Fizyka cząstek elementarnych Tadeusz Lesiak 1
WYKŁAD I Wstęp, cząstki i siły T.Lesiak Fizyka cząstek elementarnych 2
Zamiast wstępu T.Lesiak Fizyka cząstek elementarnych 3
Zamiast wstępu T.Lesiak Fizyka cząstek elementarnych 4
Co to jest fizyka cząstek elementarnych? HEP (high energy physics) fizyka wysokich energii lub fizyka cząstek elementarnych. Próbuje odpowiadać na najbardziej fundamentalne pytanie: z czego zbudowana jest materia w najmniejszych, obserwowalnych skalach odległości? Obraz korpuskularny: na poziomie subatomowym istnieją małe (punktowe?) zgęstki materii, pomiędzy którymi zieje pustka; pojedyncze cząstki tego samego rodzaju są nieodróżnialne. Obraz falowy: wszystkie cząstki to fale. Obrazy falowy + korpuskularny falocząstka. Nobody knows what it is, only what it is like!!! Cechy cząstki elementarnej: nie składa się z innych obiektów, nie posiada struktury. Cząstki elementarne mogą oddziaływać ze sobą. Te oddziaływania są także przedmiotem badań HEP poniżej. Metody doświadczalne fizyki cząstek elementarnych: Zderzenia cząstek o wielkiej energii, przyspieszanych w akceleratorach (zderzaczach). Badania cząstek emitowanych przez obiekty astrofizyczne (w szczególności promieniowanie kosmiczne). T.Lesiak Fizyka cząstek elementarnych 5
Podążając w głąb materii XIX w. dzisiaj: odsłonięto cztery poziomy złożoności materii: Czy na tym koniec? Na czym polega istota elementarnych obiektów? Czy one w ogóle istnieją? XX w. dzisiaj: dość dobrze rozumiemy zjawiska relatywistyczne i kwantowe Małe atomy Jądra atomowe nukleony Fizyka atomowa Fizyka jądrowa Szybkie Mechanika klasyczna Mechanika relatywistyczna Mechanika kwantowa Kwantowa teoria pola kwarki Fizyka cząstek elementarnych T.Lesiak Fizyka cząstek elementarnych 6
Podążając w głąb materii sześcian Bronsteina - efekty grawitacyjne znikają - efekty kwantowe znikają -prędkość światła nieskończona NM Newtonian Mechanics SR Special Relativity QM Quantum Mechanics QFT Quantum Field Theory NG Newtonian Gravity NQR Newtonian Quantum Gravity GR General Relativity TOE Theory of Everything; Relativistic Quantum Gravity T.Lesiak Fizyka cząstek elementarnych 7
Odkrywając nowe siły oraz je unifikując Koniec XIX w. Doświadczalna obserwacja trzech sił dominujących w mikroświecie: jądra 4 He (oddziaływania silne), elektrony (powstałe w wyniku oddziaływań słabych), fotony (kwanty przenoszące stary i znany elektromagnetyzm. Długa droga od obserwacji do głębszego zrozumienia Cztery oddziaływania obecnie uważane za elementarne (nie można ich uważać za manifestacje innego, prawdziwie elementarnego oddziaływania): grawitacyjne, elektromagnetyczne, silne i słabe. Odwieczna tęsknota za unifikacją sił: elektryczność + magnetyzm = elektromagnetyzm, elektromagnetyzm + słabe = elektrosłabe, tarcie, siły Van der Waalsa elektromagnetyzm. Kresem idei unifikacji Teoria Wszystkiego (Theory of Everything TOE). T.Lesiak Fizyka cząstek elementarnych 8
Drzewo genealogiczne unifikacji sił H.Murayama T.Lesiak Fizyka cząstek elementarnych 9
