OSIOWO- SYMETRYCZNE POŁĄ CZENIE KLEJONE O OPTYMALNYM ROZKŁADZE NAPRĘ Ż EŃ STYCZNYCH W WARSTWIE KLEJU

Podobne dokumenty
ANALIZA ROZKŁADU NAPRĘ Ż EŃ W SPOINIE KLEJOWEJ POŁĄ CZENIA ZAKŁADKOWEGO W ZAKRESIE ODKSZTAŁCEŃ PLASTYCZNYCH

STATECZNOŚĆ EULEROWSKA PRĘ TÓW PRZEKŁADKOWYCH Z RDZEN IEM O ZMIENNEJ CHARAKTERYSTYCE. 1. Wstę p

MAREK Ś LIWOWSKI I KAROL TURSKI (WARSZAWA)

Scenariusz lekcji. Wojciech Dindorf Elżbieta Krawczyk

WYZNACZANIE NAPRĘ ŻŃ ENA PODSTAWIE POMIARÓW TYLKO JEDNEJ SKŁ ADOWEJ ODKSZTAŁ CENIA

WYZNACZENIE STANU NAPRĘ Ż ENI A W OSIOWO SYMETRYCZNYM POŁĄ CZENIU KLEJONYM OBCIĄ Ż ONY M MOMENTEM SKRĘ CAJĄ CY M

I Pracownia fizyczna ćwiczenie nr 16 (elektrycznoś ć)

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

PŁYTY PROSTOKĄ TNE O JEDNOKIERUNKOWO ZMIENNEJ SZTYWNOŚ CI

ANALIZA WYTRZYMAŁOŚ CIOWA PIONOWEJ PRZEPŁYWOWEJ WYTWORNICY PARY ELEKTROWNI JĄ DROWYCH MICHAŁ N I E Z G O D Z I Ń S K I, WACŁAW ZWOLIŃ SKI (ŁÓDŹ)

OPTYMALIZACJA POŁOŻ ENIA PODPÓR BELKI SZTYWNO- PLASTYCZNEJ OBCIĄ Ż ONEJ IMPULSEM PRĘ DKOŚ CI. 1, Wstę p

BADANIA ELASTOOPTYCZNE MIESZKÓW KOMPENSACYJNYCH Z PIERŚ CIENIAMI WZMACNIAJĄ CYMI. 1. Wstę p

O PEWNYM UOGÓLNIENIU METODY ORTOGONALIZACYJNEJ. 1, Uwagi wstę pne

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

ANALIZA WYNIKÓW BADAŃ PEŁZANIA MECHANICZNEGO I OPTYCZNEGO MATERIAŁU MODELOWEGO SYNTEZOWANEGO Z KRAJOWEJ Ż YWICY EPOKSYDOWEJ

BADANIE WPŁYWU ODKSZTAŁCENIA PLASTYCZNEGO NA ZACHOWANIE SIĘ METALU PRZY RÓŻ NYCH DROGACH WTÓRNEGO OBCIĄ Ż ENI A. 1. Wprowadzenie

Ruch w potencjale U(r)=-α/r. Zagadnienie Keplera Przybli Ŝ enie małych drgań. Wykład 7 i 8

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

Wykład 3. Ruch w obecno ś ci wię zów

2. Pręt skręcany o przekroju kołowym

DANE DOTYCZĄCE DZIAŁALNOŚ CI OGÓŁEM DOMÓW MAKLERSKICH, ASSET MANAGEMENT I BIUR MAKLERSKICH BANKÓW W 2002 ROKU I W PIERWSZYM PÓŁROCZU 2003

MODELOWE BADANIA KONCENTRACJI NAPRĘ Ż EŃ W WĘ ZŁACH USTROJÓW NOŚ NYCH METODĄ POKRYĆ OPTYCZNIE CZYNNYCH 1

System przenośnej tablicy interaktywnej CM2 MAX. Przewodnik użytkownika

NOŚ NOŚ Ć GRANICZNA ROZCIĄ GANYCH PRĘ TÓW Z KARBAMI KĄ TOWYMI O DOWOLNYCH WYMIARACH CZĘ Ś CI NAD KARBAMI. 1. Wprowadzenie

PRZEGLĄ D PRAC DOTYCZĄ CYCH NOŚ NOŚ I CGRANICZNEJ ROZCIĄ GANYCH ELEMENTÓW Z KARBEM WOJCIECH SZCZEPIŃ SKI (WARSZAWA) 1. Wstę p

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

DYNAMIKA SZTYWNEJ PŁYTY SPOCZYWAJĄ CEJ NA SPRĘ Ż YSTO- PLĄ STYCZNY M PODŁOŻU ZE ZMIENNĄ GRANICĄ PLASTYCZNOŚ CI CZĘ ŚĆ II. SPRĘ Ż YSTE ODCIĄ Ż ENI E

DOŚ WIADCZALNE BADANIE POWIERZCHNI PLASTYCZNOŚ CI WSTĘ PNIE ODKSZTAŁ CONEGO MOSIĄ DZU J. MIASTKOWSKI, W. SZCZEPIŃ SKI (WARSZAWA) 1.

BADANTA WPŁYWU ZGNIOTU WPROWADZONEGO W OBSZARZE KONCENTRACJI NAPRĘ Ż EŃ NA TRWAŁOŚĆ ZMĘ CZENIOWĄ DURALOWEJ KONSTRUKCJI Z KARBEM. 1.

i- i.a... (i) 1. Wstę p

WPŁYW PODATN OŚ CI PIERŚ CIENI WZMACNIAJĄ CYCH N A PRACĘ KOMPENSATORÓW MIESZKOWYCH 1 * CYPRIAN KOMORZYCKI (LUBLIN), JACEK STUPNICKI

ANALIZA NIESTACJONARNYCH ODKSZTAŁCEŃ I NAPRĘ Ż EŃ TERMOSPRĘ Ż YSTYCH W WALE Z ODSĄ DZAN IEM

PREFABRYKOWANE STUDNIE OPUSZCZANE Z ŻELBETU ŚREDNICACH NOMINALNYCH DN1500, DN2000, DN2500, DN3200 wg EN 1917 i DIN V

WYZNACZANIE MODELU STEROWANIA SAMOLOTEM ZAPEWNIAJĄ CEGO Ś CISŁĄ REALIZACJĘ RUCHU PROGRAMOWEGO*

FERDYNAND TWARDOSZ I JERZY ZIELNICA (POZNAŃ)

