Teoria i praktyka procesów ceramicznych laboratorium Studia Magisterskie Uzupełniające WIMIC AGH

Podobne dokumenty
POLITECHNIKA BIAŁOSTOCKA

Aluminium (glin) 2,72 Cegła 1,40-2,20 Magnez 1,74 Beton Krzem 2,33 Kreda 1,80-2,60 Duraluminium (stop glinu i miedzi)

dr inż. Paweł Strzałkowski

POLITECHNIKA BIAŁOSTOCKA

Gęstość rzeczywista materiałów ceramicznych Badanie stanu zagęszczenia polikrystalicznych spieków ceramicznych

INSTRUKCJA DO ĆWICZEŃ

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

Wersja z dnia: Metoda piknometryczna jest metodą porównawczą. Wyznaczanie gęstości substancji ciekłych

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków

POLITECHNIKA BIAŁOSTOCKA

WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ. Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej.

POLITECHNIKA BIAŁOSTOCKA

Ćwiczenie nr 1. Oznaczanie porowatości otwartej, gęstości pozornej i nasiąkliwości wodnej biomateriałów ceramicznych

ZAKŁAD GEOMECHANIKI. BADANIA LABORATORYJNE -Właściwości fizyczne. gęstość porowatość nasiąkliwość KOMPLEKSOWE BADANIA WŁAŚCIWOŚCI SKAŁ

ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

Ćwiczenie 5: Wyznaczanie lepkości właściwej koloidalnych roztworów biopolimerów.

Ćwiczenie 1: Podstawowe parametry stanu.

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

ĆWICZENIE NR 2,3. Zakład Budownictwa Ogólnego

PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: WAŻENIE, SUSZENIE, STRĄCANIE OSADÓW, SĄCZENIE

INSTYTUT INŻYNIERII MATERIAŁOWEJ

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich

A4.04 Instrukcja wykonania ćwiczenia

Cel zajęć laboratoryjnych Oznaczanie współczynnika nasiąkliwości kapilarnej wybranych kamieni naturalnych.

Ćwiczenie 402. Wyznaczanie siły wyporu i gęstości ciał. PROSTOPADŁOŚCIAN (wpisz nazwę ciała) WALEC (wpisz numer z wieczka)

Temat: Badanie Proctora wg PN EN

POLITECHNIKA BIAŁOSTOCKA

INSTYTUT INŻYNIERII MATERIAŁOWEJ

POLITECHNIKA BIAŁOSTOCKA

LABORATORIUM Z FIZYKI

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego

Określanie niepewności pomiaru

Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową.

Wskaźnik szybkości płynięcia termoplastów

Odwadnianie osadu na filtrze próżniowym

Badanie zależności temperatury wrzenia wody od ciśnienia

Ćwiczenie 1. Technika ważenia oraz wyznaczanie błędów pomiarowych. Ćwiczenie 2. Sprawdzanie pojemności pipety

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Destylacja z parą wodną

ĆWICZENIE NR 4. Zakład Budownictwa Ogólnego. Kruszywa budowlane - oznaczenie gęstości nasypowej - oznaczenie składu ziarnowego

LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE

CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie względnej przenikalności elektrycznej kilku związków organicznych

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

ODWADNIANIE OSADÓW PRZY POMOCY WIRÓWKI SEDYMENTACYJNEJ

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

Data wykonania ćwiczenia Data oddania sprawozdania Ilość pkt/ocena... Nazwisko Imię:

Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.

Przykładowe zadania z działu: Pomiary, masa, ciężar, gęstość, ciśnienie, siła sprężystości

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną

BADANIE PARAMETRÓW PROCESU SUSZENIA

Instrukcja obsługi. Zestaw do pomiaru gęstości Ciała stałe i ciecze

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW

METODA PODSTAWOWA POMIARU NA PRZYKŁADZIE WYZNACZANIA GĘSTOŚCI. BŁĘDY W METODZIE POŚREDNIEJ

Temat: kruszyw Oznaczanie kształtu ziarn. pomocą wskaźnika płaskości Norma: PN-EN 933-3:2012 Badania geometrycznych właściwości

Fizyka (Biotechnologia)

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów.