Ku przestrodze: nie wszystkie próby unifikacji są udane Przykład 1: Teoria flogistonu: Ciepło jest substancją (flogistonem) taką samą jak materia unifikacja ciepła z materią. Tymczasem ciepło to tylko energia przypadkowego ruchu atomów. Przykład 2: Unifikacja planet między sobą oraz z matematyką brył platońskich (Kepler, Mysterium Cosmographicum ): - Nie przewiduje żadnych nowych zjawisk, prowadzi donikąd. T.Lesiak Fizyka cząstek elementarnych 10
Cząstki elementarne a Wszechświat Masa człowieka 1028 razy większa niż masa atomu Masa człowieka 10-28 razy mniejsza od masy gwiazdy H.Murayama T.Lesiak Fizyka cząstek elementarnych 11
Cząstki elementarne a Wszechświat Ouroboros połyka własny ogon: symbol cykliczności i pierwotnej jedności. T.Lesiak Fizyka cząstek elementarnych 12
Z czego zbudowana jest materia? Zacznijmy od starożytnych Greków W atomy uwierzyliśmy dopiero u progu XXw. (ruchy Browna) T.Lesiak Fizyka cząstek elementarnych 13
Odkrycie elektronu: atom nie jest elementarny J.J. Thomson: 1897 r. Dokładne badania promieni katodowych: dowód że składają się z cząstek naładowanych, których masa to około 1/1800 masy atomu wodoru. Nobel 1906 r. + szlachectwo. Model atomu Thomsona: rodzynki w cieście. Atom = sfera o równomiernie rozłożonym ładunku dodatnim. Jej promień 10-8 m. Wewnątrz rodzynki elektrony. T.Lesiak Fizyka cząstek elementarnych 14
Odkrycie jąder atomowych E. Rutherford, H.Geiger, E.Marsden: 1909-11r. Rozpraszanie cząstek alfa na folii ze złota R-źródło, F-folia, M-mikroskop Thomson: Nowy planetarny model atomu: Cząstka Cząstka jądro elektron Rutherford: T.Lesiak T.Lesiak Fizyka cząstek elementarnych Cząstki i siły 15
Na drodze ku kwarkom Odkrycie neutronu: J.Chadwick 1932r.: rozpraszanie cząstek alfa na berylu. Odkrycie pozytonu: C.Anderson 1933r. pierwsza cząstka antymaterii patrz poniżej. W końcu lat sześćdziesiątych XX w. obserwowanych elementarnych cząstek naliczono około 100!!! Ogromna większość z nich to hadrony (mezony i bariony) cząstki oddziałujące silnie T.Lesiak Fizyka cząstek elementarnych 16
Na drodze ku kwarkom M.Kaku: Określenie `fizyka cząstek elementarnych stało się własnym zaprzeczeniem, jakimś kosmicznym żartem. R.Oppenheimer: Nagroda Nobla w fizyce powinna być przyznana uczonemu, który w tym roku NIE odkrył żadnej nowej cząstki. T.Lesiak Fizyka cząstek elementarnych 17 H
Model kwarków czy kwarki to tylko abstrakcyjne obiekty? W tej menażerii występowały pewne regularności: hadrony o zbliżonych masach i jednakowym spinie grupowały się w tzw. multiplety, najczęściej o liczebności 8 i 10. Rozwiązanie zagadki: M.Gell-Mann, J.Ne eman 1964r.: - wszystkie znane hadrony są obiektami złożonymi z kwarków i antykwarków (barion =qqq, mezon=qq), - na początek: istnieją trzy kwarki (u,d,s) i trzy antykwarki (u,d,s), - funkcje falowe hadronów należących do tego samego multipletu różnią się przestawieniem u d, u s, d s (operacje symetrii grupy SU(3)). T.Lesiak Fizyka cząstek elementarnych 18
Model kwarków czy kwarki to tylko abstrakcyjne obiekty? Model o dziwacznych własnościach: -czy ktoś widział kwarki? (może to tylko abstrakcyjne matematyczne twory, przydatne w klasyfikacji), - ładunek kwarku ±2/3 lub ±1/3!!! - kłopoty z relacją spin-statystyka dla hadronów. Potężne przewidywanie: ma istnieć cząstka obserwacja tej cząstki: T.Lesiak Fizyka cząstek elementarnych 19