ROZWIĄ ZYWANI E PROBLEMÓW QUASI- STATYCZNEJ SPRĘ Ż YSTO- LEPKOPLASTYCZNOŚ I C ZE WZMOCNIENIEM KINEMATYCZNYM. 1. Wstęp

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

POWŁOKI PROSTOKREŚ LNE OPARTE NA OKRĘ GU PRACUJĄ CE W STANIE ZGIĘ CIOWYM STANISŁAW BIELAK, ANDRZEJ DUDA. 1. Wstę p

METODA OBLICZANIA AMPLITUD DRGAŃ WYMUSZONYCH BELEK SŁABO TŁUMIONYCH TARCIEM KONSTRUKCYJNYM. 1. Wstę p

PŁYNIĘ CIE KOŁNIERZA PRZY KSZTAŁTOWANIU WYTŁOCZKI Z NIEJEDNORODNEJ BLACHY ANIZOTROPOWEJ. 1. Wstę p

Badanie silnika asynchronicznego jednofazowego

METODYKA STATYCZNYCH BADAŃ DOŚ WIADCZALNYCH PLASTYCZNEGO PŁYNIĘ CIA METALI. 1. Wprowadzenie

ANALIZA SPRĘ Ż YSTO- PLASTYCZN A JARZMA POŁĄ CZENIA SWORZNIOWEGO. 1. Wstę p

STATYCZNA PRÓBA SKRĘCANIA

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

OCENA POWIERZCHNI PLASTYCZNOŚ CI MATERIAŁÓW ANIZOTROPOWYCH NIELINIOWYCH METODĄ SPRZĘ Ż ENI A TERMO- MECHANICZNEGO. 1. Wstę p

WGŁĘ BIANIE NARZĘ DZIA Z PERIODYCZNYM ZARYSEM KLINOWYM W OŚ RODEK PLASTYCZNY. 1. Wprowadzenie

PODSTAWOWE ZAGADNIENIA LEPKOPLASTYCZNOŚ CI P. PERZYNA (WARSZAWA) Wstę p

LABORATORIUM TECHNOLOGII NAPRAW WERYFIKACJA TULEJI CYLINDROWYCH SILNIKA SPALINOWEGO

WIESŁAW OSTACHOWICZ, JANISŁAW TARNOWSKI (GDAŃ SK)

PRZEGLĄ D NOWSZYCH PRAC Z DZIEDZINY STATECZNOŚ CI POWŁOK CIENKOŚ CIENNYCH. 1. Wstę p

W FOTOPLASTYCZNOŚ CI. 1. Wstę p

w którym a oznacza naprę ż eni e wystę pują ce w danym punkcie budowli, a k naprę ż eni e dopuszczalne.

ODPOWIEDNIOŚC MODELOWA DLA CCENKOŚ CIENNYCH PRĘ TÓW O BISYMETRYCZNYM OTWARTYM PRZEKROJU POPRZECZNYM MIECZYSŁAW JOKIEL (WROCŁAW) 1.

OSZACOWANIE ROZWIĄ ZAŃ RÓWNAŃ KANONICZNYCH METODY SIŁ W PRZYPADKU PRZYBLIŻ ONEGO WYZNACZANIA LICZB WPŁYWOWYCH. 1. Wstę p

X=cf...fxflpiyddcpi, " i

HYBRYDOWA METODA ELEMENTÓW SKOŃ CZONYCH W ZAGADNIENIU KONTAKTOWYM. 1. Wstę p

WPŁYW NEEJEDNORODNOŚ CI STANU NAPRĘ Ż ENI A W PRZEKROJU POPRZECZNYM POŁĄ CZENIA NA OBCIĄ Ż ENI E ZWOJÓW GWINTU* 1. Wstę p

7. REZONANS W OBWODACH ELEKTRYCZNYCH

MODELOWANIE CYFROWE PROCESU STEROWANIA SAMOLOTU W RUCHU SPIRALNYM. 1. Wstę p

ZALEŻ NOŚĆ MAKSYMALNEJ SIŁY UDERZENIA OD WSPÓŁCZYNNIKA RESTYTUCJI. 1. Wstę p

STATECZNOŚĆ SPRĘ Ż YSTO- PLASTYCZNE J TRÓJWARSTWOWEJ POWŁOKI W KSZTAŁCIE WYCINKA STOŻ KA W UJĘ CIU GEOMETRYCZNIE NIELINIOWYM

TEORETYCZNA ANALIZA PROCESU WYCISKANIA RURY JERZY BIAŁKIEWICZ (KRAKÓW) 1. Wstę p

Wyboczenie ściskanego pręta

UKŁAD ROZRUCHU SILNIKÓW SPALINOWYCH

1. Naprę ż eni a momentowe

Adres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia:

ZMODYFIKOWANA METODA PROPORCJONALNEGO NAPROWADZANIA POCISKÓW W POZIOMEJ PŁASZCZYŹ NIE ZBLIŻ ENIA

P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa

WCIĄGARKI HYDRAULICZNE STOJAKI I PRZY CZEP

UKŁAD O DWÓCH STOPNIACH SWOBODY JAKO DYNAMICZNY IZOLATOR" DRGAŃ BOGUSŁAW RADZISZEWSKI, ANDRZEJ RÓŻ YCKI (WARSZAWA)

KONCENTRACJA NAPRĘ Ż EŃ W TARCZY NIEOGRANICZONEJ Z OTWOREM KOŁOWYM PRZY OBCIĄ Ż ENI U WEWNĘ TRZNYM KAZIMIERZ RYKALUK (WROCŁAW) 1.

Projekt MES. Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe

PLASTYCZNE SKRĘ CANIE NIEJEDNORODNYCH PRĘ TÓW O ZMIENNEJ Ś REDNICY. 1. Uwagi wstę pne

UCHWAŁA N r XX X/306 l 2ot3. Rady Miejskiej w Brzozowie. z dnia 25 kwietnia 2OI3 r. Rada Miejska w Brzozowie. uchwala, co nastę puje: Rozdział l

ANALOGOWE UKŁADY SCALONE

MODELE OBLICZENIOWE I BADANIA DOŚ WIADCZALNE ZAWIESZENIA LOTNICZEGO SILNIKA TŁOKOWEGO. 1. Wstę p

ZAGADNIENIA POWŁOK NIESPRĘ Ż YSTYCH 1 ANTONI SAWCZU K, WACŁAW OLSZ AK (WARSZAWA)

MODEL MATEMATYCZNY WYZNACZANIA FUNKCJI STEROWANIA SAMOLOTEM W PĘ TLI

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

12. Wyznaczenie relacji diagnostycznej oceny stanu wytrzymało ci badanych materiałów kompozytowych

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

Gdań sk, dnia 19 lipiec 2012 r.

