BADANIA BIOREGENERACJI WĘGLA AKTYWNEGO WYSYCONEGO FENOLEM

Podobne dokumenty
ADSORPCJA BŁĘKITU METYLENOWEGO I JODU NA WYBRANYCH WĘGLACH AKTYWNYCH

SORPCJA FENOLU ZE ŚCIEKÓW KOKSOWNICZYCH NA GRANULOWANYCH WĘGLACH AKTYWNYCH

ADSORPCJA SUBSTANCJI POWIERZCHNIOWO CZYNNYCH Z ROZTWORÓW WODNYCH NA PYLISTYCH WĘGLACH AKTYWNYCH

WPŁYW ph ROZTWORU WODNEGO NA WIELKOŚĆ SORPCJI KWASU FTALOWEGO

HODOWLA PERIODYCZNA DROBNOUSTROJÓW

BADANIA PODATNOŚCI ŚCIEKÓW Z ZAKŁADU CUKIERNICZEGO NA OCZYSZCZANIE METODĄ OSADU CZYNNEGO

Granulowany węgiel aktywny z łupin orzechów kokosowych: BT bitumiczny AT - antracytowy 999-DL06

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH WYMIANA JONOWA

BIOCHEMICZNE ZAPOTRZEBOWANIE TLENU

1. Regulamin bezpieczeństwa i higieny pracy Pierwsza pomoc w nagłych wypadkach Literatura... 12

BIOTECHNOLOGIA OGÓLNA

Zastosowanie biopreparatów w procesie oczyszczania ścieków

Woltamperometryczne oznaczenie paracetamolu w lekach i ściekach

TECHNOLOGIE MAGAZYNOWANIA I OCZYSZCZANIA WODORU DLA ENERGETYKI PRZYSZŁOŚCI

Sorpcja chromu Cr(VI) w obecności kwasu benzoesowego na wybranych węglach aktywnych

OCZYSZCZANIE ŚCIEKÓW PRZEMYSŁOWYCH O DUŻEJ ZAWARTOŚCI OLEJÓW NA ZŁOŻU BIOLOGICZNYM

Adsorpcja wybranych jonów metali ciężkich na biowęglu pochodzącym z komunalnych osadów ściekowych

II. ODŻELAZIANIE LITERATURA. Zakres wiadomości obowiązujących do zaliczenia przed przystąpieniem do wykonania. ćwiczenia:

Zakres badań wykonywanych w Zakładzie Badań Fizykochemicznych i Ochrony Środowiska zgodnie z wymaganiami Dobrej Praktyki Laboratoryjnej:

Materiały polimerowe laboratorium

Ciśnieniowe techniki membranowe (część 2)

ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp.

VI. ZMIĘKCZANIE WODY METODĄ JONOWYMIENNĄ

Granulowany Węgiel Aktywny z łupin orzechów kokosowych BT bitumiczny AT antracytowy

Węgiel aktywny - Elbar Katowice - Oddział Carbon. Węgle aktywne ziarniste produkowane są z węgla drzewnego w procesie aktywacji parą wodną.

Instrukcja do ćwiczeń laboratoryjnych

Dr hab. Andrzej GIERAK Prof. UJK Kielce, Instytut Chemii Uniwersytet Jana Kochanowskiego w Kielcach

Utylizacja i neutralizacja odpadów Międzywydziałowe Studia Ochrony Środowiska

HETEROGENICZNOŚĆ STRUKTURALNA ORAZ WŁAŚCIWOŚCI ADSORPCYJNE ADSORBENTÓW NATURALNYCH

OCENA MOŻLIWOŚCI OCZYSZCZANIA ŚCIEKÓW Z ZAKŁADU PRZEMYSŁU CUKIERNICZEGO

POLITECHNIKA GDAŃSKA

POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNOLOGII NIEORGANICZNEJ I NAWOZÓW MINERALNYCH. Ćwiczenie nr 6. Adam Pawełczyk

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ

Filtralite Pure. Filtralite Pure WODA PITNA. Rozwiązania dla filtracji na teraz i na przyszłość

Badanie stanu fizycznego zanieczyszczenia wód w gminie Raba Wyżna.