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW

T e r m o d y n a m i k a

Zastosowania Równania Bernoullego - zadania

BADANIE PROCESU ROZDRABNIANIA MATERIAŁÓW ZIARNISTYCH 1/8 PROCESY MECHANICZNE I URZĄDZENIA. Ćwiczenie L6

SPRAWDZIAN NR Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.

KARTA INFORMACYJNA PRZEDMIOTU

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU

A4.06 Instrukcja wykonania ćwiczenia

III A. Roztwory i reakcje zachodzące w roztworach wodnych

Zadanie 2. Zadanie 4: Zadanie 5:

Technologia Materiałów Drogowych ćwiczenia laboratoryjne

WAGI I WAŻENIE. ROZTWORY

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda.

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia

Laboratorium Podstaw Fizyki. Ćwiczenie 100a Wyznaczanie gęstości ciał stałych

ĆWICZENIE 22 WYZNACZANIE CIEPŁA PAROWANIA WODY W TEMPERETATURZE WRZENIA

ODWADNIANIE OSADU NA FILTRZE PRÓŻNIOWYM

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

mgr Anna Hulboj Treści nauczania

K02 Instrukcja wykonania ćwiczenia

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

ZADANIA Z HYDROSTATYKI. 2. Jaki nacisk na podłoże wywierają ciała o masach: a) 20kg b) 400g c) 0,4t

Systemy jakości w produkcji i obrocie biopaliwami stałymi. grupa 1, 2, 3

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Zależność napięcia powierzchniowego cieczy od temperatury. opracowała dr hab. Małgorzata Jóźwiak

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

ĆWICZENIE NR 1 POMIARY LEPKOŚCI PŁYNÓW REOLOGICZNYCH

LXVIII OLIMPIADA FIZYCZNA

INSTRUKCJA OBSŁUGI ZESTAW DO POMIARU GĘSTOŚCI DO WAG ATA, AKA I ALN. Plik: Hydro ATA AKA ALN i G

W Y K O N Y W A N I E T E S T Ó W F I L T R A C J I Z A W I E S I N I L A S T Y C H

ĆWICZENIE 10 MATERIAŁY BITUMICZNE

BADANIE PRAWA ARCHIMEDESA.

FIZYKA klasa VII

Transkrypt:

Teoria i praktyka procesów ceramicznych laboratorium Studia Magisterskie Uzupełniające WIMIC AGH Ćwiczenie 1 OZNACZENIE GĘSTOŚCI RZECZYWISTEJ I POZORNEJ, POROWATOŚCI I NASIĄKLIWOŚCI TWORZYW CERAMICZNYCH Zagadnienia do przygotowania: definicje podstawowych pojęć [1], metodyka pomiaru [1], statystyczne opracowanie wyników laboratoryjnych [2]. Zagadnienia poszerzające temat (nieobowiązkowe): metody pomiaru rozkładu wielkości porów [3]. Literatura: 1. Instrukcja do ćwiczenia 2. Volk, Statystyka stosowana dla inżynierów, Wyd. N -T, Warszawa 1973 lub inny podręcznik statystyki matematycznej 3. Pampuch, K. Haberko, M. Kordek, Nauka o procesach ceramicznych, PWN Warszawa, 1992, rozdz. 3.2.6