Moduł 2/3 Projekt procesu technologicznego obróbki przedmiotu typu bryła obrotowa

STATYCZNA PRÓBA ROZCIĄGANIA

PIERŚ CIENI SZTYWNO PLASTYCZNYCH Z WIĘ ZAMI GEOMETRYCZNYMI. 1. Wprowadzenie

D TYMCZASOWE NAWIERZCHNIE Z ELEMENTÓW PREFABRYKOWANYCH

POLYTEAM Sp. z o.o. Tel , faks , polyteam@polyteam.pl

O ZASTOSOWANIU ZASAD TERMODYNAMIKI DO OPISU MATERIAŁÓW ODKSZTAŁCONYCH J. KESTIN (PROVIDENCE) MAN [1]). 1. Uwaga wstę pna

EKSPERYMENTALNY SPOSÓB WYZNACZANIA WSPÓŁCZYNNIKA RESTYTUCJI PRACUJĄ CEJ MASZYNY WIBROUDERZENIOWEJ MICHAŁ TALL (GDAŃ. 1. Wstę p

METODA SYMULACJI ZŁOŻ ONYCH OBCIĄ Ż EŃ STOCHASTYCZNYCH W BADANIACH ZMĘ CZENIOWYCH ELEMENTÓW WŁADYSŁAW BUBIEŃ, KAZIMIERZ SZABELSKI (LUBLIN)

O PROPAGACJI FAL NAPRĘ Ż ENI A W SPRĘ Ż YSTO- PLASTYCZNM PRZEWODNIKU PODDANYM DZIAŁANIU RUCHOMEJ SIŁY MASOWEJ W OBECNOŚ CI POLA MAGNETYCZNEGO

Ć W I C Z E N I E N R C-6

STATECZNOŚĆ DYNAMICZNA Ś MIGŁOWCA Z WIRNIKIEM PRZEGUBOWYM

MODELOWANIE PŁASKICH SPRĘ Ż YSTOPLASTYCZNYCH ZAGADNIEŃ METODĄ FOTOPLASTYCZNOŚ CI. 1. Wstę p

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA

WSTĘP DO TEORII PLASTYCZNOŚCI

ZASTOSOWANIE RÓŻ NIC SKOŃ CZONYCH DO TWORZENIA MACIERZY SZTYWNOŚ CI W METODZIE ELEMENTÓW SKOŃ CZONYCH NA PRZYKŁADZIE ZGINANEJ PŁYTY. 1.

Transkrypt:

MECHANIKA TEORETYCZNA I STOSOWANA 3, 6 (978) OSIOWO- SYMETRYCZNE POŁĄ CZENIE KLEJONE O OPTYMALNYM ROZKŁADZE NAPRĘ Ż EŃ STYCZNYCH W WARSTWIE KLEJU KAROL GRUDZIŃ SKI, LEON ŁABUĆ, TADEUSZ BURDA (SZCZECIN). Wstę p Klejenie metali jest coraz szerzej stosowane w róż nych gałę ziach przemysłu, nie tylko do łą czenia elementów cienkoś ciennych ale również odpowiedzialnych złą czy konstrukcyjnych, przenoszą cych znaczne obcią ż enia. Liczne publikacje (omówione w pracy []) oraz wieloletnie doś wiadczenia wł asne wskazują na szerokie moż liwośi czastosowania klejenia do łą czenia elementów osiowo symetrycznych. Przeprowadzone badania doś wiadczalne wykazały [2, 3], że stosunkowo łatwo moż na otrzymać walcowe i stoż kowe poł ą czenia klejone o wytrzymałoś ci równej lub nawet przewyż szają ce j wytrzymał ość łą czonych elementów stalowych. Zastosowanie klejenia do łą czenia elementów osiowo symetrycznych ma szereg zalet [] i stwarza szerokie moż liwośi cwprowadzania nowych rozwią zań konstrukcyjnych. Niezbę dnym warunkiem dla szerszego wykorzystania ich w praktyce jest jednakże opracowanie racjonalnych zasad kształ towania tego t>pu poł ą czeń w cparciu o szczegół ową analizę naprę ż eń i odpowiednio przyję te kryteria oceny wytrzymałoś ci. Z wcześ niejszych prac [4, 5] wynika, że w walcowych połą czeniach klejonych elementów o stałym przekroju poprzecznym i jednakowej gruboś ci warstwy kleju (rys. la), obcią ż -o nym momentem skrę cają cym, wystę puje nierównomierny rozkł ad naprę ż eń stycznych w warstwie kleju na dł ugoś ci / połą czenia (rys. lb). W skrajnych przekrojach poł ą czenia wystę pują znaczne spię trzenia naprę ż eń, podczas gdy w czę ś i cś rodkowej są one bardzo małe. Taki rozkład naprę ż eń jest niekorzystny dla pracy poł ą czenia i obniża w konsekwencji jego wytrzymałoś ć.. '. Jeż el i za podstawę oceny przyjmie się kryteriom maksymalnych naprę ż eń stycznych, wystę pują cych w warstwie kleju, to wzrost wytrzymał oś ci poł ą czenia uzyskać moż na przez obniż enie szczytowych wartoś ci tych naprę ż eń i zapewnienie im bardziej równomiernego rozkładu. Najlepszą pracę połą czenia i najbardziej racjonalne wykorzystanie własnoś ci wytrzymałoś ciowych kleju uzyskuje się wtedy, gdy rozkład naprę ż eń stycznych na całej długoś ci / połą czenia jest równomierny (rys. lc). Poł ą czenie klejcne, które speł nia ten warunek przyjmuje się w niniejszej pracy jako optymalne ze wzglę du na. wytrzymałoś ć. Z rozważ ań teoretycznych wynika, że równomierny rozkł ad naprę ż eń stycznych w warstwie kleju w połą czeniu walcowym uzyskuje się przy założ eniu doskonałej sztywnoś ci elementów łą czonych. W pracach [4, 5] wykazano, że takiego zał oż enia w odniesieniu do

362. K. GRUDZIŃ SKI, L. ŁABUĆ, T. BURDA połą czeń osiowo- symetrycznych elementów wykonanych z metalu przyjmować nie moż na, pomimo że róż nica wartoś ci współczynników sprę ż ystośi cmetalu i kleju jest bardzo duża i się ga dwóch rzę dów. Nasuwa się wię c pytanie, czy istnieje moż liwość zaprojektowania takiego poł ą czenia klejonego elementów wykonanych z materiałów rzeczywistych, a w szczególnoś ci metali, w którym rozkład naprę ż eń stycznych w warstwie kleju bę dzie równo, mierny na całej dł ugoś ci. Przedstawione poniż ej rozważ ania teoretyczne dają twierdzą cą odpowiedź na to pytanie. Podano trzy sposoby rozwią zania tego zadania. c) Rys.. Walcowe połą czenie klejone o stałym przekroju elementów łą czonych i warstwy kleju: a) schemat połą czenia, b) wykres naprę ż eń stycznych w warstwie kleju przy uwzglę dnieniu rzeczywistej sztywnoś ci elementów, c) wykres naprę ż eń stycznych w kleju przy założ eniu doskonalej sztywnoś ci elementów łą czonych 2. Model połą czenia Punktem wyjś cia do rozważ ań nad optymalizacją wytrzymał oś ci osiowo- symetrycznego poł ą czenia klejonego jest j'ego model przedstawiony schematycznie na rys. 2, spełniają cy nastę pują ce zał oż enia: ) elementy łą czone (wałek i tulejka) są ciałami sprę ż ystymi osiowo- symetrycznymi o przekroju poprzecznym zmieniają cym się w sposób łagodny na dł ugoś ci poł ą czenia; 2) adhezja kleju do metalu wyklucza poś lizg na powierzchniach granicznych; 3) przekroje poprzeczne po obcią ż eni u połą czenia momentem skrę cają cym pozostają pł askie (hipoteza płaskich przekrojów), a do wyznaczenia naprę ż eń i odkształ ceń w łą - czonych elementach przyjmuje się wzory znane z teorii wytrzymałoś ci materiałów; 4) grubość warstwy kleju jest stała w przekroju poprzecznym, natomiast może zmieniać ś ię na długoś ci połą czenia; -., :