Model kwarków czy kwarki to tylko abstrakcyjne obiekty? Koniec lat 60-tych XXw. powtórka eksperymentu Rutherforda przy użyciu znacznie bardziej energetycznej wiązki elektronów w ośrodku SLAC (USA). Elektron-sonda może tym razem rozróżniać obiekty znacznie mniejsze od nukleonu i wykrywa punktowe partony (R.Feynman) w jego wnętrzu; partony = kwarki. R.Taylor, H.Kendall, J.Friedman ludzie, którzy jako pierwsi zobaczyli kwarki (Nobel 1990). T.Lesiak Fizyka cząstek elementarnych 20
Im wyższa zdolność rozdzielcza tym widzimy lepiej NISKA zdolność rozdzielcza WYSOKA zdolność rozdzielcza H.Murayama T.Lesiak Fizyka cząstek elementarnych 21
Im wyższa zdolność rozdzielcza tym widzimy lepiej Im wyższa energia zderzeń (akceleratora) tym mniejsze odległości można próbkować (rozróżniać) w eksperymencie: poprawia się przestrzenna zdolność rozdzielcza Wynika to z hipotezy de Broglie a: Akcelerator = mikroskop Cząstki wiązki = sonda Przestrzenna zdolność rozdzielcza Δx w badaniach podstawowych struktur materii: Δq - przekaz czteropędu między cząstką-sondą a badanym obiektem T.Lesiak Fizyka cząstek elementarnych 22
Im wyższa zdolność rozdzielcza tym widzimy lepiej H.Murayama T.Lesiak Fizyka cząstek elementarnych 23
Kilka słów o jednostkach Energia: jednostka 1 ev, 1 MeV = 10 6 ev 1GeV = 10 3 MeV, 1TeV = 10 3 GeV. 1 ev = 1.6 x 10-19 J energia, jaką zyskuje elektron przy różnicy potencjału 1V. Relatywistyczny związek energii z pędem i masą: Aż się prosi aby położyć c=1 i zapomnieć o tym czynniku. Wtedy energia, pęd i masa mogą być wyrażone w tych samych jednostkach np. GeV. Dodatkowo czas i długość można wtedy podawać w GeV -1 T.Lesiak Fizyka cząstek elementarnych 24
Kilka słów o jednostkach Obliczmy wartość w układzie SI: Zamiana J ev : Zamiana ev MeV oraz m fm: Bardzo ważny wniosek: Połóżmy teraz Jeśli dodatkowo: T.Lesiak Fizyka cząstek elementarnych 25
Kilka słów o jednostkach Our scale Length m Mass kg Time s Energy kg m 2 s -2 Particle Physics Length fm Mass ev/c 2 Time s Energy ev Convert 1 ev = 1.6 x 10-19 J 1 GeV = 10 9 ev 1 TeV = 10 3 GeV 1 fm = 10-15 m T.Lesiak Fizyka cząstek elementarnych 26
Cząstki a Wszechświat T.Lesiak Fizyka cząstek elementarnych 27
Cząstki a Wszechświat Wielki Wybuch (Big Bang) zdarzył się ok. 13.7 mld lat temu. Od tego czasu Wszechświat wciąż ekspanduje Można go uważać za gaz, w którym coraz to inne cząstki elementarne odgrywają dominującą rolę. Wraz z ekspansją temperatura gazu maleje. Wyższa energia zderzeń w akceleratorze wyższa energia cząstek wyższa temperatura próbkowanie coraz wcześniejszych stadiów ewolucji Wszechświata. Przykład: zderzacz LEP, energia ok. 90 GeV T ok. 10 15 K. To odpowiada czasowi ok. 10-12 s po Wielkim Wybuchu. Im wyższe energie osiągniemy w akceleratorach tym większa szansa na ujawnienie obecności nowych egzotycznych cząstek, aktywnych w bardzo wczesnych stadiach Wszechświata. T.Lesiak Fizyka cząstek elementarnych 28