Wstęp Tworzywa ceramiczne, w odróżnieniu od typowych materiałów metalicznych, zawierają pory w ilości od części procenta do kilkudziesięciu procent udziału objętościowego (ok. 90%). Znaczna zawartość porów w materiale jest często wynikiem świadomego działania technologa, który dążąc do uzyskania np. lekkich materiałów konstrukcyjnych, izolacji termicznych, materiałów odpornych na wstrząsy cieplne, filtrów ceramicznych, podłoży do katalizatorów i in. opracowuje i optymalizuje technologie wytwarzania materiałów pod kątem otrzymania tworzywa o odpowiednim udziale i wielkości porów. Częściej jednak występowanie porów jest rezultatem trudności technologicznych (wysokie koszty ekonomiczne) w uzyskaniu tworzywa pozbawionego porów. Występujące w materiale pory w znacznym stopniu wpływają na jego właściwości, zwłaszcza mechaniczne, które ulegają obniżeniu wraz ze wzrostem porowatości. Stąd też w przypadku materiałów ceramicznych kontrola gęstości i porowatości jest często bardzo ważnym parametrem kontroli, procesu wytwórczego i charakterystyki gotowego tworzywa. Pełna informacja o porowatości obejmuje nie tylko znajomość całkowitej objętości porów ale także rozkładu wielkości porów, który można określić za pomocą porozymetrii rtęciowej (pory o średnicach od pojedynczych nm do kilkuset mikrometrów) oraz dla porów mniejszych od 1 mikrometra metodą kondensacji kapilarnej. OZNACZENIE GĘSTOŚCI RZECZYWISTEJ Podstawowe definicje Gęstość jest to masa jednostkowej objętości substancji w danej temperaturze wyrażona w kg/m 3 (SI) lub g/cm 3 (CGS). Gęstość rzeczywista (fizyczna) jest to gęstość materiału litego nie zawierającego porów. W zależności od zastosowanej metody pomiarowej wyróżniamy następujące odmiany gęstości rzeczywistej: gęstość piknometryczna oznaczona metodą piknometryczną. gęstość rentgenowska oznaczająca gęstość rzeczywistą materiału wyznaczoną na podstawie znajomości struktury materiału i pomiarów parametrów sieciowych komórki elementarnej metodą dyfrakcji rentgenowskiej. gęstość helowa wyznaczona na podstawie pomiaru objętości materiału przy użyciu gazowego helu w piknometrze gazowym. Uwagi ogólne Najprostszą metodą pomiaru gęstości rzeczywistej jest metoda piknometryczna. Istotą tej metody jest wyznaczenie masy badanego ciała oraz objętości materiału w postaci sproszkowanej przy użyciu naczynia szklanego o znanej objętości (piknometru) i cieczy o znanej gęstości (najczęściej wody). Rozdrobnienie materiału ma na celu otwarcie porów zamkniętych obecnych w materiale i tym samym umożliwienie penetracji cieczy do wszystkich porów układu. Dlatego materiały pozbawione porów zamkniętych zasadniczo nie wymagają rozdrabniania. Poziom koniecznego rozdrobnienia uzależniony jest od rozmiaru i udziału porów zamkniętych. Normy przewidują rozdrobnienie do stanu charakteryzującego się rozmiarem ziarna mniejszym od 64 μm. Bezkrytyczne zastosowanie tego zalecenia w przypadku spieków posiadających pory zamknięte o wielkościach rzędu pojedynczych mikrometrów może 2

spowodować, że wyznaczona gęstość będzie się znacznie niższa od gęstości rentgenowskiej. Generalnie dla materiałów zawierających drobne pory obowiązuje zasada, że im drobniej zmielona jest próbka tym gęstość rzeczywista oznaczona metodą piknometryczną jest bliższa gęstości rentgenowskiej. Ciecz stosowana w pomiarach gęstości rzeczywistej nie powinna reagować z badanym materiałem, powinna mieć niskie napięcie powierzchniowe aby zapewnić dobrą penetrację w pory, powinna też mieć niską gęstość co zwiększa dokładność oznaczenia. Poprawę precyzji pomiarów gęstości rzeczywistej uzyskać można przez zastosowanie piknometrów z próżniowym płaszczem termostatującym. Gęstość rzeczywista większości materiałów ceramicznych zawiera się w przedziale 2-10 g/cm 3, a dla tworzyw tlenkowych 2,5-4 g/cm 3. Rys. 1. Rodzaje piknometrów. a) - piknometr zwykły b) - piknometr próżniowy o podwójnych ściankach z bocznym tubusem przelewowym (1 - termometr, 2 - osadzona na szlifie przykrywka szklana, 3 - skala, 4 - kapilara przelewowa, 5 - płaszcz termostatujący, 6 - kolba wewnętrzna) c) - piknometr powietrzny (1 - pojemnik na sproszkowaną próbkę, 2 - rezerwowa pojemność wykalibrowana, 3 - manometr, 4 - katetometr, 5 - pojemnik z rtęcią na podnoszonym statywie) Rysunek 1 przedstawia przykładowe rodzaje piknometrów. Piknometry zwykłe (Rys. 1a) i próżniowe (Rys. 1b) wykonywane są ze szkła i mają zróżnicowane pojemności, najczęściej 1; 2; 3; 5; 10; 25; 50 i l00 cm 3. Piknometr próżniowy używany jest wówczas, gdy wykorzystuje się ciecze o wysokiej prężności par w warunkach pomiaru. Wyposażone są one w płaszcz termostatujący (5) i termometr (1) do kontroli temperatury cieczy. Przykrywka szklana (2) osadzona na bocznej kapilarze uniemożliwia odparowanie cieczy. Piknometr przedstawiony na Rys. 1c jest przykładem piknometru gazowego. Jego funkcjonowanie oparte jest na wykorzystaniu do pomiarów objętości mierzonej próbki ciała stałego prawa Boyle a-mariotta, które mówi, że w stałej temperaturze iloczyn ciśnienia i objętości jest również stały. Naczynie (1) o objętości v połączone jest hermetycznie z urządzeniem, którego jedną część stanowi pojemnik z rtęcią (5) zamocowany na ruchomym statywie (umożliwia zmianę położenia w pionie). Przy ustawieniu pojemnika z rtęcią w takim położeniu, że rtęć zajmuje poziom A-A, w lewej odnodze naczynia odmierzona jest objętość v + V. Przez podniesienie poziomu rtęci do poziomu B-B ściskamy powietrze do objętości v, co w prawym kolanie tworzącym manometr rtęciowy odpowiada ciśnieniu h 1 wyrażonemu wysokością słupa rtęci. Do dokładnego odczytu poziomu h 1 służy katetometr (4) (mikroskopowy miernik poziomu). Następnie w naczyniu (1) umieszczamy badaną próbkę i powtarzamy operację podnoszenia poziomu rtęci od poziomu A-A do B-B. Ponieważ część objętości została zajęta przez próbkę, w wyniku uzyskamy inne (wyższe) położenie rtęci w kapilarze (3) - h 2. Znając pozycje h 1 i h 2 oraz objętość v (aparat jest wykalibrowany) możemy wyznaczyć objętość zajmowaną przez próbkę: V pr h1 = [1 ] v (1) h 2 3

