Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Matematyka I 2. M. Dobrowolska, M. Karpiński, J. Lech 3. GWO
Forma 1. Formy sprawdzania wiedzy Minimalna liczba w semestrze Waga danej formy oceniania (1;2;3) Kryteria oceniania S 0 2 Sprawdziany dłuższe 15-20 minutowe ocena jednostkowa. Sprawdziany krótsze, kilkuminutowe ocena z co najmniej dwóch prac OU 0 1 lub 2 Ocena wg kryteriów oceny semestralnej (powyżej). Przy ocenie odpowiedzi z ostatniej / ostatnich trzech lekcji nauczyciel może wziąć pod uwagę pracę domową wykonaną pisemnie. Odpowiedź z większej partii materiału powinna być zapowiedziana ucznowi. PK 2 3 Ocena wg kryterium procentowego przyjętego w szkole z uwzględnieniem przejrzystości zapisu ZD 1 1 R 0 1 lub 2 PR 0 2 lub 3 A 0 1 Z PM 1 (kl.iii) 3 kartkówki/sprawdziany (S), odpowiedź ustna ucznia (OU), prace klasowe (PK), zadania domowe (ZD), aktywność na lekcji (A), zeszyt (Z), Przy wystawianiu oceny semestralnej i oceny rocznej brane są pod uwagę wszystkie formy sprawdzania wiedzy przewidziane w danym okresie nauki.
2. Ilość możliwych zgłoszeń nieprzygotowania do lekcji Uczniowi przysługują w ciągu całego roku szkolnego cztery nieprzygotowania (po dwa w każdym semestrze). Nieprzygotowanie należy zgłosić nauczycielowi na początku lekcji podczas sprawdzania listy obecności. 3. Warunki uzyskiwania wyższych ocen (uszczegółowienie WZO) W ostatnim miesiącu semestru / roku szkolnego można poprawić jeden sprawdzian godzinny z danego semestru. Praca będzie miała formę pisemną i dotyczyć będzie określonego działu. Ocena z poprawy jest wpisywana do dziennika, jako dodatkowa ocena (ocena uzyskana w pierwszym terminie jest brana pod uwagę przy wystawianiu oceny na koniec semestru/ roku szkolnego).
4. Wymagania edukacyjne Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra (4) D dopełniający ocena bardzo dobra (5) W wykraczający ocena celująca (6)
DZIAŁ PROGRAMOWY CELE KSZTAŁCENIA W UJĘCIU OPERACYJNYM WRAZ Z OKREŚLENIEM WYMAGAŃ KATEGORIA A Uczeń zna: podstawowe KATEGORIA B Uczeń rozumie: KATEGORIA C Uczeń potrafi: ponadpodstawowe KATEGORIA D Uczeń potrafi: RÓWNANIA I NIERÓWNOŚCI pojęcia: liczba naturalna, całkowita, wymierna, rzeczywista pojęcie liczba niewymierna różnicę między rozwinięciem dziesiętnym liczby wymiernej i niewymiernej znajdować rozwinięcia dziesiętne liczby wymiernej wykonywać działania na liczbach wymiernych (K P) porównywać liczby wymierne zapisywać w postaci ułamka zwykłego liczby wymierne podane w postaci rozwinięcia dziesiętnego nieskończonego (P-R) obliczać procent liczby obliczać liczbę, znając jej procent obliczać liczbę większą (mniejszą) o dany procent od podanej obliczać, jakim procentem jednej liczby jest druga obliczać, o ile procent jedna liczba jest większa (mniejsza) od drugiej obliczać zyski z lokat (P-R) rozwiązywać zdania tekstowe na zastosowania obliczeń procentowych (P-R) znajdować rozwinięcia dziesiętne liczby niewymiernej porównywać liczby niewymierne porządkować liczby niewymierne (P-R) zaokrąglać liczby szacować wartości liczb niewymiernych (R) podawać przykłady liczb wymiernych spełniających określone warunki (D-W) wykorzystać pojęcie wartości bezwzględnej (D- W) podawać przykłady liczb niewymiernych spełniających określone warunki (D) obliczać wartość bezwzględną wyrażeń zawierających liczby wymierne i niewymierne (D) 5
