba oczek jest liczbą pierwszą, wynosi: A. 4 6 B. 6 C. 6 D. 1 6 Zadanie 14. () Kąt a jest ostry i tga = 1. Wówczas cosa jest równy: 5 A. 5 B. 5 C. 10 1 1 1 D. 1 1 Zadanie 15. () Wielomian W = x x 4x + 8 po rozłożeniu na czynniki ma postać wyrażenia: ( ) B. x ( x 4) C. ( x+ )( x ) A. x x ( )( + ) D. x x 4

Matematyka. Poziom podstawowy BRUDNOPIS (nie podlega ocenie) 5

Zadanie 16. () Matematyka. Poziom podstawowy Zbiór (, 8 4, + ) jest rozwiązaniem nierówności: A. x 6 B. x 6 C. x + 6 D. x + 6 Zadanie 17. () Funkcja f( x)= x 4x+ 5 jest malejąca w przedziale: ( ) B. ( ) A., + Zadanie 18. () ( ) ( ), C.,1 D. 1, + Proste l i k są prostopadłe i l : x 9y+ 6= 0, k: y= ax + b. Wówczas: A. a= 9 B. a= 9 C. a= 9 D. a= 9 Zadanie 19. () n Iloraz ciągu geometrycznego o wyrazie ogólnym a n = 7 jest równy: A. q = B. q = 7 C. q = 9 D. q = 8 Zadanie 0. () Równanie ( x+ ) + y = ( ) = 6 4 opisuje okrąg o środku w punkcie S i promieniu r. Wówczas: =( ) = =( ) = ( ) = A. S= 60,, r 4 B. S 60,, r 4 C. S 60,, r D. S= 60,, r Zadanie 1. () Długość promienia r okręgu opisanego na kwadracie jest równa. Długość boku tego kwadratu ma wartość: A. 4 B. 6 C. 4 6 D. 5 Zadanie. () W turnieju szachowym, rozgrywanym systemem każdy z każdym, bez rewanżu, miało brać udział 8 zawodników. Jeden z nich zrezygnował. Liczba zaplanowanych rozgrywek zmniejszyła się o: A. 1 B. 14 C. 7 D. 8 Zadanie. () Proste l i k są równoległe oraz OA = 6, AB = 10, OC = 48. Odcinek OD ma długość: A. 1 B. 18 C. 18 D. 144 C 5 5 D 6 O A l B k

Matematyka. Poziom podstawowy BRUDNOPIS (nie podlega ocenie) 7

Matematyka. Poziom podstawowy ZADANIA OTWARTE Rozwiązania zadań o numerach od 4. do. należy zapisać w wyznaczonych miejscach pod treścią zadania. Zadanie 4. ( pkt) ( ) drugi wyraz jest równy 7, a szósty 17. Wyznacz pierwszy wyraz W ciągu arytmetycznym a n i różnicę tego ciągu. Zadanie 5. ( pkt) Średni wzrost sportowców w drużynie siatkarskiej, liczącej 6 chłopców, wynosił 174 cm. Po przyjęciu do zespołu dwóch braci o tej samej wysokości średnia wzrostu zwiększyła się o 0,5 cm. Oblicz, jak wysocy są bracia. 8

Zadanie 6. ( pkt) Rozwiąż równanie x + 8x x 1 = 0. Matematyka. Poziom podstawowy Zadanie 7. ( pkt) Rozwiąż nierówność x 9> 0. 9

Zadanie 8. ( pkt) Dana jest liczba a= Matematyka. Poziom podstawowy ( 5) 5. Wykaż, że liczba a jest całkowita. Zadanie 9. ( pkt) Długość krawędzi sześcianu zwiększono o 0%. Oblicz, o ile procent wzrosła objętość tego sześcianu. 10

Zadanie 0. (5 pkt) Matematyka. Poziom podstawowy ( ) + ( ) = Prosta y = x +4 przecina okrąg o równaniu x+ 1 y 5 w punktach A i B. Oblicz współrzędne punktów A i B, a następnie oblicz obwód trójkąta ABS, gdzie S jest środkiem danego okręgu. 11

Zadanie 1. (5 pkt) Matematyka. Poziom podstawowy Dany jest ostrosłup prawidłowy trójkątny. Pole powierzchni bocznej tego ostrosłupa jest równe 4, a kąt płaski ściany bocznej przy podstawie ma miarę a i tga =. Wyznacz cosinus kąta nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy. 1

Zadanie. (5 pkt) Matematyka. Poziom podstawowy Turysta pokonał pieszo trasę długości 0 km z miejscowości A do miejscowości B ze stałą prędkością. Rowerem poruszałby się z prędkością o 9km/h większą i przybyłby do celu o godziny wcześniej. Wyznacz prędkość marszu turysty i czas przejścia tej drogi. 1