ĆWICZENIE 4. Oczyszczanie ścieków ze związków fosforu

Inżynieria Środowiska II stopnia (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) dr hab. Lidia Dąbek, prof. PŚk.

Filtralite Clean. Filtralite Clean OCZYSZCZANIE ŚCIEKÓW. Rozwiązania dla filtracji na dziś i na przyszłość

Rola normalizacji w ochronie wód. Jeremi Naumczyk Marzec, 2018

WPŁYW STRUKTURY POROWATEJ NA POJEMNOŚĆ BUTANOWĄ WĘGLI AKTYWNYCH

Zrównoważony rozwój przemysłowych procesów pralniczych. Moduł 1 Zastosowanie wody. Rozdział 3b. Zmiękczanie wody

Laboratorium Podstaw Biofizyki

J CD CD. N "f"'" Sposób i filtr do usuwania amoniaku z powietrza. POLITECHNIKA LUBELSKA, Lublin, PL BUP 23/09

PROCESY ADSORPCYJNE W USUWANIU LOTNYCH ZWIĄZKÓW ORGANICZNYCH Z POWIETRZA

PCC ENERGETYKA BLACHOWNIA

ĆWICZENIE 5 ADSORPCYJNE OCZYSZCZANIE WODY I ŚCIEKÓW

Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu

ZASTOSOWANIE POŁĄCZONYCH PROCESÓW SORPCJI I UTLENIANIA DO USUWANIA p-chlorofenolu ZE ŚRODOWISKA WODNEGO

KART A PRZ EDM IOTU. Wydział Inżynierii Chemicznej i Procesowej. prof. nzw. dr hab. inż. Roman Gawroński

Barbara Juraszka, Dominika Macek

Oznaczanie SO 2 w powietrzu atmosferycznym

3.10 Czyszczenie i konserwacja kanalizacji Kontrola odprowadzania ścieków rzemieślniczo-przemysłowych (podczyszczanie ścieków)

POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY

Filtralite Pure. Filtralite Pure UZDATNIANIE WODY. Przyszłość filtracji dostępna już dziś

ZASTOSOWANIE CHEMICZNIE ZREGENEROWANYCH WĘGLI AKTYWNYCH DO USUWANIA ZANIECZYSZCZEŃ ORGANICZNYCH Z ROZTWORÓW WODNYCH

I. Pobieranie próbek. Lp. Wykaz czynności Wielkość współczynnika

CHEMIA ANALIZA I MONITORING ŚRODOWISKA. Usuwanie barwników z wody metodą adsorpcji na węglu aktywnym. Ćw. 7

Dominika Jezierska. Łódź, dn r.

ul. ILJI MIECZNIKOWA 1, WARSZAWA RAPORT

WYKORZYSTANIE REGENEROWANYCH WĘGLI AKTYWNYCH DO OGRANICZENIA MIGRACJI METALI CIĘŻKICH W GLEBIE

Politechnika Wrocławska. Procesy Chemiczne. Ćw. W3 Adsorpcja z roztworów na węglu aktywnym. Kinetyka procesu. Opracowane przez: Ewa Lorenc-Grabowska

Instrukcja do ćwiczeń laboratoryjnych

Osad nadmierny Jak się go pozbyć?

2.1. Charakterystyka badanego sorbentu oraz ekstrahentów

BADANIA TECHNOLOGICZNE OCZYSZCZANIA ŚCIEKÓW Z PRZEMYSŁU CUKIERNICZEGO METODĄ OSADU CZYNNEGO

Biologiczne oczyszczanie ścieków

Jan Cebula (Instytut Inżynierii Wody i Ścieków, POLITECHNIKA ŚLĄSKA, Gliwice) Józef Sołtys (PTH Intermark, Gliwice)

