POMIAR KONDUKTYWNOŚCI ELEKTRYCZNEJ MATERIAŁÓW PRZEWODOWYCH

Podobne dokumenty
Czym jest prąd elektryczny

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

Natężenie prądu elektrycznego

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Różne dziwne przewodniki

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Przerwa energetyczna w germanie

POLITECHNIKA OPOLSKA

Zaburzenia periodyczności sieci krystalicznej

Wyznaczanie oporu elektrycznego właściwego przewodników

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

TEORIA PASMOWA CIAŁ STAŁYCH

Prąd elektryczny - przepływ ładunku

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

MOSTEK. THOMSON-WHEATSTONE'A LABORATORYJNY MWT-77a. m i i P Z M U D DOŚWIABGZALHY ELEKTRONIKI i MECHANIKI PRECYZYJNE!

ĆWICZENIE 6 POMIARY REZYSTANCJI

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII. Instrukcja do wykonania ćwiczenia laboratoryjnego:

Elektryczne własności ciał stałych

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.

Elektryczne własności ciał stałych

E12. Mostek Wheatstona wyznaczenie oporu właściwego

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków.

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki

Wyznaczanie wielkości oporu elektrycznego różnymi metodami

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia:

LABORATORIUM Z FIZYKI

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

P R A C O W N I A

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

W1. Właściwości elektryczne ciał stałych

Pole przepływowe prądu stałego

Miernictwo - W10 - dr Adam Polak Notatki: Marcin Chwedziak. Miernictwo I. dr Adam Polak WYKŁAD 10

Podstawy fizyki sezon 2 3. Prąd elektryczny

Katedra Elektrotechniki Teoretycznej i Informatyki

Badanie charakterystyki diody

STRUKTURA PASM ENERGETYCZNYCH

Laboratorium Podstaw Elektrotechniki i Elektroniki

Ćwiczenie Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika

Teoria pasmowa ciał stałych

Podstawy fizyki sezon 2 3. Prąd elektryczny

ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY

Pomiary małych rezystancji

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki

ELEKTRONIKA ELM001551W

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC

BADANIE CHARAKTERYSTYK FOTOELEMENTU

Ćwiczenie nr 3 Sprawdzenie prawa Ohma.

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia

Laboratorium Podstaw Pomiarów

E3. Badanie temperaturowej zależności oporu elektrycznego ciał stałych 1/5

Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia

Właściwości materii. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 18 listopada 2014 Biophysics 1

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY

Laboratorium Podstaw Pomiarów

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Ćwiczenie nr 123: Dioda półprzewodnikowa

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia

nazywamy mostkiem zrównoważonym w przeciwieństwie do mostka niezrównoważonego, dla którego Z 1 Z 4 Z 2 Z 3. Z 5

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ

Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

Ćwiczenie nr 1. Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy.

ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO METALU I PÓŁPRZEWODNIKA OD TEMPERATURY

Pytania z przedmiotu Inżynieria materiałowa

Przewodnictwo elektryczne ciał stałych

POMIAR ZALEŻNOŚCI OPORU METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY

Prąd elektryczny 1/37

Wyznaczanie cieplnego współczynnika oporności właściwej metali

Struktura pasmowa ciał stałych

BADANIE AMPEROMIERZA

FIZYKA LABORATORIUM prawo Ohma

KLUCZ PUNKTOWANIA ODPOWIEDZI

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

1 K A T E D R A F I ZYKI S T O S O W AN E J

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji.

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI OPÓR OBWODY Z PRADEM STAŁYM. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

Celem ćwiczenia jest poznanie metod pomiaru podstawowych wielkości fizycznych w obwodach prądu stałego za pomocą przyrządów pomiarowych.

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.