Matematyka. Poziom podstawowy BRUDNOPIS (nie podlega ocenie) 14

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematyka Poziom podstawowy Listopad 01 W niniejszym schemacie oceniania zadań otwartych są prezentowane przykładowe poprawne odpowiedzi. W tego typu zadaniach należy również uznać odpowiedzi ucznia, jeśli są inaczej sformułowane, ale ich sens jest zgodny z podanym schematem, oraz inne poprawne odpowiedzi w nim nieprzewidziane. Zadania zamknięte Nr zad. 1... 4. 5. 6. 7. 8. 9. 10. 11. 1. 1. 14. 15. 16. 17. 18. 19. 0. 1... Odp. D B C B A D A B C C D D B B C D C C B D B C B Za każdą prawidłową odpowiedź zdający otrzymuje 1 punkt. Zadania otwarte Numer Modelowe etapy rozwiązywania zadania zadania 4. Postęp: a r 1 + = 7 Zapisanie układu równań: a1 + 5r= 17 Wyznaczenie pierwszego wyrazu i różnicy ciągu: a = 9 5 1, r = 5. Postęp: 6 174 + x Zapisanie równania: = 174, 5 8 Rozwiązanie równania i wyznaczenie: x = 176 cm 6. Postęp: Zapisanie lewej strony równania w postaci iloczynowej: ( x+ 4) ( x )= 0 6 6 Wyznaczenie rozwiązań równania: x1 = 4, x =, x = 7. Postęp: Wyznaczenie pierwiastków trójmianu kwadratowego: x1 =, x = Rozwiązanie nierówności: x (, ) (, + ) Liczba punktów pkt pkt pkt pkt www.operon.pl 1

Matematyka. Poziom podstawowy Numer zadania Modelowe etapy rozwiązywania zadania 8. Postęp: Zapisanie liczby bez symbolu pierwiastka: a = 5 5 Wykazanie, że liczba jest całkowita: a= + 5 5 a= 9. Postęp: Zapisanie długości krawędzi sześcianu przed zwiększeniem wymiarów i po zwiększeniu: a; 1, a Wyznaczenie objętości przed zwiększeniem wymiarów i po zwiększeniu oraz podanie odpowiedzi: V = a, V1 = 1, 78a. Objętość wzrosła o 7, 8%. 0. Postęp: Ułożenie równania z jedną niewiadomą pozwalającego obliczyć współrzędne punktów A i B: ( x+ 1) + ( x+ 4 ) = 5 Pokonanie zasadniczych trudności: Rozwiązanie równania i obliczenie współrzędnych punktów: A = ( 6 ; ) i B = ( 5; 1) Rozwiązanie prawie całkowite: Obliczenie długości cięciwy AB: AB = 7 Obliczenie poprawnie obwodu trójkata ABS: 10+ 7 1. Postęp: Wprowadzenie dokładnych oznaczeń lub wykonanie rysunku z oznaczeniami: ha, odpowiednio wysokość ściany bocznej i krawędź podstawy, a kąt płaski ściany bocznej przy podstawie, b kąt nachylenia ściany bocznej ostrosłupa do płaszczyzny podstawy Istotny postęp: ah = 4 Zapisanie układu równań: h = a Pokonanie zasadniczych trudności: h = Rozwiązanie układu i podanie odpowiedzi: 4 a = 4 Wyznaczenie cosinusa kąta b :cos b = 6 Liczba punktów pkt pkt pkt ( pkt w przypadku błędów rachunkowych) 4 pkt 5 pkt pkt pkt 5 pkt (4 pkt, gdy poprzestano na obliczeniu długości wysokości podstawy lub sin) www.operon.pl

Matematyka. Poziom podstawowy Numer zadania Modelowe etapy rozwiązywania zadania. Postęp: Wprowadzenie oznaczeń v, t prędkość i czas przejścia drogi pieszo oraz zapisanie jednego z równań: v t=0 lub 0 = v+ 9 t ( )( ) Istotny postęp: 0 = Zapisanie układu równań: vt 0 = ( v+ 9) ( t ) Pokonanie zasadniczych trudności: Przekształcenie układu do równania kwadratowego: t t 10= 0 t = Rozwiązanie równania i zapisanie odpowiedzi: 5 h v = 6 km/h Liczba punktów pkt pkt 5 pkt (4 pkt, gdy popełniono drobny błąd rachunkowy lub nie wyznaczono drugiej niewiadomej) www.operon.pl