OSIOWO- SVMETRYCZNE POŁĄ CZENIE KLEJONE 363 5) naprę ż eni a styczne W przekrojach poprzecznych warstwy kleju pomija się przyjmują c, że moment skrę cają cy w całoś ci jest przenoszony przez przekroje poprzeczne wałka i tulejki (rys. 2b, c); 6) przy dostatecznie mał ych odkształ ceniach klej speł nia prawo Hooke'a dla czystego ś cinania [6]. > d) Rys. 2. Model osiowo symetrycznego połą czenia klejonego o optymalnym rozkładzie naprę ż eń stycznych w warstwie kleju: a) i b) schemat połą czenia (7 wałek, 2 tulejka, 3 warstwa kleju), c) optymalny rozkład momentów skrę cają cych wałek i tulejkę, d) optymalny rozkład naprę ż eń stycznych w warstwie kleju Z rys. 2 oraz przyję tych założ eń wynikają nastę pują ce zależ nośi cgeometryczne i sta- (tyczne: () 9tW+ ftw = <Pw{x), (2) (3) d<pt dę i^ _ dg> w dx dx dx ' M, (4) dx dm t dx ; 0, gdzie (p w (x), q> t (x), cp k (x) oznaczają przemieszczenia ką towe mierzone w przekroju x (rys. 2b), M w (x), M t (x) momenty skrę cają ce wał ek i tulejkę w przekroju x, zaś M oznacza moment skrę cają cy przenoszony przez poł ą czenie. Znane z wytrzymałoś ci materiałów wzory na ką t skrę cenia mają postać (5) dę w M w (x) G w I ovl (x)

364 K. GRUDZIŃ SKT, L. ŁABUĆ, T. BURDA te* ^ŁL ( ) dx G t I ot (x) ' gdzie G w, G, oznaczają współczynniki sprę ż ystośi cpoprzecznej materiałów wał ka i tulejki, zaś I ow (x), I ot (x) biegunowe momenty bezwładnoś ci przekroju wałka i tulejki. Zmianę momentów na dł ugoś ci dx wyraż aj ą wzory (7) (8) ^ - 2nrfr kt {x\ gdzie r kw {x), r. kt {x) oznaczają naprę ż eni a styczne obwodowe na powierzchniach granicznych kleju z wał kiem i tulejką. Po podstawieniu (7) i (8) do równania (4) otrzymuje się po przekształ ceniu i pominię ciu znaku (9), r kt (x) = - 4- T* w O). Ponieważ /, < r t r+g (gdzie g grubość warstwy kleju), to r k, < r kw. Dla małych gruboś ci warstwy kleju róż nice bę dą nieistotne i moż na je pominą ć przyjmują c, że naprę - ż enia styczne na gruboś ci warstwy kleju, i na powierzchniach granicznych są jednakowe (0) Tu (s T kw w r k. Dla naprę ż eń stycznych w warstwie kleju na podstawie (7) otrzymuje się równanie l dmw Chcą c otrzymać maksymalną wytrzymałość połą czenia na skrę canie, zgodnie z przyję - tym wcześ niej kryterium, należy zapewnić równomierny rozkład naprę ż eń stycznych w warstwie kleju. To bę dzie spełnione jeż el i momenty skrę cają ce wałek i tulejkę bę dą się zmieniać wedł ug nastę pują cych funkcji liniowych (rys. 2c): (2). (3) M t (x) = My. Po uwzglę dnieniu (2), wzór () przyjmie postać (4) x k (x) = - ^ 2nr 2 r - I r = const. W dalszych rozważ aniach przyjmuje się, że zależ nośi c(2), (3) i (4) są spełnione z założ enia. Z analizy zagadnienia wynika, że warunek optymalnego rozkł adu naprę ż eń stycznych (4) może być osią gnię ty poprzez odpowiednią zmianę : ) przekroju poprzecznego elementów łą czonych, 2) gruboś ci warstwy kleju, 3) własnoś ci sprę ż ystych kleju. Przypadki te zostaną omówione po kolei. M

OSIOWO- SYMETRYCZNE POŁ Ą CZENI E KLEJONE 365 3. Optymalna zmiana prekroju ł ą czonyc h elementów Oprócz zał oż eń ogólnych podanych w punkcie 2 przyjmuje się obecnie dodatkowo zał oż enie, że grubość g warstwy oraz współ czynnik sprę ż ystoś i Gc k kleju są stał e na dł ugoś ic poł ą czenia. Jako wielkoś ci zmienne, zależ ne od x przyjmuje się biegunowe momenty bezwł adnoś i c / (x) i I ot (x) przekroju ł ą czonych elementów. Przy zał oż eni u równomiernego rozkł adu naprę żń estycznych w warstwie kleju na dł u- goś ci / poł ą czenia, kąt <p k - const (rys. 2b). Uwzglę dniając to, otrzymuje się na podstawie (2) zwią zek geometryczny (5) dcp w dx d<p t dx Po uwzglę dnieniu zależ nośi c(5), (6), (2) i (3), zwią zek geometryczny (5) przyjmuje postać (6) I ot (x) G w x G t - : Jeż el i zał oż ymy, że elementy ł ą czone wykonane są z jednego materiał u (G w = G,} oraz że wał ek ma stał y przekrój, tzn. I ow = const, wówczas na podstawie (6) otrzymuje się (7) J ot (x) = I ow X Przyjmują c, że przekrój wał ka jest peł ny, otrzymuje się wzory dla biegunowych momentów bezwł adnoś i c o postaci: (8) /.«(*) nr? Dla dostatecznie cienkiej warstwy kleju moż na przyjąć r t «r w = r. Otrzymuje się wtedy na podstawie (7) funkcję okreś lają ą c przebieg zmiennoś ci promienia zewnę trznego tulejki (9) gdzie:.$ = x/ l jest współ rzę dną bezwymiarową dł ugoś i cpoł ą czenia. We wzorze (9) nie wystę puje współ czynnik sprę ż ystoś i cg k kleju. Wynika z tego, że Wzór ten jest sł uszny zarówno w zakresie odkształ ceń sprę ż ystyc h jak i plastycznych kleju, tzn. przy mał ych i duż ych obcią ż eniac h momentem M, SLŻ do zniszczenia poł ą czenia. Należy dodać, że funkcja R( ) nie zależy od konkretnej dł ugoś i c/ poł ą czenia. Przebieg, zmiennoś ci bezwymiarowej funkcji R(i)/ r ilustrują tablica / i rys. 3. "3 ablica 5 ~ / 0 0, 0,2 0,3 0,4 0,5 ' 0,6 0,7 0,8 0,9,0 m r,027,057,093,37,89,257,35,495,778 co