pojęcie wyrażenia algebraicznego pojęcie jednomianu i pojęcie jednomianu uporządkowanego pojęcie jednomianów podobnych wzory skróconego mnożenia (kwadrat sumy, kwadrat różnicy, różnica kwadratów) pojęcie sumy algebraicznej definicję twierdzenia podanego w formie implikacji pojęcie równania pojęcie rozwiązania równania pojęcia: równania równoważne, równania tożsamościowe, równania sprzeczne sposoby przekształcania równań pojęcie układu równań pojęcia: układ zasadę redukowania wyrazów podobnych zasady zapisywania i nazywania wyrażeń algebraicznych (K-P) zasady dodawania i odejmowania sum algebraicznych zasadę mnożenia sumy algebraicznej przez jednomian zasadę mnożenia sumy algebraicznej przez sumę algebraiczną zasadę dowodzenia wprost zasadę dowodzenia nie wprost (P-R) różnicę pomiędzy twierdzeniem a hipotezą (R) pojęcie rozwiązania równania pojęcie rozwiązania układu równań budować proste wyrażenia algebraiczne odczytywać wyrażenia algebraiczne (K P) redukować wyrazy podobne (K P) dodawać i odejmować sumy algebraiczne (K P) mnożyć sumy algebraiczne przez jednomiany (K P) mnożyć sumy algebraiczne (K R) doprowadzać wyrażenia algebraiczne do prostszej postaci (P R) wyłączać wspólne czynniki poza nawias (P R) obliczać wartości liczbowe wyrażeń algebraicznych (K R) stosować wzory skróconego mnożenia (K R) przekształcać wyrażenia algebraiczne, stosując wzory skróconego mnożenia (P R) zapisać twierdzenie w postaci implikacji przeprowadzić dowód prostego twierdzenia (P-R) znaleźć kontrprzykład, jeśli twierdzenie jest fałszywe (R) rozwiązywać równania (K P) zapisywać treści zadań za pomocą równań rozwiązywać układy równań pierwszego stopnia metodą podstawiania (K P) rozwiązywać układy równań metodą przeciwnych współczynników (P R) zapisywać treści zadań w postaci układów równań budować i nazywać wyrażenia algebraiczne o wielodziałaniowej konstrukcji (D) wykorzystywać wyrażenia do rozwiązywania zadań związanych z podzielnością i dzieleniem z resztą (D) stosować wzory skróconego mnożenia do obliczania wartości iloczynów (D) zapisywać treści zadań za pomocą równań oraz przedstawiać ich rozwiązania (D) tekstowe za pomocą układów równań (D) 6
oznaczony, nieoznaczony, sprzeczny metody rozwiązywania układów równań: podstawiania i przeciwnych współczynników pojęcia: podzbiór, zbiór pusty, zbiory rozłączne pojęcia: iloczyn, suma i różnica zbiorów symboliczny zapis zawierania się zbiorów i działań na zbiorach pojęcie przedziału otwartego i domkniętego pojęcie nierówności pojęcie rozwiązania nierówności pojęcie nierówności równoważnej pojęcie równania kwadratowego konieczność zapisywania założeń dla wielkości występujących we wzorach pojęcie przedziału otwartego i domkniętego interpretację geometryczną rozwiązania nierówności wyznaczać wskazaną wielkość z danego wzoru (K P) zapisywać odpowiednie założenia dla wielkości występujących we wzorach (K P) graficznie przedstawiać zawieranie się zbiorów oraz sumę, różnicę i iloczyn zbiorów wyznaczać podzbiory, sumy, różnice i iloczyny podanych zbiorów (K P) określać liczebność zbioru spełniającego podane warunki (P- R) zaznaczać podane przedziały na osi liczbowej zapisywać podane przedziały liczbowe za pomocą nierówności i odwrotnie wykonywać działania na przedziałach liczbowych (P-R) rozwiązywać nierówności (K P) podawać interpretację geometryczną rozwiązania nierówności (P-R) zapisywać treści zadań za pomocą nierówności rozwiązywać równania kwadratowe postaci ax 2 + c = 0, a 0 rozwiązywać równania kwadratowe postaci ax 2 + bx = 0, a 0 (K P) przekształcać trudniejsze wyrażenia (D) graficznie przedstawiać zawieranie się zbiorów oraz sumę, różnicę i iloczyn zbiorów (D) wyznaczać podzbiory, sumy, różnice i iloczyny podanych zbiorów (D) określać liczebność zbioru spełniającego podane warunki (D) zapisywać podane przedziały liczbowe za pomocą nierówności i odwrotnie (D-W) wykonywać działania na przedziałach liczbowych (D-W) zapisywać treści zadań za pomocą nierówności oraz przedstawiać ich rozwiązania (D) tekstowe z zastosowaniem równań kwadratowych (D) 7