Uwaga antymateria P.Dirac, 1928r.: nowe relatywistyczne równanie falowe dla elektronu, zgodne z mechaniką kwantową i teorią względności. Wśród rozwiązań także te z ujemną energią i ładunkiem, poruszające się wstecz w czasie, równoważne pozytonom: cząstkom o dodatniej energii poruszającym się w przód w czasie, Doświadczalna obserwacja pozytonu - Anderson 1933 r. Antycząstki mają przeciwny ładunek elektryczny oraz wiele innych liczb kwantowych w stosunku do cząstek. Cząstki i antycząstki: te same masy i czasy życia; mogą powstawać parami z czystej energii (jeśli tylko jest jej dostatecznie dużo) oraz anihilują gdy się spotkają. Synteza teorii relatywistycznej i kwantowej pojawiają się antycząstki. T.Lesiak Fizyka cząstek elementarnych 29
Fizyka cząstek a chemia T.Lesiak Fizyka cząstek elementarnych 30
Z czego zbudowana jest materia? XIXw.: układ okresowy pierwiastków - tablica Mendelejewa Mendeleev (1869): fizyczne i chemiczne własności pierwiastków są związane z ich masą atomową w sposób okresowy; pierwiastki chemiczne o podobnych własnościach mogą być uporządkowane w postaci kolumn tabeli. 1869 r: znano 60 pierwiastków (dziś 110). W tablicy Mendelejewa Istniały puste pola!!! Trzy ważne odkrycia: 1875 gallium 1879 scandium 1886 - germanium T.Lesiak Fizyka cząstek elementarnych 31
Z czego zbudowana jest materia? XXw. Elementarne fermiony (cząstki o spinie ½): górny dolny powabny dziwny prawdziwy truth piękny beauty mion taon Kwarki i leptony różnią się swoim udziałem w oddziaływaniach: kwarki uczestniczą w oddziaływaniach silnych a leptony nie. Taka sama tabela dla antykwarków. Część kwarkowa tabeli razy trzy każdy kwark występuje w trzech stanach koloru. T.Lesiak Fizyka cząstek elementarnych 32
Z czego zbudowana jest materia? Tablica Mendelejewa fizyki cząstek elemetarnych T.Lesiak Fizyka cząstek elementarnych 33
Po co przyrodzie trzy generacje? Stabilna materia Ziemi składa się z cząstek pierwszej generacji. Do opisu Ziemskiej fizyki zupełnie wystarczy: -kwarku (ładunek 2/3), -kwarkd (ładunek -1/3), (z nich zbudowane są wszystkie nukleony) -elektron e - (ładunek -1), -neutrino e (ładunek 0). Cięższe kwarki i leptony są niezwykle rzadkie w ziemskich warunkach (tzn. poza laboratorium HEP). Tym niemniej były one bardzo istotne we wcześniejszych fazach ewolucji Wszechświata. Powyższa tablica Mendelejewa to element tzw. Modelu Standardowego (Standard Model SM), teorii opisującej jednolicie oddziaływania silne, słabe i elektromagnetyczne. W ramach SM brak wyjaśnienia zagadki, dlaczego istnieją trzy generacje. Przypisanie do generacji: w miarę rosnącej masy (kolejności odkrywania). T.Lesiak Fizyka cząstek elementarnych 34
Zagadka masy Dlaczego cząstki w ogóle mają masę? Skąd taka rozpiętość mas elementarnych obiektów (ok. 11 rzędów wielkości). Definicja masy niejednoznaczna: Masa goła i ubrana niżej. T.Lesiak Cząstki i siły 35
Materia: podsumowanie T.Lesiak Fizyka cząstek elementarnych 36
Materia: fermiony Oddziaływania: bozony Pauli: zasada wykluczania zakaz Pauliego : dwa elektrony o spinach zwróconych w tę samą stronę nie mogą zajmować tego samego stanu kwantowego (podana aby wytłumaczyć dlaczego wszystkie elektrony w atomie nie spadają na stan podstawowy). Wyjaśnienie trochę ad hoc ale dotyka fundamentalnego stwierdzenia: cząstki mikroświata są identyczne. Jeśli tak, to może funkcja falowa powinna spełniać relację: (1,2)= (2,1) ALE to zdanie jest fałszywe. Mierzalne jest tylko * 2 (1,2) = ± (2,1). Nierelatywistyczna mechanika kwantowa: dwie klasy cząstek: bozony (+) i fermiony (-) fakt empiryczny. T.Lesiak Fizyka cząstek elementarnych 37