366 K. GRUDZIŃ SKI, L. Ł ABUĆ, T. BURDA Niedogodnoś cią jest tutaj wystę powanie nieskoń czonośi cdla =. W praktycznych przypadkach nieskoń czoność tę moż na zastą pić dostatecznie dużą wartoś cią skoń czoną. Powyż szą niedogodność moż na usunąć w ł atwy sposób przez zastosowanie wał ka o zmiennej sztywnoś ci na dł ugoś i cpoł ą czenia. Jedną z praktycznych moż liwośi cjest wykonanie otworu stoż kowego, jak na rys. 4. 2 - - -! 0,2 0,4 0,6 0,8 t.,0 Rys. 3. Optymalna zmiana promienia zewnę trznego tulejki walcowego poł ą czeni a klejonego dla przypadku, gdy wał ek ma przekrój stał y peł ny Rys. 4. Schemat walcowego poł ą czeni a klejonego wał ka i tulejki o zmiennym przekroju Z zależ nośi c(6) wynika, że dla uzyskania równomiernego rozkł adu naprę żń ew warstwie kleju przy G t = G m musi być speł niony warunek orf\ IQA X ) _ x Zgodnie z rys. 4 (2) I*w(x) = Y(/ - 4 - C 4 ), gdzie Q = r- y, stąd C22) ' I ( ) = I (l *) gdzie I ow = m 4 / 2 oznacza moment biegunowy przekroju wał ka peł nego, zaś =» x/ l bezwymiarową współ rzę dną. Dla tulejki biegunowy moment bezwł adnoś i c przekroju jest równy (23)

OSIOWO- SYMETRYCZNE POŁĄ CZENIE KLEJONE 367 Po podstawieniu (23) i (24) do (20) oraz odpowiednich przekształceniach otrzymuje się (24) R = Przebieg zmiennoś ci stosunku i?( )/ r ilustruje tablica 2 i rys. 5. Z tablicy 2 widać, że promień zewnę trzny tulejki dla fas ma skoń czoną wartoś ć, wynoszą cą R ma i =,495 r. Tablica 2 X 0 0,2 0,4 0,6 0,8,0 r,058,3,233,353,495,5,0. 5 h - A95 I I I 0,2 0,6 0,8,0 Rys. 5. Optymalna zmiana promienia zewnę trznego tulejki walcowego połą czenia klejonego dla przypadku, gdy wałek ma otwór stoż kowy j. - 4. Optymalna zmiana gruboś ci warstwy kleju' Rozważ ony zostanie teraz przypadek połą czenia walcowego o zmiennej gruboś ci warstwy kleju na długoś ci / (rys. 6). Zakłada się przy rym, że stosunek sztywnoś ci na skrę - canie przekrojów wałka i tulejki jest stał y i wystę puje jako parametr B niezależ ny od x. (25) 2? = ^ ^. Zadanie polega obecnie na wyznaczeniu funkcji g(x), opisują cej zmianę gruboś ci warstwy kleju na długoś ci / poł ą czenia, przy której naprę ż eni a styczne w kleju bę dą miały równomierny rozkł ad okreś lony zależ noś ą ci (4). a) \ gm I Rys. 6. Walcowe połą czenie klejone z warstwą kleju o zmiennej gruboś ci: a) przekrój podłuż ny, b) fragment przekroju poprzecznego

368 K. GRUDZIŃ SKI, L. ŁABUĆ, T. BURDA Przemieszczenie cp k przekrojów poprzecznych wał ka i tulejki jest wynikiem odkształcenia się warstwy kleju o ką t y k (rys. 6b). Przy małej gruboś ci g w stosunku do promienia r moż na przyją ć zależ ność a (26) <p k = y k. a) Rys. 7. Przebiegi zmian przemieszczeń ką towych q> x (x), q> t (x) i q> k (x) na długoś ci połą czenia Po uwzglę dnieniu prawa Hooke'a dla czystego ś cinania w odniesieniu do kleju oraz zależ nośi c(4) otrzymuje się g(x)r k ' g(x) M (27) <Pk(x) = rg k ~ 2nr 3 G k I ' gdzie G k oznacza współczynnik sprę ż ystośi cpoprzecznej kleju. Warunek geometrycznej zgodnoś ci odkształceń, zgodnie z () ma postać (rys. 7) (28) <p k {x) = <p w {x)- <p t (x). Po uwzglę dnieniu zależ nośi c(5;, (6), (2), (3) i (27) oraz warunku brzegowego dla (27), zależ ność geometryczną (28) moż na przedstawić w postaci M- g(x) M g(p) M 2 Y r 2nr 3 G k I 2nr 3 G k I G W I BW G,I ot ' gdzie g(0) oznacza grubość warstwy kleju w przekroju x 0 (rys. 6a). Z zależ nośi c(29) po dokonaniu pewnych przekształceń otrzymuje się (30) g(x) - gdzie B zgodnie z zależ noś ą ci (25) oznacza stosunek sztywnoś ci na skrę canie przekrojów wał ka-i tulejki. Dla przypadku, gdy elementy łą czone wykonane są z jednakowego materiału ((?, = G, = = G) i mają równe co do wartoś ci biegunowe momenty bezwł adnoś ci '(3) * / - I 9W = ' - 2jl