K02 Instrukcja wykonania ćwiczenia

PRZEWODNIK PO PRZEDMIOCIE

Nauka Przyroda Technologie

Ewa Imbierowicz. Prezentacja i omówienie wyników pomiarów monitoringowych, uzyskanych w trybie off-line

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1188

BADANIA FIZYKOCHEMICZNE SFERYCZNYCH MATERIAŁÓW WĘGLOWYCH PREPAROWANYCH NA BAZIE ŻYWIC JONOWYMIENNYCH

WYKRYWANIE ZANIECZYSZCZEŃ WODY POWIERZA I GLEBY

WARUNKI I EFEKTY DŁUGOTRWAŁEGO STOSOWANIA GRANULOWANYCH WĘGLI AKTYWNYCH W WODOCIĄGACH

DESORPCJA SUBSTANCJI ORGANICZNYCH Z WĘGLI AKTYWNYCH STOSOWANYCH W SPRZĘCIE OCHRONY DRÓG ODDECHOWYCH

Zjawiska powierzchniowe

ĆWICZENIE 2. Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych

Karbonowy filtr sorpcyjny K870

Ewa Puszczało. Politechnika Śląska w Gliwicach Wydział Inżynierii Środowiska i Energetyki

Oczyszczanie wody - A. L. Kowal, M. Świderska-BróŜ

Badania pirolizy odpadów prowadzone w IChPW

PRZYDATNOŚĆ WĘGLA AKTYWNEGO W OCZYSZCZANIU WODY POWIERZCHNIOWEJ Z ZASTOSOWANIEM KOAGULACJI

Rola oczyszczalni ścieków w w eliminowaniu ciekach

PL B1. UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE, Olsztyn, PL BUP 22/13. BARTOSZ LIBECKI, Olsztyn, PL

Budowa i eksploatacja oczyszczalni ściek. cieków w Cukrowni Cerekiew. Cerekiew S.A.

WPŁYW CHARAKTERU CHEMICZNEGO POWIERZCHNI WĘGLA AKTYWNEGO NA ADSORPCJĘ FENOLI Z WODY

Grawitacyjne zagęszczanie osadu

Testowanie nowych rozwiązań technicznych przy rekultywacji Jeziora Parnowskiego

PROCESY JEDNOSTKOWE W TECHNOLOGIACH ŚRODOWISKOWYCH ADSORPCJA

Bardzo trudno jest znaleźć wodę wolną od pięciu typowych zanieczyszczeń: Twardość Żelazo Mangan Zanieczyszczenia organiczne (NOM) Zapach amoniaku

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1188

Uzdatnianie wody. Ozon posiada wiele zalet, które wykorzystuje się w uzdatnianiu wody. Oto najważniejsze z nich:

GOSPODARKA ODPADAMI. Oznaczanie metodą kolumnową wskaźników zanieczyszczeń wymywanych z odpadów

Lidia Dąbek*, Ewa Ozimina* UTLENIANIE ZANIECZYSZCZEŃ ORGANICZNYCH ZAADSORBOWANYCH NA WĘGLACH AKTYWNYCH

Kvalita prověřená časem

ROPA NAFTOWA I GAZ ROZWIĄZANIA DO WSTĘPNEGO OCZYSZCZANIA DLA STACJI UZDATNIANIA WODY I OCZYSZCZALNI ŚCIEKÓW API CPI DAF I WSZYSTKO DZIAŁA JAK NALEŻY.

TECHNOLOGIA OCZYSZCZANIA WÓD I ŚCIEKÓW. laboratorium Wydział Chemiczny, Studia Niestacjonarne II

ADSORPCJA PARACETAMOLU NA WĘGLU AKTYWNYM

OCZYSZCZANIE POWIETRZA

Transkrypt:

Węgiel aktywny w ochronie środowiska i przemyśle (2006) MAGDALENA MADEŁA, EWA OKONIEWSKA Politechnika Częstochowska, Wydział Inżynierii i Ochrony Środowiska ul. Brzeźnicka 60a, 42-200 Częstochowa BADANIA BIOREGENERACJI WĘGLA AKTYWNEGO WYSYCONEGO FENOLEM Przeprowadzono badania możliwości biodegradacji fenolu zaadsorbowanego na powierzchni węgla aktywnego. W badaniach użyto dwóch węgli aktywnych o symbolach: WG-12 i ROW 08 Supra. Badania sorpcji fenolu prowadzono w warunkach dynamicznych przy prędkości przepływu równej 4 m/h dla różnych stężeń początkowych. Stężenia fenolu w wodzie po adsorpcji oznaczano metodą spektrofotometryczną. Z pomiarów wynika, że węgiel WG-12 wykazuje lepsze zdolności adsorpcyjne do usuwania fenolu z wody niż węgiel aktywny ROW 08 Supra. Proces biodegradacji prowadzono w warunkach tlenowych, dodając biopreparatu. Na podstawie uzyskanych wyników sorpcji przed i po procesie biodegradacji fenolu obliczono stopień regeneracji równy około 80%. SŁOWA KLUCZOWE: adsorpcja, bioregeneracja, fenol, węgiel aktywny WSTĘP Zanieczyszczenie wód powierzchniowych związkami organicznymi niesie ze sobą poważne zagrożenia dla środowiska naturalnego. Fenole występujące w wodach powierzchniowych pochodzą zarówno z naturalnych procesów humifikacji, jak i działalności antropogenicznej człowieka. Podstawownym źródłem skażenia wód fenolem i jego pochodnymi są ścieki przemysłowe, pochodzące głównie z przemysłu garbarskiego, koksowni, produkcji tworzyw sztucznych i zakładów obróbki drewna. Na węglu aktywnym można skutecznie usuwać związki fenolowe. Po wysyceniu węgla aktywnego zanieczyszczeniami pojawia się natomiast problem jego regeneracji. Stosowane metody regeneracji węgli aktywnych można podzielić na: termiczne, chemiczne, ekstrakcyjne, gazowe, próżniowe, elektrochemiczne i elektryczne oraz biologiczne. Powszechnie stosowaną metodą regeneracji węgla aktywnego zużytego przy oczyszczaniu wody ze związków organicznych jest metoda termiczna. Należy jednak mieć na uwadze, że regeneracja termiczna przebiega w kilku etapach: odwadnianie i suszenie węgla, rozkład substancji nielotnych i reaktywacja. Główną wadą tej metody jest to, że proces odbywa się poza układem sorpcyjnym i jest wysoce energochłonny. W literaturze proces biologicznej regeneracji jest dość szeroko opisywany i ma on zasadnicze znaczenie w przypadku węgli aktywnych wykorzystywanych w pro-