Wykonanie oznaczenia gęstości rzeczywistej metodą piknometryczną Suchy, czysty piknometr o pojemności 25 cm 3 waży się na wadze analitycznej. Następnie, wsypuje się do niego około 5 g badanego materiału, wysuszonego do stałej masy w temperaturze 105 o C i ponownie waży. Materiały badane na ćwiczeniach są rozdrobnione do uziarnienia poniżej 60 mikrometrów lub zapewniającego otwarcie wszystkich porów zamkniętych. Do zważonego piknometru z próbką nalewa się wodę destylowaną mniej więcej do połowy jego objętości, po czym umieszcza się piknometr w suszarce próżniowej i odpowietrza w ciągu 30 minut przy słabym wrzeniu wody. Po wyjęciu z suszarki próżniowej piknometr dopełnia się wcześniej odpowietrzoną wodą destylowaną i ponownie waży. W celu wyznaczenia masy piknometru z wodą, należy opróżnić go z badanej próbki, wypłukać wodą destylowaną, i zważyć napełniony odpowietrzoną wcześniej wodą destylowaną. Wszystkie ważenia należy wykonać na wadze analitycznej z dokładnością 0,0002 g. Gęstość obliczyć korzystając z poniższego wzoru: ( m2 - m1) d0 d = ( m2 -m1)-( m4 -m ) (2) 3 gdzie: m 1 - masa suchego piknometru [g]; m 2 - masa piknometru z próbką [g]; m 3 - masa piknometru z wodą [g]; m 4 - masa piknometru z wodą i badanym materiałem [g]; d 0 - gęstość wody w temperaturze pomiaru (patrz tabela 1) [g/cm 3 ]. Wykonać 3 oznaczenia gęstości dla wskazanego proszku, obliczyć wartość średnią i przedział ufności. Tabela 1 Gęstość wody w funkcji temperatury Temperatura [ C] Gęstość [g/cm 3 ] Temperatura [ C] Gęstość [g/cm 3 ] Temperatura [ C] Gęstość [g/cm 3 ] 15 0,999 21 0,998 27 0,997 16 0,999 22 0,998 28 0,996 17 0,999 23 0,998 29 0,996 18 0,999 24 0,997 30 0,996 19 0,998 25 0,997 20 0,998 26 0,997 4