OSIOWO- SYMETRYCZNE POŁĄ CZENIE KLEJONE 369 otrzymuje się na podstawie (30) (32) g(x) Fizyczny sens rozwią zania zagadnienia wymaga, aby funkcja g(x) miał a wartoś ci nieujemne na całej długoś ci / poł ą czenia. Z (32) wynika, że minimalna grubość warstwy kleju (przy B ) wystę puje w przekroju x = //2 i wynosi H3"> ff m, Stą d (34) # (0) = (35) n n Podstawiają c (34) do (32) otrzymuje się po przekształ ceniach gdzie f = x/ I, (0 < f < ). Funkcja (35) okreś la zmianę gruboś ci warstwy kleju na długoś ci / połą czenia, przy której otrzymuje się równomierny rozkład naprę ż eń stycznych w kleju. Przebiegi zmian gruboś ci warstwy kleju w zależ nośi cod'długoś ci / połą czenia przy założ onych stosunkach l:r = 2 oraz G k :G 0,025 (dla połą czenia elementów stalowych) ilustrują krzywe na rys. 8. We wzorze (35),g mł n jest pewną stałą i okreś la minimalną grubość warstwy kleju jaką należy przyją ć z warunków montaż owych. Maksymalne gruboś ci warstwy kleju wystę pują w skraj- Gr Gr J [mm] CD,00 \ 0,75 0,50 0,25 V U40mm_ /.loomm < X l=20mm is/ l= Qmm G k / G = 0,025 l/ r=2 / / / / yyy / C ' 0 0 i 0,2 ^ * i 0,4 mu i - ^ i 0,6 0,8 =x/ l,t Ryś. 8. Optymalna zmiana gruboś ci warstwy kleju na długoś ci połą czenia walcowego J L Rys. 9. Schemat walcowego polaczenia'klejonego o optymalnej zmianie gruboś ci warstwy kleju na długoś ci/

370 K. GRUDZIŃ SKI, L. ŁABUĆ, T. BURDA nych przekrojach. Nie mogą one przyjmować dowolnie duż ych wartoś ci i ograniczają w sposób istotny długoś ci / połą czenia. Praktycznie moż liwą realizację połą czenia o zmiennej gruboś ci warstwy kleju pokazano na rys. 9. Przyję cie takiego ukształ towania wał ka i otworu tulejki uł atwia montaż elementów i zapewnia dobre wypełnienie szczeliny klejem oraz dobre centrowanie elementów przy dostatecznie małej gruboś ci g m]n. 5. Optymalna zmiana własnoś ci sprę ż ystych kleju Rozważ ony zostanie teraz jeszcze- jeden teoretycznie moż liwy przypadek optymalizacji połą czenia walcowego, poprzez zastosowanie kleju o zmiennych wł asnoś ciach sprę ż ystyoh na długoś ci połą czenia. Zakł ada się, że grubość warstwy kleju oraz stosunek sztywnoś ci na skrę canie elementów ł ą czonych są stałe i nie zależą od współrzę dnej x. Celem rozważ ań jest wyznaczenie i zbadanie funkcji, według jakiej musi zmieniać się współczynnik sprę ż ystośi ckleju G k G k (x), przy ż ą dani u speł nienia warunków (2), (3) i (4), dotyczą cych liniowego rozkł adu momentów skrę cają cych i równomiernego rozkł adu naprę ż eń stycznych w warstwie kleju. Dla rozważ anego przypadku otrzymuje się zależ ność analogiczną do (29), z tą róż nicą, że grubość g jest teraz wielkoś cią stałą, a wspóczynnik sprę ż ystośi ckleju zmienną (G k = = G k (x)). lnr 3 l G k (x) 2nrH G k (Q) G W I OW T G,I ot ' gdzie G k (0) oznacza wartość współ czynnika sprę ż ystośi ckleju w przekroju x 0. Po przekształceniu (36) otrzymuje się ivr\ / - }( Y \ "ŁW K } * W ~, m- 3tr 3 G (Q) \2x~x 2 k (0) [. GJ otg ' Dla przypadku, gdy G w - G, - G oraz /, = / ow = zależ ność (37) przyjmuje prostszą postać (38) G k (x) = ~ ^ -. grg fc x% } Z (38) wynika, że funkcja G k (x) jest symetryczna wzglę dem przekroju x //2 I osią ga maksimum w tym przekroju. Gh\ - = - \ 6i mm = Fizyczny sens rozwią zania zagadnienia wymaga, aż eby G k (x) był o tylko dodatnie. Stą d otrzymuje się warunek (40) <7 Ł (0) <. grg

OSIOWO- SYMETRYCZNE POŁ Ą CZENI E KLEJONE 37 (4) Przekształ cając zależ ność (39) otrzymuje się + 2 G kmax grg Po podstawieniu (4) do (38) i dokonaniu przekształ ceń, poszukiwana funkcja okreś lają ca optymalną zmianę wł asnoś i c sprę ż ystyc h kleju na dł ugoś i c/ poł ą czeni a przyjmuje postać (42) G k (S) + - grg gdzie f = x/ l współ rzę dna bezwymiarowa. Z otrzymanej zależ nośi c(42) ł atwo moż na odczytać wpł yw każ dego z wystę pują cyc h w niej parametrów charakteryzują cych poł ą czenie. Zał oż eni e np. doskonał ej sztywnoś ci dla materiał ów ł ą czonych elementów (przyję cie G = co) daje funkcję G k (ł ;) G> max = = const. Przykł adowe przebiegi funkcji G k ( ) dla poł ą czeń walcowych elementów stalowych i duralowych, przy uwzglę dnieniu dwóch róż nych gruboś ci g warstwy kleju oraz trzech róż nych dł ugoś i c/ poł ą czeni a (przy stał ym stosunku /:; = 2)przedstawiono na rys. 0. Wskazują one na iloś ciowy wpł yw parametrów materiał owych i konstrukcyjnych. Ł atwo zauważ yć, że wpł yw ten jest istotny. Praktyczne w ( ykonanie poł ą czeni a walcowego z warstwą kleju o współ czynniku spręż ystośi cpoprzecznej zmieniają cym się wedł ug wyznaczonej funkcji (42) jest oczywiś cie 0 PT 8 g=0,mm b) : g=0,2mm 6 f\ O S. z, V//C' c), g=0, mm. 0 \ \U0mm \ X 20 A i d) g=0,2mm 20 ' \ 30 / f\ 6 ^ 2 " \ 20 \ V \ 30 - yyi (UlOmm \ \ \ _30 \ ^,0 0 0,5,0 Rys. 0. Optymalna zmiana współ czynnika sprę ż ystoś i poprzecznej c kleju na dł ugoś i cpoł ą czeni a walcowego: a) i b) dla elementów stalowych, c) i d) dla elementów z duraluminium