Badania bioregeneracji węgla aktywnego wysyconego fenolem 153 cesach uzdatniania wody i oczyszczania ścieków [1, 2]. W wielu opracowaniach omawiane jest działanie biologicznie aktywnych filtrów węglowych (BAW F ), w których wykorzystuje się rozwój błony biologicznej [3, 4]. Mikroorganizmy, odżywiając się zaadsorbowanymi związkami, powodują samoistną bioregenerację węgla. Proces ten znacznie przedłuża czas pracy filtra z węglem aktywnym. Wśród mikroorganizmów zasiedlających powierzchnię węgli aktywnych dominują bakterie z rodziny Pseudomonas, Acinetobacter, Flavobacterium oraz Bacillus [5, 6]. Jedna z metod biologicznej regeneracji oparta jest na wykorzystaniu działania mikroorganizmów osadu czynnego w procesie regeneracji węgla aktywnego. Do zużytego węgla dodaje się osadu czynnego i intensywnie napowietrza, a następnie płucze wodą w celu odmycia osadu czynnego. Na kłaczkach adsorbują się związki organiczne osadzone uprzednio na węglu aktywnym, które wraz z osadem są wymywane. Metoda ta charakteryzuje się sprawnością od 50 do 80% [7]. Chudyk i Snoenyink [8] opisali tlenową bioregenerację węgli aktywnych, przeprowadzoną przez napowietrzanie kolumn węglowych wysyconych fenolem. Istotne znaczenie w tym procesie miał wysoki poziom tlenu rozpuszczonego. Regeneracja zużytych węgli aktywnych z wykorzystaniem mikroorganizmów wydaje się korzystną metodą ze względów ekonomicznych w porównaniu z metodami regeneracji termicznej lub chemicznej. Stopień bioregeneracji węgli aktywnych zależy od szybkości desorpcji zaadsorbowanych substancji z ich powierzchni oraz podatności adsorbatów na biodegradację. Proces regeneracji w odniesieniu do stosowanych złóż z węglem aktywnym jest nieunikniony, przede wszystkim ze względów ekonomicznych. Na konieczność regeneracji adsorbentów węglowych rzutuje coraz szersze ich stosowanie w dziedzinie ochrony środowiska i zdrowia człowieka. 1. PRZEBIEG BADAŃ Do badań użyto dwóch węgli aktywnych o symbolach WG-12 i ROW 08 Supra. Węgiel aktywny WG-12 jest produkowany z węgla kamiennego, natomiast węgiel ROW 08 Supra otrzymywany jest z torfu. Oba węgle są stosowane do uzdatniania wody pitnej. Charakterystykę techniczną badanych węgli aktywnych przedstawiono w tabeli 1. TABELA 1. Charakterystyka węgli aktywnych Wskaźniki WG-12 ROW 08 Supra Gęstość nasypowa, g/dm 3 420 380 Wytrzymałość mechaniczna, % 98 98 Liczba metylenowa (LM) 30 30 Adsorpcja jodu, mg/g 1050 1096 Powierzchnia zewnętrzna, m 2 /m 3 2292 3208 Średnica granul, mm 1,2 0,8

154 M. Madeła, E. Okoniewska Strukturę porowatą użytych węgli aktywnych wyznaczoną z desorpcyjnych gałęzi izoterm adsorpcji par benzenu oraz metodą porozymetrii rtęciowej zamieszczono w tabeli 2 [9]. TABELA 2. Rozkład objętości kapilar w węglach aktywnych Symbol węgla Promień kapilar, nm < 1,5 1,5 15 15 150 150 1500 1500 7500 Powierzchnia właściwa Objętość kapilar V, cm 3 /g m 2 /g V cm 3 /g WG-12 0,4213 0,1049 0,0648 0,2731 0,1478 1005 1,0114 ROW 08 Supra 0,2497 0,2397 0,3092 0,3197 0,0165 796 1,1347 Do przeprowadzenia procesu biodegradacji fenolu zaadsorbowanego w porach węgli aktywnych użyto biopreparatu DBC plus typ R-5. W skład biopreparatu wchodzą bakterie z grupy Bacillus sp., Pseudomonas sp., Arthrobacter sp., Enterobacter sp. oraz Acinetobacter sp. Jest to preparat biologiczny używany do obróbki ścieków przemysłowych. Znalazł on szerokie zastosowanie w oczyszczaniu ścieków zanieczyszczonych substancjami ropopochodnymi, jest selektywny w biodegradacji fenolu. Badania prowadzono w warunkach laboratoryjnych. W pierwszym etapie badań przeprowadzono adsorpcję fenolu z roztworu wodnego na węglach aktywnych w warunkach dynamicznych. Węgiel aktywny umieszczono w szklanej kolumnie o średnicy 2,6 cm i wysokości złoża węgla aktywnego 20 cm. Przepływ roztworu fenolu następował w kierunku z góry ku dołowi, z prędkością 4 m/h (liczona na pustą kolumnę). Stężenie fenolu w roztworze wynosiło 500 i 1000 mg/dm 3. Proces sorpcji prowadzono do pojawienia się w wycieku z kolumny fenolu o stężeniu 95% stężenia początkowego. Oznaczenia zawartości fenolu w wycieku z kolumny dokonano na spektrofotometrze przy długości fali 254 nm, na podstawie wcześniej wykonanej krzywej wzorcowej [10]. Wysokość strefy wymiany masy L o wyznaczono, posługując się równaniem Michaelsa-Treybola [11] L o L ( k p) (1) (1 ) ( ) k gdzie: L - wysokość węgla aktywnego w kolumnie adsorpcyjnej, cm, p, k - czas do przebicia i do wyczerpania się pojemności adsorpcyjnej węgla, min, - współczynnik charakteryzujący symetrię krzywych wyjścia. Wartości współczynnika zastosowane we wzorze zostały wyznaczone we wcześniejszych badaniach. Wynoszą one odpowiednio 0,68 dla węgla WG-12 oraz 0,60 dla węgla ROW 08 Supra [12]. k p