Materia: fermiony Oddziaływania: bozony Kwantowa teoria pola poprawny dowód związku spinu ze statystyką (1940 r.). Statystyka = symetria funkcji falowej względem zamiany dwóch identycznych cząstek. Identyczne BOZONY Symetryczna f.f.; niosą oddziaływania Identyczne FERMIONY Antysymetryczna f.f.; cegiełki materii Prawdopodobieństwo rośnie gdy dwie lub więcej cząstek w tym samym stanie Żadne dwie cząstki nie mogą być w tym samym stanie T.Lesiak Fizyka cząstek elementarnych 38
Oddziaływania fundamentalne 1. Grawitacyjne 2. Elektromagnetyczne 3. Słabe 4. Silne T.Lesiak Fizyka cząstek elementarnych 39
Grawitacja Newton: grawitacja przenosi się między ciałami z nieskończoną prędkością. Ma nieskończony zasięg. Oddziaływanie to ma zawsze charakter przyciągający (efekt kumulacji). Jest ok. 10 38 razy słabsza od elektromagnetyzmu ( poniżej). Szczególna Teoria Względności prędkość światła stała, niezależna od obserwatora. pole (pojęcie znane już od czasów Faradaya) pełni rolę przenoszenia siły ze skończoną prędkością między ciałami (główny akcent na polowy opis zjawisk w elektromagnetyzmie). Ogólna Teoria Względności (OTW): grawitacja krzywizna czasoprzestrzeni; to nie siła lecz własność czasoprzestrzeni; ciała w zakrzywionej czasoprzestrzeni poruszają się po najkrótszej drodze. Kwantowa teoria grawitacji (KTG) = jeden z największych problemów fizyki. Kwantowanie pola grawitacyjnego jak dotąd się nie udało (równania OTW nieliniowe). KTG wymiana grawitonów o spinie 2. T.Lesiak Fizyka cząstek elementarnych 40
Grawitacja: główne idee ogólnej teorii względności (OTW) Grawitacja to nie siła ale własność czasoprzestrzeni: manifestacja jej zakrzywienia. ruch swobodny Masa = centrum siły grawitacji w płaskiej przestrzeni A B A B ruch w płaskiej przestrzeni pod wpływem siły grawitacji A B ruch swobodny w zakrzywionej przestrzeni Efekt ten sam: ciała A i B zbliżają się do siebie!!! T.Lesiak Fizyka cząstek elementarnych 41
Grawitacja: główne idee ogólnej teorii względności (OTW) Zakrzywienie lub zagięcie przestrzeni powoduje pojawienie się siły. Siły nie istnieją naprawdę, są jedynie konsekwencją geometrii. Analogia: pseudo-siły w nie inercjalnych układach odniesienia Masywne ciała zakrzywiają otaczającą czasoprzestrzeń. Ciała poruszają się w zakrzywionej czasoprzestrzeni po najkrótszych drogach (liniach geodezyjnych). Najkrótsza droga nie jest prosta, jeśli sama czasoprzestrzeń jest zakrzywiona. Materia mówi przestrzeni jak się ma zakrzywiać Przestrzeń mówi materii jak się ma poruszać. T.Lesiak Fizyka cząstek elementarnych 42
Grawitacja: główne idee ogólnej teorii względności (OTW) Równania Einsteina: opisują relację między geometrią i materią. G - tensor metryczny T - tensor energii-pędu T.Lesiak Fizyka cząstek elementarnych 43
Pozostałe trzy siły: elektromagnetyzm, słaba i silna Są siłami wymiany ich istotą wymiana cząstek-nośników oddziaływania Nośniki = bozony pośredniczące (intermediate bosons). T.Lesiak Fizyka cząstek elementarnych 44