372 K. GRUDZIŃ SJCI, L. ŁABUĆ, T. BURDA niemoż liwe. Pewne korzystne efekty praktyczne, w postaci obniż enia naprę ż eń szczytowych w skrajnych przekrojach połą czenia, moż na osią gnąć przez zastosowanie klejów o dwóch róż nych wartoś ciach G k, przy czym klej o wię kszej sztywnoś ci (G kl ) należy dać w czę ś i c ś rodkowej, a o mniejszej sztywnoś ci (G k2 ) w czę ś ciach skrajnych połą czenia (rys. ). Rys.. Walcowe połą czenie klejone z zastosowaniem klejów o dwóch róż nych współczynnikach sprę ż ys - toś ci poprzecznej: a) schemat połą czenia, b) rozkład naprę ż eń stycznych w warstwie kleju 6, Optymalna długość połą czenia Długość / połą czenia wystę pują ca jako parametr w funkcjach (35) i (42) okreś lają cych optymalną zmianę gruboś ci g( ) warstwy oraz współczynnika sprę ż ystośi cpoprzecznej G (f) kleju, ma istotny wpływ na wartość tych funkcji w skrajnych przekrojach połą czenia. Im mniejsza jest długoś ć, tym łatwiejsza jest realizacja połą czenia optymalnego w podanym wyż ej sensie. Wytrzymał ość poł ą czenia klejonego powinna być co najmniej równa wytrzymał oś ci łą czonych elementów. Maksymalny moment skrę cają cy wał ek musi speł niać warunek nr 3 (43) M s < k s W o = k, - r, gdzie k s oznacza dopuszczalne naprę ż eni e na skrę canie dla materiał u wał ka. Przy zał oż eniu równomiernego rozkł adu naprę ż eń stycznych w warstwie kleju, maksymalny moment skrę cają cy walcowe poł ą czenie (44) M k =k t - 2nr 2 l, gdzie k, oznacza dopuszczalne naprę ż eni e na ś cinanie dla kleju. Wytrzymał ość poł ą czenia bę dzie równa wytrzymał oś ci wał ka jeż el i (45) k t 2nr 2 l= k s nr' Stą d optymalna długość połą czenia bę dzie równa (46) / opt 4 k, '

OSIOWO- SYMETRYCZNE POŁĄ CZENIE KLEJONE 373 a optymalny stosunek dł ugoś ci do promienia poł ą czenia m (7) - k- \ r / opt Wt Przyjmują c dla klejów epoksydowych na podstawie badań własnych [6] k t = ( -r 2)0 7 [N/ m 2 ] oraz dla stali konstrukcyjnej k s - (8 -r 2)0 7 [N/ m 2 ] otrzymuje się na podstawie (47) (48) (j) = - 4-. 3 \ ' / opt Jeż el i / t,i 0,58i? e gdzie Tpi granica plastycznoś ci przy czystym ś cinaniu (według hipotezy Hubera T pi = = 0,58 R e ), wałek zacznie się odkształcać plastycznie. Oczywiś cie w takim przypadku przedstawiona teoria traci waż noś. ć 7. Badania doś wiadczalne Przedstawione powyż ej rozważ ania i uzyskane wyniki stanowią teoretyczną podstawę do optymalnego kształtowania osiowo symetrycznych połą czeń klejonych obcią ż onych momentem skrę cają cym. Należy jednak zaznaczyć, że przedstawiona teoria odnosi się do modelu połą czenia, dla którego przyję to szereg założ eń upraszczają cych, przyjmowanych powszecznie w teorii wytrzymałoś ci materiałów. Dla dokonania peł nej miarodajnej oceny uzyskanych wyników rozważ ań teoretycznych, konieczne jest poddanie ich doś wiadczalnej weryfikacji. Przeprowadzenie jednakże odpowiedniego doś wiadczenia nastrę cza zasadnicze trudnoś ci techniczne, gdyż nie są znane metody pomiaru naprę ż eń i odkształceń w cienkiej spoinie klejowej połą czenia walcowego. Dla uzyskania pewnych informacji o wytrzymałoś ci osiowo- symetrycznych połą czeń klejonych przeprowadzono niszczą cą próbę skrę cania dla 5 serii róż nie ukształ towanych, próbek, jak w tablicy 3. Ś rednica czopa, długość poł ą czenia i grubość warstwy były dla wszystkich serii próbek jednakowe i wynosiły odpowiednio: d = 4 mm, / = 0 mm, g = = 0,05 mm. Próbki w poszczególnych seriach róż niły się ś rednicą zewnę trzną tulejki lub przebiegiem jej zmiennoś ci na długoś ci poł ą czenia. Próbki skrę cano w specjalnym przyrzą dzie [6] na uniwersalnej maszynie wytrzymałoś ciowej. Wyznaczono doraź ną wartość momentu skrę cają cego M, max niszczą cego połą czenie, a na jego podstawie obliczono ś rednią Wytrzymałość na ś cianie R tk kleju oraz maksymalne naprę ż eni e skrę cają ce r smn w przekroju wałka. Posłuż ono się przy tym nastę pują cymi wzorami: ax 7!naj Badania przeprowadzono dla dwóch klejów: Epidian 57+ Z (00:0 cz. wag) oraz Epidian 00. Wyniki próby podano w tablicy 3. Uzyskane wyniki próby nie mogą stanowić podstawy do uogólnień, pozwalają jednak na odnotowanie pewnych uwag i wniosków o znaczeniu praktycznym. 7 Mech. Teoret. i Stos. 3/78

374 K. GRUDZIŃ SKI, L. ŁABUĆ, T. BURDA Wyniki próby skrę cania osiowo symetrycznych połą caeń klejonych Tablica 3 Nr serii 7 II III IV Rysunek poł cczenia - o, sl > Iow r/ i S = 4 / >/ / ii N i Nr próbk 2 3 ś redn. 2 3 ś redn. 2 3 ś redn 2 3 Epidian 57*- Zł, M smo x N- m 3,7 2,5,3 2,5 06,2 5,0 0,0 0,4 5,5 2,0?,7 3,7 20,0 3,2 8,7 36,9 36,5 36,2 36,5 34,5 37,4 35,7 35,9 37,5 36,3 37,0 36,9 39,0 42,6 38,5 'smax 22 209 206 209 97 24 204 205 25 208 2 2 22 246 22 Epidian 00 M SMX N/ mm N/ mm 2 N- m 78,0 80,0 73,2 '77,0 73,7 72,5 79,3 75,5 76,2 82,5 77,0 78,6 89,2 80,5 85,8 R ł kl N/ mm 2 58,0 58, 56,3 57,6 56,5 56,2 58,5 57,0 57,2 59,4 57,5.58, 6,5 58,7 60,4 x smax N/ mm 2 33 334 32 329 322 320 333 325 327 339 328 33 35 335 344 ś redn. 3,3 40,0 229 85,2 60,2 343 V - J/ / / / A i '/ /, i 2 3 ś redn, 2,2 6,2 30,0 22,5 39,2 37,7 42,2 39,8 225 26 24 227 84,0 88,0 85,0 85,7 59,7 6,0 60,2 60,3 34 348 343 344. Badane połą czenia klejone o nieznacznej długoś ci (/ = 0,7Ą wykazały dużą wytrzymał ość na obcią ż eni a doraź ne momentem skrę cają cym, w stosunku do wytrzymał oś ci ł ą czonych elementów stalowych. Zniszczenie spoiny klejonej wystę powało przy maksymalnych naprę ż eniach skrę cają cych wałek wynoszą cych: dlaepidianu 57+ Z r smax = 97- f- 246 N N 34~425- mm 2 mm' dla Epidianu 00-320+ 35 N Tjmax cr rca = 553 + 607 N mm 2 \ " rea ~ """ " UW mm 2 )