Badania bioregeneracji węgla aktywnego wysyconego fenolem 155 Prędkość przesuwania się strefy wymiany masy wzdłuż wysokości warstwy węgla aktywnego obliczono ze wzoru k L o u (2) W drugim etapie badań prowadzono biodegradację fenolu zaadsorbowanego w porach węgla aktywnego. W tym celu założono hodowlę okresową mikroorganizmów aerobowych, rozpuszczając w wodzie destylowanej biopreparat o stężeniu 6,7 g/dm 3 oraz pożywkę mineralną w składzie: NaCl - 0,2 g/dm 3, NH 4 Cl - 1 g/dm 3, MgSO 4 7H 2 O - 0,2 g/dm 3, KH 2 PO 4-2 g/dm 3. W celu adaptacji mikroorganizmów do rozkładu fenolu dodawano do hodowli 0,1 g fenolu na dobę. Hodowlę adaptowano przez 3 dni w warunkach tlenowych, przy czym stężenie tlenu wahało się od 5,5 do 8,0 mg/dm 3. Prowadzono również pomiary odczynu hodowli biomasy, w trakcie których zaobserwowano spadek ph z 6,5 do 5. Proces biodegradacji fenolu z powierzchni badanych węgli aktywnych prowadzono w kolumnach. W tym celu przygotowano 10% roztwór biomasy hodowlanej, który przepływał przez kolumnę z prędkością 0,11 m/h. Zastosowano 6-dniowy czas kontaktu węgla aktywnego z roztworem mikroorganizmów. Po upływie tego czasu złoże z węglem aktywnym przepłukiwano wodą destylowaną od dołu ku górze. Ostatnim etapem badań była ponowna adsorpcja fenolu na zregenerowanych węglach aktywnych w takim samym zakresie stężeń fenolu. Po przeprowadzeniu badań dokonano analizy ilość mikroorganizmów zasiedlających kolumny z węglem aktywnym. Do analizy pobierano 1 cm 3 zawiesiny znad odpowiednio przygotowanej próby węgla aktywnego, który rozcieńczano w soli fizjologicznej, a następnie posiewano na podłoże agarowe. Hodowlę inkubowano przez 72 h w temperaturze 25 C. p 2. WYNIKI BADAŃ I ICH OMÓWIENIE Użyte w badaniach węgle aktywne różniły się wartościami wskaźników technicznych oraz rozkładem objętości kapilar. Węgiel WG-12 charakteryzuje się większą gęstością nasypową i rozwiniętą powierzchnią właściwą w porównaniu z węglem ROW 08 Supra. Biorąc pod uwagę rozkład kapilar, można stwierdzić, że węgiel WG-12 jest typowym przedstawicielem węgli mikroporowatych, natomiast węgiel ROW 08 Supra - mezoporowatych. Na podstawie przeprowadzonych pomiarów sorpcji fenolu obliczono wysokości strefy wymiany masy L o dla obu węgli aktywnych oraz prędkość przesuwania się u, wyniki podano w tabeli 3. TABELA 3. Wartości adsorpcji fenolu na węglach aktywnych