rozwiązywać równania postaci (px + q) 2 = r (K P) doprowadzać równania z postaci wzór na wyróżnik równania kwadratowego wzory na pierwiastki równania kwadratowego zależność pomiędzy wartością a liczbą pierwiastków metodę rozwiazywania równania postaci (x a)(x b)(x c)=0 ogólnej do postaci (px + q) 2 = r (P- R) rozwiązywać równania kwadratowe postaci ax 2 +bx+ c = 0, a 0 (K-P) rozwiązywać równania kwadratowe postaci ax 2 + bx = 0, a 0 (K P) rozwiązywać równania postaci (px + q) 2 = r (K P) rozwiązywać równania kwadratowe, stosując wzory na pierwiastki równania kwadratowego rozwiązywać równania postaci (x a)(x b)(x c)=0 (K R) doprowadzać równania n-tego stopnia do postaci iloczynowej (P- R) tekstowe z zastosowaniem równań kwadratowych (D) rozwiązywać układy równań prowadzące do równań kwadratowych(d) tekstowe prowadzące do równań wyższego stopnia (D-W) oznaczenia stosowane w geometrii pojęcia kątów: wierzchołkowych, przyległych, odpowiadających, naprzemianległych oraz własności tych kątów twierdzenie o sumie miar kątów wewnętrznych trójkąta twierdzenia dotyczące zależność pomiędzy rodzajem trójkąta a miarami jego kątów wskazywać kąty wierzchołkowe, przyległe, odpowiadające i naprzemianległe obliczać na podstawie rysunku miary kątów (K-P) stosować własności kątów w zadaniach (K P) obliczać miary katów trójkątów i czworokątów (K-P) stosować własności kątów w zadaniach (K R) stosować własności kątów w zadaniach (D) uzasadnić cechy wskazanego trójkąta (D) 8
własności kątów w trapezach i równoległobokach rodzaje trójkątów nierówność trójkąta pojęcie wysokości trójkąta wzór na pole trójkąta wzór na pole i wysokość trójkąta równobocznego twierdzenie Pitagorasa i twierdzenie do niego odwrotne zależność między bokami i kątami trójkąta o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 sposoby obliczania pól trójkątów obliczać pola trójkątów (K P) obliczać długość boku (wysokości) trójkąta, mając dane jego pole i wysokość (bok) stosować twierdzenie Pitagorasa i twierdzenie do niego odwrotne w zadaniach rozwiązywać zadania z zastosowaniem twierdzenia Pitagorasa i twierdzenia do niego odwrotnego (R D) rodzaje i własności czworokątów wzory na obliczanie pól czworokątów pojęcie wielokąta wypukłego i niewypukłego wzory na liczbę przekątnych i sumę miar kątów wewnętrznych n kąta wypukłego pojęcie wielokąta foremnego wzór na miarę kąta wewnętrznego n kąta foremnego zasadę klasyfikacji czworokątów wyprowadzanie wzorów na liczbę przekątnych i sumę miar kątów wewnętrznych n kąta wypukłego sposób wyznaczania miary kąta wewnętrznego n kąta foremnego stosować własności czworokątów w zadaniach obliczać pola i obwody czworokątów (K P) rozpoznawać i rysować wielokąty wypukłe i niewypukłe obliczać pola wielokątów (K-P) stosować wzory na liczbę przekątnych i sumę miar kątów wewnętrznych n kąta wypukłego obliczać miarę kąta wewnętrznego n kąta foremnego obliczać pola i obwody wielokątów foremnych (P R) obliczać długości przekątnych wielokąta foremnego oraz ich liczbę (P-R) na obliczanie pól i obwodów czworokątów (D-W) rozwiązywać zadania na dowodzenie, wykorzystując wzory na liczbę przekątnych i/lub sumę miar kątów wewnętrznych n kąta wypukłego (D) na obliczanie pól i obwodów wielokątów foremnych (R D) dowodzić własności wielokątów foremnych (D) 9