OSIOWO- SYMETRYCZNE POŁĄ CZENIE KLEJONE 375 Badania przeprowadzono na próbkach ze stali o stosunkowo wysokiej granicy plastycznoś ci R e = 650 N/ mm 2. 2. Wytrzymałość doraź na połą czeń uzyskanych przy uż yciu kleju Epidian 00 była około 50% wyż sza od takich samych połą czeń uzyskanych przy uż yciu Epidianu 57 + Z. 3. Wartoś ci momentów M smax (tabl. 3) niszczą cych poł ą czenie dla wszystkich 5 serii próbek klejonych tym samym klejem róż ni ą się nieznacznie. Poł ą czenia z tulejką o zmiennym przekroju (serie III, IV i V) wykazał y tylko nieznacznie wyż szą wytrzymałość od połą czeń z tulejką o stał ym przekroju (serie I i II). Na pierwszy rzut oka może się wydawać, że doś wiadczenie nie potwierdza uzyskanych wyników rozważ ań teoretycznych. Głę bsza analiza zagadnienia, oparta na znajomoś ci charakterystyk ś cinania (y k = f(r k )) uż ytych klejów, pozwala na peł ne wyjaś nienie tej pozornej niezgodnoś ci i prowadzi do wniosku, że wynik doraź nej niszczą cej próby skrę cania poł ą czenia nie może być w tym przypadku uż yty jako kryterium rozstrzygają ce o słusznoś ci podanej teorii. Z wykonanych obliczeń według [5] wynika, że współczynnik spię trzenia naprę ż eń a k = - *""" I w spoinie klejowej w zakresie odkształ ceń sprę ż ystych wynosi: dla próbek serii I a k 2,0, dla próbek serii II a k = 2,4. Badania doś wiadczalne wykazały [6], że ostateczne zniszczenie przy czystym ś cinaniu spoin klejowych z Epidianu 57 + Z oraz Epidianu 00, zachodzi przy znacznych odkształceniach plastycznych tych klejów. Pomimo wię c począ tkowo nierównomiernego rozkł adu naprę ż eń stycznych w kleju na długoś ci poł ą czenia w próbkach sefii I i II, w miarę wzrostu maksymalnych naprę ż eń i osią gnię cia przez nie granicy plastycznoś ci, nastę puje znaczne wyrównanie rozkł adu naprę ż eń przed ostatecznym zniszczeniem. Ten fakt wyjaś nia całkowicie uzyskane podczas próby w przybliż eniu jednakowe wartoś ci momentów niszczą cych dla wszystkich serii przebadanych próbek. Istotną zaletą zaproponowanych w pracy połą czeń optymalnych jest to, że równomierny rozkład naprę ż eń stycznych w warstwie kleju wystę puje w zakresie odkształceń sprę ż ystych. Ma to podstawowe znaczenie praktyczne podczas pracy tego typu poł ą czeń, zwłaszcza przy. obcią ż eniach zmiennych, zmę czeniowych. % Literatura cytowana w tekś cie. K. GRUDZIŃ SKI, T. BURDA, L. ŁABUĆ, Wyznaczenie stanu naprę ż eniaw osiowo- symetrycznympoł ą czeniu klejonym obcią ż ony momentem skrę cają cym,mech. Teoret. Stos., 4, 5 (977). 2. K. GRUDZIŃ SKI, J. LORKIEWICZ, Doś wiadczenia wł asne w stosowaniu klejenia metali, Krajowa Konf. Nauk.- Techn., nt.: Problemy Wytrzymałoś ci Konstrukcji Klejonych, Szczecin 972. 3. K. GRUDZIŃ SKI, Optytnalizacja- walcowegopoł ą czenia klejonego obcią ż onegomomentem skrę cają cym, ibid. 4. K. GRUDZIŃ SKI, J. LORKIEWICZ, Wytrzymał oś ćna skrę canieklejonych poł ą czeń walcowych, Przeglą d Mechaniczny, 8, 29 (970). 5. K. GRUDZIŃ SKI, J. LORKIEWICZ, Analiza naprę ż eńw walcowej spoinie klejowej, Krajowa Konf. Nauk.- Techn., nt. Problemy Wytrzymałoś ci Konstrukcji Klejonych, Szczecin 972. 6. K. GRUDZIŃ SKI, Badanie wł asnoś cimechanicznych klejów i poł ą czeń klejonych przy czystym ś cinaniu ibid. 7*

376 K. GRUDZIŃ SKI, L. ŁABUĆ, T. BURDA P e 3 IO M e OCECHMMETPHMHBIE KJIEEBBIE COE^HHEHHK C OnTHMAJILHKIM PACITPEflEJIEHHEM KACATEJILHLIX HAlIPJDKEHHft B KJIEIOUTEM CJIOE PaccMOTpena 3aflaqa 06 oironwanbhom npoekthpobaiihh ocechmmetph^horo ioieeboro Harpy>KeHi- roro KpyTenbHLiM MOMCHTOM. B npiihhtoh MOflejiH coeflinifieiwbie ojieiwehtbi H cjioft lores paccmacpmbamtca Kai< ynpyro «e(})opmhpyembie Tena. Onpeflejienbi ycjiobhh, npw KOTOPUX Hoe KacaTejitHoe HanpaweHue B KJieiomeM cnoe nphhhmaet MHirwMajibHoe 3HaMeirHe, pabhoe p&hbi TpH cnocosa ocymectbjiehaa TaKoro Tana coeflhhehhhj nyteiw:. H3MeHeHHH nonepeih oro ce^enan coeflhhwembix 2. lomehehhh TOJSlUHHbl CJIOH KJICJIj 3. nphiwehehhh KJieeB c paajih^iibimh ynpyrhmh B Summary AXI- SYMMETRIC GLUE JOINTS WITH OPTIMAL SHEARING STRESS DISTRIBUTION WITHIN THE GLUE LAYER The paper presents the problem of optimum design of an axi- symmetric glue joint loaded by a torque. In the model assumed the elements of the joint and the glue layer are treated as elastic deformable bodies. The conditions are determined under which the maximum, shearing stresses in the glue layer attain the minium value equal to the mean value. Three methods of construction of such joints are proposed, based on: () variable cross- section of the elements of the joints; *" (2) variable thickness of the glue layer; (3) application of glues with various elastic properties. In conclusion, experimental results are discussed. INSTYTUT INŻ YNIERI I MATERIAŁOWEJ POLITECHNIKI SZCZECIŃ SKIEJ Praca została złoż ona w Redakcji dnia 6 stycznia 978 r.