156 M. Madeła, E. Okoniewska Stężenie fenolu c o, g/dm 3 500 1000 Symbol węgla aktywnego Wysokość strefy wymiany masy L o, cm Prędkość przemieszczania się strefy wymiany masy u, cm/h WG-12 13,01 1,85 ROW 08 Supra 14,19 2,70 WG-12 16,18 3,60 ROW 08 Supra 19,40 5,55 Zaobserwowano istotne różnice w wysokości L o w badanych węglach, zwiększa się ona wraz ze wzrostem stężenia fenolu w roztworze wodnym. Wyższe wartości L o uzyskano na węglu ROW 08 Supra, jednak nie przekroczyły wysokości złoża węgla aktywnego stosowanego w trakcie badań, czyli 20 cm, dlatego można stwierdzić, że badania nie zostały zakłócone efektami ubocznymi. Z wartości prędkości przemieszczania się strefy wymiany masy wynika, że wraz ze wzrostem stężenia początkowego prędkość rośnie. Na rysunku 1 przedstawiono wpływ stężenia fenolu w roztworze na efektywność usuwania fenolu na badanych węglach aktywnych. Dla stężeń fenolu w roztworze 500 i 1000 mg/dm 3 uzyskano lepsze efekty na węglu aktywnym WG-12. W przypadku badania wpływu stężenia fenolu na efektywności oczyszczania można zauważyć, że im wyższe stężenie wyjściowe, tym efektywność procesu adsorpcji jest mniejsza. Tendencję tę wykazują oba użyte węgle aktywne. Efektywność oczyszczania, m 3 /m 3 300 250 200 150 100 50 0 500 1000 WG-12 ROW 08 Supra St ężenie fenolu, mg/dm 3 Rys. 1. Wpływ stężenia fenolu w roztworze na efektywność oczyszczania na węglach aktywnych WG-12 i ROW 08 Supra Wyniki bioregeneracji badanych węgli aktywnych przedstawiono na rysunku 2, stopień regeneracji obliczono na podstawie wzoru gdzie: A R r 100% (3) A o

Badania bioregeneracji węgla aktywnego wysyconego fenolem 157 R - stopień regeneracji, %, A r - adsorpcja regenerowanego węgla aktywnego, mg/g, A o - adsorpcja węgla świeżego, mg/g. Stopień regeneracji, % 100 90 80 70 60 50 40 30 20 10 0 500 1000 Stężenie fenolu, mg/dm 3 WG-12 ROW 08 Supra Rys. 2. Porównanie skuteczności regeneracji badanych węgli aktywnych Jak widać, proces bioregeneracji przebiegał nieco korzystniej na złożach węglowych, na których przeprowadzono sorpcję fenolu z roztworu o stężeniu 500 mg/dm 3. Uzyskano regenerację rzędu około 80% na węglu ROW 08 Supra i 78% na węglu WG-12. Częściowe przywrócenie zdolności adsorpcyjnej badanych węgli aktywnych świadczy o tym, że zastosowanie biopreparatu wpływa korzystnie na regenerację węgli aktywnych. Po przeprowadzeniu procesów regeneracyjnych przeprowadzono analizę ilościową mikroorganizmów zasiedlających badane węgle aktywne. Próby pobrano z trzech wysokości kolumny sorpcyjnej: z dołu kolumny, ponad podsypką żwirową; ze środka kolumny - z wysokości 10 cm; z góry kolumny. Wyniki przeprowadzonej analizy zestawiono w tabeli 4. W badaniach zaobserwowano wyraźną stratyfikację liczebności mikroorganizmów, przesuwając się w głąb złoża zgodnie z przepływem strumienia wody. TABELA 4. Liczebność mikroorganizmów w próbach węgli aktywnych w zależności od poboru węgla aktywnego z kolumny sorpcyjnej, jkt/g Pobór próbek WG-12 ROW 08 Supra Stężenie fenolu podczas sorpcji, mg/dm 3 500 1000 500 1000 Dół kolumny 2 10 3 1 10 3 3 10 3 2 10 3 Środek kolumny 4 10 3 3 10 3 5 10 3 6 10 3 Góra kolumny 8 10 3 6 10 3 11 10 3 9 10 3