OZNACZENIE NASIĄKLIWOŚCI, GĘSTOŚCI POZORNEJ I POROWATOŚCI Definicje badanych właściwości Gęstość pozorna jest to stosunek masy wysuszonej próbki do jej całkowitej objętości, łącznie z porami. Pojęcie gęstości geometrycznej pojawia się wtedy, gdy gęstość pozorną oznacza się na podstawie geometrycznych wymiarów próbki. Gęstość względna jest to stosunek gęstości pozornej do gęstości rzeczywistej, wyrażony w procentach. Porowatość całkowita jest to stosunek objętości porów otwartych i zamkniętych do całkowitej objętości próbki, wyrażony w procentach. Porowatość otwarta jest to stosunek objętości porów otwartych do całkowitej objętości próbki, wyrażony w procentach. Porowatość zamknięta jest to różnica między porowatością całkowitą i otwartą. Nasiąkliwość jest to stosunek masy wody wchłoniętej przez próbkę do masy próbki w stanie suchym, wyrażony w procentach. Uwagi ogólne Wyznaczanie gęstości jest proste, gdy dane do dyspozycji próbki materiałów mają postać regularnych brył np.: sześcianów, prostopadłościanów, płytek, dysków, pierścieni itp. Jedną z dwu potrzebnych wielkości, a mianowicie objętość, wyznaczamy przez ustalenie wymiarów danej bryły. Drugą wielkość, czyli masę, wyznaczamy przy użyciu wagi o dokładności zależnej od masy próbki. Wspomniany przypadek nie często występuje, chociaż w naszym cyklu ćwiczeniowym pojawi się przy okazji wyznaczania gęstości pozornej wyprasek formowanych metodą prasowania jednoosiowego. Znacznie częściej mamy do czynienia z próbkami o nieregularnych kształtach. W tym przypadku gęstość możemy wyznaczyć w oparciu o prawo Archimedesa, które pozwala na pomiar objętości próbki zanurzonej w cieczy (najczęściej jest to woda) bez odwoływania się do jej rozmiarów geometrycznych. Próbka taka zawieszona na szalce wagi oprócz siły ciężkości doznaje działania siły wyporu, która jest równa ciężarowi cieczy w objętości zanurzonego ciała (albo ciężarowi wypartej przez to ciało cieczy). Metoda ta nazywana jest metodą Archimedesa lub metodą ważenia hydrostatycznego lub wreszcie metodą ważenia w wodzie. Podstawowe etapy tej metody to: nasycanie próbki wodą, oznaczanie jej masy drogą ważenia w powietrzu, a następnie poprzez ważenie w wodzie. Masę próbki suchej wyznaczmy na końcu oznaczenia, jednak w przypadku próbek wytrzymałych mechanicznie można ją wyznaczyć przed nasycaniem wodą. Pierwsze dwa etapy metody umożliwiają pomiar nasiąkliwości próbek materiałów ceramicznych, etap ważenia w wodzie służy pomiarom ich gęstości pozornej i charakterystyce porowatości. Wykonanie oznaczeń Próbki do oznaczenia obejmującego pomiar gęstości pozornej, porowatości całkowitej, porowatości otwartej i nasiąkliwości wycina się z kształtek w taki sposób, aby przynajmniej trzy ściany każdej próbki były świeżymi przełomami. 5