pojęcia koła i okręgu oraz kąta środkowego wzory na obliczanie obwodu i pola koła wzory na obliczanie długości łuku i pola wycinka kołowego pojęcia kąta wpisanego i środkowego twierdzenia dotyczące kątów wpisanych i środkowych wszystkie możliwe wzajemne położenia prostej i okręgu na płaszczyźnie fakt prostopadłości stycznej do promienia łączącego środek okręgu z punktem styczności własności stycznej do okręgu twierdzenie o związkach miarowych między odcinkami stycznych (R) wszystkie możliwe wzajemne położenia dwóch okręgów na płaszczyźnie pojęcie okręgów rozłącznych, przecinających się i stycznych uzasadnienie wzoru na pole koła (R) pojęcie kąta wpisanego i środkowego opartego na danym łuku obliczać pole i obwód koła (K P) obliczać długość łuku i pole wycinka koła obliczać pole i obwód figur, których elementami są koła, okręgi lub ich części (P-R) stosować twierdzenia dotyczące kątów wpisanych i środkowych (K P) obliczać miarę kąta wpisanego (środkowego), mając daną miarę kąta środkowego (wpisanego) opartego na tym samym łuku dotyczące wzajemnego położenia prostej i okręgu oraz wzajemnego położenia dwóch okręgów na płaszczyźnie korzystać z własności stycznej do okręgu korzystać z twierdzenia o związkach miarowych między odcinkami stycznych (R) określić wzajemne położenie dwóch okręgów, znając ich promienie i odległość między ich środkami obliczyć odległość między środkami okręgów, znając ich promienie i położenie obliczyć długości odcinków, mając dane długości promieni występujących okręgów lub odległości pomiędzy pewnymi punktami na obliczanie pól i obwodów kół oraz długości łuków i pól wycinków kół (D-W) wykorzystujące wzajemne zależności pomiędzy kątami wpisanymi i środkowymi opartymi na tym samym łuku (R-D) dotyczące wzajemnego położenia prostej i okręgu oraz wzajemnego położenia dwóch okręgów na płaszczyźnie (R) rozwiązać zadanie tekstowe związane z wzajemnym położeniem okręgów (R D) 10
FUNKCJE pojęcia: symetralna odcinka, wielokąt wpisany w okrąg własność symetralnej odcinka warunek opisania okręgu na wielokącie pojęcia: dwusieczna kąta, wielokąt opisany na okręgu własność dwusiecznej kąta warunek wpisania okręgu w wielokąt twierdzenie o polu wielokąta opisanego na okręgu pojęcie funkcji pojęcia: dziedzina funkcji, argument, wartość funkcji, zmienna niezależna, zmienna zależna pojęcie miejsca zerowego różne sposoby opisywania funkcji pojęcia: funkcja rosnąca, malejąca, stała pojęcie monotoniczności funkcji różne sposoby zapisu tej samej funkcji korzyści płynące ze stosowania różnych sposobów opisywania funkcji sprawdzić, czy dany wielokąt można wpisać w okrąg (opisać na okręgu) obliczać promień okręgu wpisanego w kwadrat i opisanego na prostokącie z zastosowaniem warunku opisania okręgu na czworokącie i wpisania okręgu w czworokąt (P R) z zastosowaniem twierdzenia o polu wielokąta opisanego na okręgu (P R) określać dziedzinę funkcji, zbiór jej wartości (K-P) oraz liczebność tych zbiorów (P-R) odczytywać wartości funkcji dla danego argumentu lub argument dla danej wartości z: tabelki, grafu, wykresu wskazywać miejsca zerowe funkcji podawać argumenty, dla których funkcja przyjmuje wartości dodatnie lub ujemne podawać przedziały monotoniczności sporządzać wykresy funkcji spełniających określone warunki ustalać dziedzinę funkcji określonej wzorem (P R) sprawdzać, czy dany punkt należy do funkcji o podanym wzorze sprawdzać, czy podana liczba jest miejscem zerowym funkcji na podstawie wzoru znajdować związane z okręgami opisanymi na wielokątach (R D) związane z okręgami wpisanymi w wielokąty (R D) podać argumenty, dla których wartości funkcji spełniają określone warunki (R) analizować funkcje przedstawione w różnej postaci i wyciągać wnioski (D-W) przedstawiać funkcje za pomocą wzoru (R) sporządzać wykres funkcji określonej wzorem (R) dopasować wykres funkcji do jej opisu 11
