Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Paweł Trautman, Aleksander Bogucki Wykład szesnasty 30 kwietnia 2015
Z poprzedniego wykładu Twierdzenie Thevenina Praca prądu elektrycznego Dopasowanie oporowe Źródło prądowe i napięciowe, Ładowanie kondensatora przez opornik Drgania relaksacyjne, układ całkujący, układ różniczkujący
Przewody z prądem oddziałują ze sobą I I
Pole magnetyczne wokół przewodów z prądem I Prosty przewód
Pole magnetyczne wokół przewodów z prądem Pętla
Oddziaływanie przewodów z prądem dl db I Co z III zasadą dynamiki? r df I dl Prawo Biota-Savarta gdzie db = µ 0 = π 10 µ 0Ir dl 3 4πr Siła elektrodynamiczna df = I'dB dl F = µ 0I d I ( r dl) dl 3 4πr Wzór niesymetryczny! 7 2 4 N A Wyjaśnienie (na dziś): obwody powinny być zamknięte i traktowane jako całość
Pole magnetyczne Pośrednictwo: prąd pole magnetyczne prąd Indukcja B zdefiniowana przez siłę działającą na przewodnik z prądem Jednostka: tesla 1 T = 1 N/(A m) Rzędy wielkości: pole Ziemi 3 10-5 T, przy powierzchni silnych magnesów stałych 1 T, magnesy nadprzewodzące 10 T, pola impulsowe 10 2 T, metody z eksplozją 10 3 T W prawie Biota-Savarta µ 0 = 4π 10-7 N/A 2 dlaczego wartość umowna?
Amper absolutny Definicja: natężenie prądu, który płynąc w równoległych przewodach oddalonych o 1 m wytwarza siłę 2 10-7 N Ta definicja wyjaśnia umowny charakter wartości µ 0 Konsekwencja: 1 C = 1 A s
Pole odcinka przewodu y B b = a µ 0Ir dl 3 4πr I e l B b 0I dl µ 0I ρ = ρ e 3 2 2 sin r 4πρ a µ = 4π l ( sinϕ ϕ ) 1 ϕ 2 ϕ 1 ρ x A więc w granicy nieskończenie długiego przewodu µ 0I B = el ρ 2 2πρ Siła działająca na równoległy przewód o długości l F = µ 0I I µ I I l I l B = l 2 l 2 2πρ 2πρ 0 ( e ρ) = ρ A więc siła przyciągająca przy zgodnych kierunkach prądu!
Pole na powierzchni drutu µ I B ρ 0 0 = e 2 l 2πρ 0 W zależności od wektora gęstości prądu 0 B 0 j = µ 2 ρ Ograniczenia w zastosowaniu drutu nadprzewodnikowego 1. Krytyczna gęstość prądu 2. Krytyczna indukcja pola magnetycznego 0 0 Wniosek: opłaca się podzielić prąd między wiele drutów
Drut nadprzewodnikowy
Magnesy najsilniejsze pola Nadprzewodnikowe Bittera Hybrydowe Impulsowe Niszczące 20 T 35 T 45 T 100 T ~1000 T Ośrodki: NMFL: Floryda, Los Alamos http://www.magnet.fsu.edu/ Grenoble http://ghmfl.grenoble.cnrs.fr/ Toulouse http://www.lncmp.org/ Nijmegen http://www.hfml.ru.nl/
Po co wytwarzać silne pole? Raport roczny LNCMI : CARBON ALLOTROPES TWO-DIMENSIONAL ELECTRON GAS SEMICONDUCTORS AND NANOSTRUCTURES METALS, SUPERCONDUCTORS AND STRONGLY CORRELATED SYSTEMS MAGNETIC SYSTEMS MOLECULAR MAGNETISM APPLIED SUPERCONDUCTIVITY MAGNETO-SCIENCE Vacuum Magnetic Birefringence (BMV) Experiment Electrodeposition of selenide semiconductors under magnetic field Hydrogen evolution in high magnetic field Morphology and phase composition of electrodeposited Co-Ni alloys under high magnetic field MAGNET DEVELOPMENT (...)
Magnes nadprzewodzący Warszawa, Hoża 69 Standard w laboratorium 11 T split coil
Wyłącznik nadprzewodnikowy grzanie
New World Record for Superconducting Coil Performance (2007) A superconducting coil made from YBCO conductor, also known as 2G second generation or Y123, was operated recently to a world record field of 26.8 Tesla. The coil, fabricated by SuperPower Inc. in collaboration with the NHMFL, was tested at a temperature of 4 Kelvin in the Large Bore Resistive Magnet in a background field of 19 Tesla. The so-called High Temperature Superconductors (HTS), including YBCO, when used at very low temperatures have properties that will allow superconducting magnets to operate at fields much higher than previously, ultimately X2 and X3 times greater. The availability of such high fields will dramatically increase the performance of traditional applications of superconducting magnets such as NMR and will make feasible entirely new applications for medicine and high energy physics. The recent test of the small coil is a first demonstration that HTS/YBCO conductor development has advanced to produce long lengths of high quality conductor required for magnet applications. Solenoid magnet of YBCO superconductor with 82 mm winding diameter and 52 mm winding height.
Laboratory Sets Two New World Records for Magnet Strength (2009) October 2008: 33.8 tesla when tested in a smallbore 31-tesla magnet July 2009: 10.4 tesla on its own; 27.4 tesla when tested in a large-bore 19.9-tesla magnet The world-record YBCO coil is test-fitted onto the probe in June 2009. National High Magnetic Field Laboratory, TALLAHASSEE, Fla.
Brutalna siła: magnes Bittera
Magnes Bittera 35 T w NHMFL Strength Type Bore size 35 tesla Resistive 32 mm (~1.25 inches) Online since December 2005 Cost Weight Height Water used per minute Power required $0.5 million 2,500 kg (2.75 tons) 1.52 meters (~5 feet) 139 liters (~37 gallons) 19.6 MW National High Magnetic Field Laboratory (Tallahassee)
Laboratoire National des Champs Magnétiques Intenses (LNCMI) Moc 24 MW 31 000 A Grenoble
Impulsowe pole magnetyczne http://www.lncmp.org/facilities/gb/coils.htm Toulouse, Francja
Impulsowe pole magnetyczne Toulouse, Francja
Impulsowe pola magnetyczne Capacitor Bank-Driven Magnets Field Duration Bore 50 T Short Pulse 25 msec 24 mm 50 T Mid-Pulse 400 msec 15 mm 40 T Mid-Pulse 400 msec 24 mm 65 T Short Pulse 25 msec 15 mm 60 T Short Pulse 40 msec 9.8 mm 300 T Single Turn 6 µsec 10 mm Florida State University http://www.magnet.fsu.edu LNCMI - Touluse http://www.toulouse.lncmi.cnrs.fr
Magnesy najsilniejsze pola Nadprzewodnikowe Bittera (rezystywne) Hybrydowe Impulsowe Niszczące 20 T 35 T 45 T 300 T ~1000 T HYBRYDA Ośrodki: NMFL: Floryda, Los Alamos http://www.magnet.fsu.edu/ Grenoble http://ghmfl.grenoble.cnrs.fr/ Toulouse http://www.lncmp.org/ Nijmegen http://www.hfml.ru.nl/