Pozostałe trzy siły: elektromagnetyzm, słaba i silna T.Lesiak Fizyka cząstek elementarnych 45
Elektromagnetyzm Elektrodynamika kwantowa QED (quantum electrodynamics). Pierwsza i najprostsza kwantowa teoria pola QFT (quantum field theory) powstała w latach czterdziestych XX w. (Feynman, Schwinder, Tomonaga, Dyson etc.). Oddziaływanie elektromagnetyczne = wymiana fotonów (kwantów pola elektromagnetycznego) między cząstkami obdarzonymi ładunkiem elektrycznym i/lub momentem magnetycznym. Stała struktury subtelnej (fine structure constant) - bezwymiarowa miara siły elektromagnetyzmu. Jej małość umożliwia bardzo precyzyjne obliczenia obserwabli (rachunek zaburzeń; metoda diagramów Feynmana etc. poniżej). Np. przesunięcie Lamba, czynnik g (a e ) dla elektronu: dokładność 8 x 10-13 i zgodność z doświadczeniem - precyzja 3 x 10-13 : T.Lesiak Fizyka cząstek elementarnych 46
Oddziaływania słabe Pierwsza manifestacja: rozpad : n p e- e (dziś d u e- e ) Ma naturę destrukcyjną: generuje rozpady, a nie stabilne formy materii. T.Lesiak Fizyka cząstek elementarnych 47
Oddziaływania słabe Bezwymiarowa miara siły oddziaływań słabych: (G F stała Fermi ego): Pierwszy prymitywny opis (teoria Fermiego, lata trzydzieste XX w.) oddziaływanie kontaktowe. Współcześnie: teoria elektrosłaba (electroweak theory) lata 60-70 XX w. wymiana ciężkich bozonów pośredniczących W +- (M W = 80 GeV) i Z 0 (M Z =91 GeV); Jednocześnie unifikacja oddziaływań słabych i elektromagnetyzmu poniżej. Oddziaływanie słabe jako jedyne może zmieniać kwark x w kwark y. Nie zachowują wielu liczb kwantowych (w szczególności parzystości przestrzennej (P), parzystości ładunkowej (C) oraz ich kombinacji (CP). T.Lesiak Fizyka cząstek elementarnych 48
Oddziaływania silne Chromodynamika kwantowa QCD (quantum chromodynamics). Rodziła się w bólach w latach 70 XX w. (Wilczek, Gross, Politzer etc.). Oddziaływanie silne = wymiana gluonów (kwantów pola chromomagnetycznego) między cząstkami obdarzonymi kolorem (nowa liczba kwantowa; każdy kwark może występować w jednym z trzech kolorów). Nowość: gluony-nośniki oddziaływania mogą oddziaływać ze sobą wzajemnie. Nowość: siła siły silnej rośnie do nieskończoności wraz z rosnącą odległością (uwięzienie, confinement). Nowość: siła silna staje się bardzo słaba na małych odległościach np. poniżej rozmiarów nukleonu (asymptotyczna swoboda, asymptotic freedom). T.Lesiak Fizyka cząstek elementarnych 49
Zasięg oddziaływania Odległość, na której siła jest wyczuwalna. Zasięg jest bezpośrednio związany z masą M wymienianej cząstki (nośnika oddziaływania). Ilość energii, która może być zgodnie z zasadą nieoznaczoności pożyczona co najwyżej na czas t: W czasie t cząstka o masie M może pokonać dystans co najwyżej: R = c t Stąd: Elektromagnetyzm: Oddziaływania słabe: Oddziaływania silne: tu nietypowo, zasięg wynosi rzędu 1 fm = 10-15 m (rzędu rozmiaru hadronu; dokładnie taki zasięg dają piony o masie ~0.2 GeV ). T.Lesiak Fizyka cząstek elementarnych 50
Backup T.Lesiak Fizyka cząstek elementarnych 51
Podążając w głąb materii Sześcian Bronsteina T.Lesiak Fizyka cząstek elementarnych 52