pojęcie funkcji liniowej położenie wykresu funkcji liniowej w zależności od współczynnika kierunkowego warunek równoległości wykresów funkcji zasady sporządzania wykresów funkcji: y = f (x) + q, y = f(x + p), y = f(x + p) + q, gdy dany jest wykres funkcji y = f(x) punkty należące do wykresu funkcji (P-R) dopasowywać wykres funkcji do jej wzoru (P-R) analizować zależności między dwiema wielkościami opisane za pomocą wzoru lub wykresu funkcji (P-R) sporządzać wykres funkcji określonej wzorem sporządzać wykres funkcji liniowej sprawdzać algebraicznie i graficznie, czy punkt należy do wykresu wyznaczać argument dla danej wartości funkcji i odwrotnie obliczać i odczytywać miejsca zerowe obliczać i odczytywać z wykresu argumenty, dla których wartości spełniają określone warunki (P R) znając wzór funkcji liniowej, określać jej monotoniczność i znajdować współrzędne punktów przecięcia wykresu z osiami podawać wzór funkcji liniowej, której wykres: -przechodzi przez dane dwa punkty, przechodzi przez dany punkt i jest równoległy do wykresu innej funkcji o znanym wzorze - jest narysowany (R) obliczać współrzędne punktu przecięcia wykresów funkcji liniowych na podstawie wykres funkcji y = f(x) sporządzać wykres funkcji: y = f(x) + q, y = f(x + p), zapisywać wzory funkcji powstałych w wyniku przesunięcia wykresu danej funkcji słownego (R) rozwiązywać trudniejsze zadania dotyczące funkcji liniowej (R-D) 12
zasady sporządzania wykresów funkcji: y = f( x), y = f(x), mając dany wykres funkcji y = f(x) zasady sporządzania wykresów funkcji: y = f( x), y = f(x), gdy dany jest wykres funkcji y = f(x) określać sposób przesunięcia wykresu jednej funkcji tak, aby otrzymać wykres drugiej funkcji (R) na podstawie wykres funkcji y = f(x) sporządzać wykres funkcji: y = f( x), y = f(x), y = f( x), zapisywać wzory funkcji powstałych przez symetrię wykresu danej funkcji względem obu osi określać związek między przekształceniem wykresu funkcji a wzorem funkcji, której wykres otrzymano w wyniku przekształcenia (R- D) WŁASNOŚCI FUNKCJI KWADRATOWEJ pojęcia: parabola, wierzchołek paraboli, ramiona paraboli położenie wykresu funkcji y= ax 2 w zależności od wartości współczynnika a położenia parabol: y= ax + q, y= a(x + p) 2, y= a(x + p) 2 + q pojęcie funkcji kwadratowej wzory określające współrzędne wierzchołka paraboli postać ogólną i postać kanoniczną funkcji kwadratowej związek między wzorami określającymi współrzędne wierzchołka paraboli i postacią kanoniczną wzoru funkcji kwadratowej (R) sporządzać wykresy funkcji y= ax 2 wykorzystywać zasady przesuwania wykresów funkcji do rysowania parabol postaci: y=ax 2 +q, y= a(x + p) 2, y= a(x + p) 2 + q podawać wzór paraboli o danym wierzchołku i przechodzącej przez dany punkt podawać wzór funkcji, której wykresem jest dana parabola określać współrzędne wierzchołka parabol postaci: y=ax 2 +q, y= a(x + p) 2, y= a(x + p) 2 + q (K-R) zapisywać wzór funkcji kwadratowej w postaci kanonicznej znajdować współrzędne wierzchołka paraboli badać monotoniczność funkcji kwadratowej (K-P) obliczać największą (najmniejszą) wartość funkcji kwadratowej obliczać największą i najmniejszą wartość funkcji kwadratowej w przedziale domkniętym (P-R) sporządzać wykresy funkcji y= a(x + p) 2 + q i określać ich własności (R-D) podawać wzór funkcji, której wykres został przesunięty w prawo(lewo) i w górę (dół) o podaną liczbę jednostek (R-D) 13
postać iloczynową funkcji kwadratowej pojęcie nierówności kwadratowej zapisywać wzór funkcji kwadratowej spełniającej dane warunki (P R) obliczać współrzędne punktów przecięcia wykresów funkcji (R) obliczać, dla jakich argumentów funkcja spełnia określone warunki (P R) rysować wykres funkcji kwadratowej i określać jej własności obliczać współrzędne punktów przecięcia paraboli z osiami układu oraz współrzędne jej wierzchołka obliczać miejsca zerowe funkcji kwadratowej określać liczbę miejsc zerowych funkcji kwadratowej w zależności od wartości wyróżnika zapisywać wzór funkcji kwadratowej, znając jej miejsca