Pomiary podstawowych wielkości elektrycznych prądu stałego i przemiennego

LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH

Wykład IV. Półprzewodniki samoistne i domieszkowe

Elektryczność i Magnetyzm

ĆWICZENIE 6. Metale, półprzewodniki, izolatory

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

Transkrypt:

1. CEL ĆWICZENIA POMIAR KONDUKTYWNOŚCI ELEKTRYCZNEJ MATERIAŁÓW PRZEWODOWYCH Poznanie własności przewodnictwa materiałów elektrotechnicznych oraz sposobu pomiaru konduktywności materiałów przewodzących.. WPROWADZENIE Przewodnictwo elektryczne jest wynikiem skierowanego ruchu ładunków elektrycznych w ośrodku pod działaniem pola elektrycznego. Nośnikiem prądu w gazach są jony i elektrony powstające ze zjonizowania atomów lub cząstek gazu. W cieczach i dielektrykach nośnikami prądu są jony, w przewodnikach stałych natomiast elektrony przewodnictwa (walencyjne), a w półprzewodnikach elektrony oraz dziury. Konduktywność materiałów przewodzących rośnie ze wzrostem liczby nośników, zmniejsza się natomiast ze wzrostem temperatury na skutek drgań cieplnych atomów w sieci krystalicznej oraz defektów sieci spowodowanych zanieczyszczeniami i obróbką plastyczną na zimno. Energetyczny model pasmowy ciała stałego definiuje pojęcia: idealnego przewodnika, idealnego dielektryka oraz półprzewodnika W ev W ev W ev Pasmo przewodnictwa Pasmo przewodnictwa Pasmo przewodnictwa W Z 10 ev W Z Pasmo podstawowe a d Pasmo podstawowe b d Pasmo podstawowe c d Rys. 1 Uproszczony model energetyczny ciał stałych. a przewodników, b półprzewodników, c dielektryków (materiałów izolacyjnych) Do interpretacji zjawiska przewodnictwa wystarczy posłużyć się trzema związanymi z modelem pasmowym pojęciami: pasmem podstawowym (nazywanym także pasmem walencyjnym), pasmem wzbronionym i pasmem przewodnictwa (rys. 1). Przerwa energetyczna określona szerokością pasma wzbronionego W z ma decydujący wpływ na wartość konduktywności. Z punktu widzenia pasmowej teorii przewodnictwa różnice we własnościach elektrycznych metali i dielektryków wynikają z różnego położenia pasm energetycznych względem siebie oraz z różnego ich wypełnienia elektronami. Koniecznym warunkiem przewodnictwa elektrycznego jest obecność wolnych poziomów energetycznych, na które może się przenieść elektron po nabyciu dodatkowej energii od zewnętrznego pola elektrycznego. Warunek ten może być spełniony w dwóch sytuacjach: gdy pasmo walencyjne jest tylko częściowo obsadzone przez elektrony (staje się wtedy tzw. pasmem przewodnictwa) oraz gdy występuje zazębienie się dwu sąsiednich pasm (zapełnionego walencyjnego i sąsiadującego z nim, pustego).