158 M. Madeła, E. Okoniewska PODSUMOWANIE Przeprowadzone badania nad adsorpcją fenolu na wybranych węglach aktywnych wykazały, że węgiel aktywny o symbolu WG-12 lepiej adsorbuje fenol. Struktura porowata węgli aktywnych WG-12 i ROW 08 Supra wykazała dość duże różnice w udziale mikro-, mezo- i makroporów, które w istotny sposób wpłynęły na proces adsorpcji fenolu. Duży udział mikroporów ma węgiel WG-12, co powoduje jego lepszą zdolność do adsorpcji fenolu z wody, tj. cząsteczek o małych wymiarach. Przeprowadzenie bioregeneracji węgli aktywnych obładowanych fenolem z wykorzystaniem biopreparatu DBC plus typ R-5 potwierdza możliwość regeneracji węgli z użyciem mikrorganizmów. Po procesie bioregeneracji otrzymano porównywalne wyniki adsorpcji fenolu z roztworu wodnego na powierzchni badanych węgli aktywnych. Opracowano na podstawie badań wykonanych w ramach BS-401-301/04. LITERATURA [1] Ivancev-Tumbas I., Dalmacija B., Tamas Z., Karlovic E., Reuse of biological regenerated activa-ted carbon for phenol removal, Wat. Res. 1998, 32, 4, 1085-1094. [2] Orshansky F., Nariks N., Characteristics of organics removal by pact simultaneous adsorption and biodegradation, Wat. Res. 1997, 31, 3, 391-398. [3] Wilmański K., Symulacja pracy filtrów węglowych z uwzględnieniem sezonowych zmian ich aktywności biologicznej, Ochr. Środow. 1993, 4(51), 39-42. [4] Suzuki M., Role of adsorption in water environment processes, Wat. Sci. and Technol. 1997, 35, 7, 1-11. [5] Buitron G., Gonzalez A., Lopez- Marin L.M., Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria, Wat. Sci. Technol. 1998, 37, 4-5, 371-378. [6] Ha S., Vinitnantharat S., Ozaki H., Bioregeneration by mixed microorganisms of granular activated carbon loaded with a mixture of phenols, Biotechnol. Let. 2000, 22, 13, 1093-1096. [7] Kowal A.L., Adamski W., Kowalski T., Sposób regeneracji węgla aktywnego, Opis patentowy, nr 106898, 1982. [8] Chudyk W.A., Snoeyink V.L., Bioregeneration of activated carbon saturated with phenol, Environ. Sci. Technol. 1984, 181, 1-5. [9] Dębowski Z., Hołowiecki K., Zastosowanie dynamicznej metody do wyznaczania rozdziału objętości kapilar w węglach aktywnych, Koks-Smoła-Gaz 1970, 336. [10] PN-84/C-04572 - Oznaczanie zawartości rozpuszczonych związków organicznych w wodzie metodą spektrometrii w nadfiolecie. [11] Kielcew N.W., Podstawy technik adsorpcyjnych, PWN, Warszawa 1980. [12] Madeła M., Dębowski Z., Adsorpcja i desorpcja fenolu na wybranych węglach aktywnych, Proceedings ECOpole 03, Jamrozowa Polana, Hradec Kralove 2003, 229-234.

Badania bioregeneracji węgla aktywnego wysyconego fenolem 159 THE BIOREGENERATION OF ACTIVATED CARBON SATURATED WITH PHENOL The objective of this study is the possibility of biodegradation of phenol adsorbed on granular activated carbons and determination of the adsorption capacity of bioregenerated GAC. Two types of activated carbons: WG-12, ROW 08 Supra were used in the experiment. The investigation of phenol adsorption were carried out under dynamic conditions at flow speed equal of 4 m/h for different initial concentrations. The phenol concentration in water after adsorption was determined by the spectrophotometric method. It was found that carbon WG-12 has better adsorption capacity as compared with carbon ROW 08 Supra. Studied activated carbons were bioregenerated under oxygenic conditions in presence of bioproduct. Results of sorption before and post phenol biodegradation showed that regeneration factor was equal about 80%. KEYWORDS: adsorption, bioregeneration, phenol, activated carbon