zerowe oraz punkt należący do jej wykresu zapisywać wzór funkcji kwadratowej spełniającej dane warunki (P R) rozwiązywać nierówności kwadratowe określać argumenty, dla których wartości jednej funkcji są większe od wartości drugiej funkcji (P R) opisywać zależności między wielkościami za pomocą funkcji kwadratowej tekstowe stosując własności funkcji kwadratowej obliczać pola figur spełniających określone warunki (R D) opisywać zależności między wielkościami za pomocą funkcji kwadratowej (R D) tekstowe, stosując własności funkcji kwadratowej (R W) TRYGONOMETRIA pojęcie tangensa kąta ostrego w trójkącie związek między tangensem kąta i obliczać tangensy kątów ostrych tekstowe, wykorzystując 14
prostokątnym pojęcia: sinus i cosinus kąta ostrego w trójkącie prostokątnym cechami podobieństwa trójkątów prostokątnych (R) pojęcie tangensa kąta ostrego w trójkącie prostokątnym obliczać długości boków trójkąta prostokątnego, mając wśród danych tangens jednego z kątów ostrych (K P) odczytywać z tablic lub obliczać za pomocą kalkulatora wartość tangensa danego kąta odczytywać z tablic lub obliczać za pomocą kalkulatora miarę kąta, dla której znana jest wartość tangensa obliczać tangensy kątów ostrych obliczać długości boków trójkąta prostokątnego, mając wśród danych tangens jednego z kątów ostrych (K P) odczytywać z tablic lub obliczać za pomocą kalkulatora przybliżoną wartość tangensa danego kąta lub miarę kąta, mając dany jego tangens obliczać sinusy, cosinusy, tangensy kątów ostrych konstruować kąt, znając jego sinus (cosinus lub tangens) (P-R) konstruować trójkąt prostokątny, znając sinus (cosinus lub tangens) jednego kąta oraz bok (P-R) rozwiązywać trójkąty - prostokątne i równoramienne, - dowolne (R) odczytywać z tablic lub obliczać za pomocą kalkulatora wartość sinusa i cosinus danego kąta lub miarę kąta, mając dany jego sinus lub cosinus tekstowe osadzone w kontekście praktycznym, wykorzystując wiadomości o sinusie, cosinusie oraz tangensie wiadomości o tangensie (R) tekstowe, wykorzystując wiadomości o tangensie (R) tekstowe, wykorzystując wiadomości o sinusie, cosinusie oraz tangensie(r) tekstowe osadzone w kontekście praktycznym, wykorzystując wiadomości o sinusie, cosinusie oraz tangensie (R-D) 15
wartości funkcji trygonometrycznych dla kątów 30, 45 i 60 sposób wyznaczania wartości funkcji trygonometrycznych kątów 30, 45 i 60 rozwiązywać trójkąty prostokątne tekstowe, wykorzystując wiadomości o funkcjach trygonometrycznych kątów 30, 45 i 60 (R) podstawowe tożsamości trygonometryczne związki między funkcjami trygonometrycznymi kąta α i kąta 90 α pojęcia: funkcje trygonometryczne kąta rozwartego wzory redukcyjne (R) związek między tangensem kąta nachylenia prostej y = ax + b do osi x a jej współczynnikiem kierunkowym pojęcia: funkcje trygonometryczne kąta rozwartego obliczać wartości funkcji trygonometrycznych, mając daną wartość jednej z nich przekształcać wyrażenia, stosując tożsamości trygonometryczne (P R) sprawdzać tożsamości trygonometryczne (P R) obliczać sinusy, cosinusy i tangensy kątów rozwartych odczytywać z tablic lub obliczać za pomocą kalkulatora wartość sinusa, cosinusa i tangensa danego kąta lub miarę kąta, mając dany jego sinus, cosinus lub tangens konstruować kąt, znając jego sinus (cosinus lub tangens) (P-R) obliczać pole trójkąta, znając długości dwóch boków oraz kąt pomiędzy nimi (P-R) wyznaczać miarę kąta, pod jakim jest nachylona prosta y = ax + b do osi x a oraz zapisywać wzór funkcji liniowej, znając jej wykres i kąt nachylenia do osi x (P-R) przekształcać wyrażenia, stosując tożsamości trygonometryczne (D) sprawdzać tożsamości trygonometryczne (D), wykorzystując wiadomości o sinusie, cosinusie i tangensie (R-D) 16