Teoria pasmowa tłumaczy dlaczego przewodnictwo elektryczne metali nie zależy od ich wartościowości. Przewodnictwo nie zależy od liczby wolnych elektronów, ale od liczby elektronów, dla których w górnym paśmie przewodnictwa występuje dostateczna liczba wolnych stanów energetycznych. Przy braku pola elektrycznego, elektrony przewodnictwa poruszają się z pewną prędkością w sposób chaotyczny. Z chwilą poddania metalu działaniu pola elektrycznego elektrony te są przyspieszane w kierunku przeciwnym do zwrotu wektora natężenia pola. Nie uzyskują one jednak coraz to większych energii, ponieważ są rozpraszane na skutek zderzeń z jonami, które drgają wokół swoich położeń równowagi w węzłach sieci krystalicznej i dlatego prędkość ich zmienia się tylko nieznacznie pod wpływem pola elektrycznego. Charakteryzuje to współczynnik ruchliwości elektronu i jest on wprost proporcjonalny do średniej drogi swobodnej elektronu. Elektrony w paśmie przewodnictwa podlegają także rozproszeniu na skutek obecności w strukturze materiału atomów innych pierwiastków. Domieszki odgrywają tym większą rolę, im większa jest różnica między masą atomową danego metalu, a masą atomową pierwiastka stanowiącego zanieczyszczenia (domieszki). Prędkość unoszenia elektronów swobodnych ϑ u będąca wypadkową działania pola zewnętrznego i czynników rozpraszających ruch elektronów opisuje zależność (1) ϑ u = E u (1) gdzie: E wektor natężenia pola elektrycznego E [V/m] u ruchliwość swobodnych nośników ładunku elektrycznego u [m m/v s] Konduktywność materiałów przewodowych opisuje zależność () = m ni i= 1 gdzie: n i koncentracja nośników ładunku elektrycznego [1/m 3 ] q i wielkość ładunku [C] m liczba rodzajów nośników ładunku. γ q u () Przy wzroście temperatury metalu rosną drgania cieplne jonów w węzłach sieci i tym bardziej staje się prawdopodobne rozpraszanie elektronu, a średnia droga swobodna i ruchliwość elektronu maleją. Tak więc ze wzrostem temperatury przewodność elektryczna metali maleje. Zmiana rezystywności metalu na jednostkę temperatury jest proporcjonalna do wartości rezystywności ρ: dρ = α ρ, (3) dt gdzie α współczynnik proporcjonalności zwany jako współczynnik temperaturowy rezystywności. Rozwiązanie tego równania można przedstawić w postaci szeregu: ρ = ρ + + + K 0 1 α T α T (4) gdzie ρ 0 rezystywność odniesiona do temperatury pokojowej 0 C (93 K) i i

T = T 93. W zakresie temperatur odpowiadających warunkom eksploatacji przewodników, tj. od -30 C do +00 C, wystarcza uwzględnienie dwóch pierwszych wyrazów szeregu, a mianowicie ( + α T ) = ρ [ 1+ α ( 0) ] ρ = ρ t (5) 0 1 0 0 gdzie t temperatura w C, α 0 temperaturowy współczynnik rezystywności odniesiony do 0 C. Wartości temperaturowego współczynnika rezystywności dla niektórych chemicznie czystych metali podano w tablicy 1 Tablica 1 Własności elektryczne niektórych chemicznie czystych metali Metal γ MS/m ρ µω m α 1/K srebro Ag 61,8 0,016 0,0040 miedź Cu 59,77 0,01675 0,0041 złoto Au 44,0 0,03 0,0038 aluminium Al. 38, 0,06 0,0040 wolfram W 18, 0,055 0,0046 cynk Zn 16,9 0,059 0,0040 kobalt Co 16,1 0,06 0,0060 nikiel Ni 13,7 0,073 0,0065 żelazo Fe 10,3 0,096 0,0059 platyna Pt 9,53 0,105 0,0039 cyna Sn 8,8 0,114 0,0044 W zakresie temperatur bardzo wysokich lub bardzo niskich rezystywność przewodników metalowych wykazuje zmiany skokowe. W przypadku temperatur bardzo wysokich jest to związane ze zmianą stanu skupienia ze stałego na ciekły. W przypadku temperatur bardzo niskich, zbliżonych do zera bezwzględnego występuje zjawisko nadprzewodnictwa, polegające na zaniku rezystywności niektórych przewodników. Rezystywność dąży do zera gdy temperatura bezwzględna T dąży do zera, ponieważ zanikają wówczas drgania cieplne atomów w sieci krystalicznej. Temperatura przy której następuje skokowa zmiana rezystywności nazwano temperaturą krytyczną przejścia nadprzewodnictwa. Jak dotychczas nie uzyskano stanu nadprzewodnictwa w tak dobrych przewodnikach jak miedź i srebro. 3. PROGRAM ĆWICZENIA Pomiary rezystancji materiałów przewodzących można przeprowadzić kilkoma metodami. Najbardziej rozpowszechnioną, a jednocześnie dokładną metodą jest pomiar mostkiem Thomsona. Laboratoryjne mostki Thomsona mają zakresy pomiarowe od 10-7 do 1 Ω. Praktycznie stosowane w warunkach roboczych są techniczne mostki Thomsona o zakresach pomiarowych 10-4 1 Ω. Pomiaru rezystancji można także dokonać metodą porównawczą napięciową. Zakres pomiarowy oraz dokładność tej metody można poszerzyć stosując odpowiednie przyrządy pomiarowe. Przy zastosowaniu laboratoryjnych kompensatorów prądu stałego zakres pomiarowy wynosi od 10-4 do 10 13 Ω. Układ pomiarowy do badania rezystancji materiałów przewodzących składa się z laboratoryjnego mostka Thomsona o klasie dokładności 0,1. W skład układu pomiarowego