Próbki przeznaczone do badań, po oczyszczeniu z pyłu, wysuszyć do stałej masy i zważyć na wadze analitycznej z dokładnością do 0,0001g w celu oznaczenia masy próbki suchej (m s ). Następnie, próbki umieścić w naczyniu do gotowania i stopniowo zalewać wodą destylowaną tak, aby całkowite ich przykrycie warstwą wody o grubości ok. 20 mm nastąpiło po upływie 5 min. Wodę w naczyniu z próbkami ogrzać do stanu łagodnego wrzenia i utrzymywać go przez 0,5 godziny, uzupełniając wodę w miarę jej odparowywania. Próbki wystudzić przenosząc je do wcześniej odpowietrzonej wody destylowanej o temperaturze pokojowej. Innym sposobem nasycania próbek wodą, niewykorzystywanym w ćwiczeniu, jest nasycanie pod próżnią. Przed przystąpieniem do wykonania ważeń za pomocą wagi analitycznej, przewidzianych metodą Archimedesa, należy nad szalką wagi ustawić podstawkę do ważenia w wodzie, a na niej zlewkę z odpowietrzoną wodą destylowaną. Próbkę nasyconą wodą umieścić w koszyczku zawieszonym na haczyku szalki wagi w taki sposób, aby cała próbka była zanurzona w wodzie. Wykonać ważenie w celu oznaczenia masy próbki w wodzie (m w ) z dokładnością do 0,0001 g dla badanej serii próbek. Pomiar powtórzyć trzykrotnie. Zważone próbki przechowywać w wodzie. W celu oznaczenia masy próbki nasyconej wodą (m n ), każdą próbkę należy wyjąć z wody, usunąć wodę pozostałą na jej powierzchni poprzez wytarcie wilgotnym płótnem i niezwłocznie zważyć z dokładnością do 0,000l g. Ograniczamy w ten sposób odparowanie wody zawartej w porach otwartych badanego materiału. Ważenie wykonać jeden raz. Po zakończeniu pomiarów, badane próbki wysuszyć do stałej masy w temperaturze 110 C. Obliczenia Nasiąkliwość Wartość nasiąkliwości pojedynczej próbki badanego materiału obliczyć według wzoru: mn ms N = 100 % (3) m gdzie: N - nasiąkliwość [%]; m s - masa próbki suchej [g]; m n - masa próbki nasyconej woda [g]. s Obliczyć średnią wartość nasiąkliwości dla serii trzech badanych próbek i przedział ufności. Porowatość otwarta Wartość porowatości otwartej próbki badanego materiału obliczyć ze wzoru: mn ms P O = 100 % (4) m m n w gdzie: P O - porowatość otwarta [%]; m w - masa próbki ważonej w wodzie ( średnia z trzech ważeń) [g]; m n - masa próbki nasyconej wodą [g]; 6

m s - masa próbki suchej [g]. Obliczyć średnią wartość porowatości dla serii trzech badanych próbek i przedział ufności. Gęstość pozorna Wartość gęstości pozornej badanej próbki obliczamy na podstawie wielkości wyznaczonych wcześniej według wzoru: ms d p = dc (5) m m n w gdzie: d p - gęstość pozorna [g/cm 3 ]; d c - gęstość wody w temperaturze pomiaru (Tabela 1) [g/cm 3 ]; Podać wartość średnią i przedział ufności na poziomie 0,95. Obliczyć gęstości względne, podać średnią wartość gęstości względnej badanego materiału i przedział ufności. Porowatość całkowita Wartość porowatości całkowitej oblicza się na podstawie wyników oznaczeń gęstości rzeczywistej i gęstości pozornej materiału. Z różnicy tych dwóch wielkości można stwierdzić o ile 1 cm 3 substancji nieporowatej jest cięższy od 1 cm 3 substancji porowatej. Aby wypełnić pory w 1 cm 3 danego ciała potrzeba (d - d p ) gramów substancji nieporowatej o gęstości d. Objętość tej ilości substancji nieporowatej otrzymuje się z podzielenia jej masy przez gęstość. Otrzymana wielkość jest suma objętości porów otwartych i zamkniętych. Wyrażona w procentach daje nam porowatość całkowitą: d d p Pc = 100 % (6) d gdzie: P c - porowatość całkowita [%]; d - gęstość rzeczywista materiału (np.: zmierzona piknometrycznie) [g/cm 3 ]; d p - gęstość pozorna [g/cm 3 ]. Obliczyć błąd pomiaru porowatości całkowitej (metodą różniczki zupełnej). Sprawozdanie Sprawozdanie powinno zawierać następujące informacje: 1. dane dotyczące badanych materiałów; 2. krótki opis metod pomiarowych i parametrów pomiarowych istotnych z punktu widzenia poprawności pomiaru i uzyskiwanej dokładności, wyszczególnienie użytej aparatury; 3. tabelaryczne zestawienie danych wyjściowych i obliczonych pojedynczych wartości zmierzonych właściwości badanych próbek; 7

4. tabelaryczne zestawienie wartości średnich zmierzonych właściwości wraz z przedziałami ufności (uwaga: należy pamiętać o stosowaniu reguł zaokrąglania wartości liczbowych mierzonych wielkości); 5. komentarze dotyczące przebiegu pomiarów oraz otrzymanych wyników; 6. wnioski zawierające m.in. krytyczne uwagi płynące z porównania wartości gęstości rzeczywistej zmierzonej i literaturowej oraz dotyczące stopnia zagęszczenia badanych materiałów. 8