wchodzą dodatkowo: źródło napięcia stałego, amperomierz, wyłącznik główny, rezystor wzorcowy, rezystor regulacyjny (pozwalający na regulację wartości prądu) oraz obiekt badany. W układzie mostka znajdują się: podwójny rezystor R a, który w układzie mostka Thomsona pozwala na dekadowe dobranie oporników od 10 Ω do 10000 Ω; pięć przełączników podwójnych R p, posiadających po 10 pozycji, wskazujących wartości oporników dwóch ramion zmiennych mostka Thomsona (10 10000 Ω, 10 1000 Ω, 10 100 Ω, 10 10 Ω, 10 1 Ω, 10 0,1 Ω); przycisk B włączający w obwód baterię zasilającą podłączoną do zacisków ± B (używany tylko w układzie mostka Wheatstone a); przycisk G0,1 włączający w obwód galwanometr podłączony do zacisków ± G (w obwodzie galwanometru znajduje się opornik szeregowy 50 kω, zmniejszający dziesięciokrotnie czułość galwanometru); przy pierwszym naciśnięciu następuje włączenie galwanometru do obwodu, przy powtórnym naciśnięciu wyłączenie galwanometru; przycisk G włączający na czas trwania naciśnięcia galwanometr do obwodu; przez naciśnięcie tego przycisku galwanometr uzyskuje pełną czułość; zaciski służące do podłączenia wg schematu (rys. ): B baterii zasilającej (w układzie mostka Wheatstone a), G galwanometru, X 1 oporności mierzonej (w układzie mostka Wheatstone a), X przewodów napięciowych oporności mierzonej (w układzie mostka Thomsona), R n przewodów napięciowych opornika wzorcowego (w układzie mostka Thomsona). A R x R N G + + + + B G X R N Wh Th R p x 1000 x 100 x 10 R 1 R 10 10 10 3 10 4 B G 0,1 G x 1 x 0,1 + X1 Rys.. Układ do pomiaru rezystancji mostkiem Thomsona R x rezystor badany, R 1 =R =R a oporniki stałych ramion mostka Thomsona, R p oporniki dekadowe, R N opornik wzorcowy

Obiektami badań są próbki miedziane oraz aluminiowe w postaci odcinków o zróżnicowanych kształtach i przekrojach o długości pomiarowej od 100 do 500 mm. Umieszczane są one w specjalnej ławie pomiarowej (rys. 3) wyposażonej w parę zacisków prądowych oraz parę zacisków napięciowych, przy czym te ostatnie wydzielają na danej próbce odcinek o ściśle określonej długości. Ława pomiarowa przystosowana jest do badania próbek o długości od 100 do 500 mm, gdyż istnie możliwość przesuwania zacisków napięciowych w takim zakresie długości. 500 500 500 1 1 Rys. 3. Ława pomiarowa 1 zaciski napięciowe, zaciski prądowe

3.1. Pomiary 1. Przed przystąpieniem do pomiarów należy określić: temperaturę otoczenia, która powinna być zawarta w przedziale 15 0 C; wilgotność względną (około 80 %); wstępnie orientacyjną wartość rezystancji R x, obliczoną zgodnie z wzorem (6): l R =, (6) γ s gdzie: R rezystancja badanej próbki [Ω], l długość pomiarowa próbki [m], s pole powierzchni przekroju próbki [mm ], γ konduktywność miedzi lub aluminium [MS/m] (dla miedzi 55 MS/m, dla aluminium 33 MS/m); wartość rezystorów R 1 = R = R a w zależności od zastosowanego rezystora wzorcowego i oszacowanej wartości rezystancji R x. Doboru rezystora R a dokonuje się na podstawie tablicy. Tablica Wartość oporników stałych ramion mostka R X R N = 0,1 Ω R N = 0,01 Ω R N = 0,001 Ω 0,00001 0,0001 0,0001 0,001 R a = 10000 0,001 0,01 R a = 10000 R a = 1000 0,01 0,1 R a = 10000 R a = 1000 R a = 100 0,1 1 R a = 1000 R a = 100 R a = 10 1 10 R a = 100 R a = 10. Zamknąć główny wyłącznik w obwodzie pomiarowym i nastawić odpowiednią wartość prądu. 3. Nacisnąć przycisk G0,1. Jeżeli galwanometr wychyla się w kierunku - zmniejszyć wartość oporników dekadowych R p. Przy wychyleniu się galwanometru w kierunku + należy zwiększyć wartość tych oporności. Zmniejszanie i zwiększanie oporności należy przeprowadzać najpierw na dekadach 1000, później 100, dalej 10, 1 i 0,1. 4. Z chwilą osiągnięcia położenia zerowego galwanometru, należy zwiększyć czułość galwanometru przez wciśnięcie (i przytrzymanie) przycisku G. 5. Ponownie doprowadzić galwanometr do położenia zerowego. 6. Po zakończonym pomiarze zwolnić przycisk G, a następnie wyłączyć galwanometr przez ponowne wciśnięcie przycisku G0,1. Wartość oporności mierzonej R x, oblicza się wg wzoru (7): R p R x = RN. (7) R Pomiar rezystancji badanych próbek należy wykonać dla dwu kierunków prądu i jako rezultat pomiarów przyjąć wartość średnią. Wyniki pomiarów należy ująć w tablicy 3 a

Tablica 3 Wyniki pomiarów rezystancji próbek Lp. Oznaczenie próbki R p R p+ R p R psr R a R N R x(t) t R x(0) γ 0 Ω Ω Ω Ω Ω Ω C Ω MS/m 3.. Opracowanie wyników pomiarowych Wyniki pomiarów zestawione w tablicy 3 i uzupełnione dodatkowymi obliczeniami są podstawą do obliczenia ostatecznego wyniku pomiaru tj. konduktywności metalu mierzonej próbki w warunkach normalnych w temperaturze 0 C. Średnią wartość rezystancji R p oblicza się z zależności (8) Rp+ + Rp R psr =, (8) gdzie: R p+ wartość rezystancji R p dla biegunowości +, R p wartość rezystancji R p dla biegunowości. Wyznaczoną zgodnie ze wzorem (7) rezystancję R x dla temperatury t należy przeliczyć na temperaturę 0 C zgodnie ze wzorem: Rx Rx 0 =, (9) 1+ α( t 0) gdzie α cieplny współczynnik rezystywności (tablica 1). Ostatecznym wynikiem pomiaru będzie wartość konduktywności γ 0 badanego przewodnika w temperaturze 0 C obliczona ze wzoru (10): l γ 0 =, (10) R0 s a następnie przedstawiona jako wartość średnia konduktywności wszystkich badanych próbek tego samego materiału: γ 0sr γ = 0a + γ 0b + K+ γ m 0m (11) 4. LITERATURA [1] Celiński Z.: Materiałoznawstwo elektrotechniczne. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 005 r. [] Kolbiński K., Słowikowski J.: Materiałoznawstwo elektrotechniczne. WNT, Warszawa 1988 r. [3] Daszyński J., Hagel R.: Miernictwo elektryczne. WSP Warszawa 1985 r. [4] Instrukcja obsługi laboratoryjnego mostka Thomson-Wheatsone a MWT-77a