PRZEBIEG EGZAMINU LICENCJACKIEGO DLA KIERUNKU INŻYNIERIA NANOSTRUKTUR



Podobne dokumenty
Plan Zajęć. Ćwiczenia rachunkowe

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

SPIS TREŚCI ««*» ( # * *»»

ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19

Zagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne

Kurs przygotowawczy NOWA MATURA FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY

Pole elektrostatyczne

Zagadnienia na egzamin ustny:

Plan realizacji materiału z fizyki.

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj.

WYKAZ NAJWAŻNIEJSZYCH SYMBOLI

Program nauczania dla szkół ponadgimnazjalnych z fizyki z astronomią o zakresie rozszerzonym K. Kadowski Operon 593/1/2012, 593/2/2013, 593/3/2013,

4. Ruch w dwóch wymiarach. Ruch po okręgu. Przyspieszenie w ruchu krzywoliniowym Rzut poziomy Rzut ukośny

SPIS TREŚCI 1. PODSTAWOWE POJĘCIA CHEMII. MASA ATOMOWA I CZĄSTECZKOWA... 3

Program zajęć wyrównawczych z fizyki dla studentów Kierunku Biotechnologia w ramach projektu "Era inżyniera - pewna lokata na przyszłość"

Wymagania edukacyjne z chemii

Materiał jest podany zwięźle, konsekwentnie stosuje się w całej książce rachunek wektorowy.

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej

Zestaw pytań egzaminu inŝynierskiego przeprowadzanego w Katedrze Fizykochemii i Technologii Polimerów dla kierunku CHEMIA

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016

Podstawy fizyki / Władysław Bogusz, Jerzy Garbarczyk, Franciszek Krok. Wyd. 5 popr. Warszawa, Spis treści

Treść podstawy programowej

ĆWICZENIA LABORATORYJNE Z CHEMII FIZYCZNEJ

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.

Wykład FIZYKA II. Wprowadzenie. Dr hab. inż. Władysław Artur Woźniak. Instytut Fizyki Politechniki Wrocławskiej

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Znajomość matematyki i fizyki na poziomie podstawowym szkoły ponadgimnazjalnej

ZAKRES MATERIAŁU DO MATURY PRÓBNEJ KL III

SYLABUS/KARTA PRZEDMIOTU

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.

Identyfikacja płomieniowa tworzyw sztucznych Iloczyny rozpuszczalności trudno rozpuszczalnych związków w wodzie w temperaturze pokojowej

1. Przedmiot chemii Orbital, typy orbitali Związki wodoru z innym pierwiastkami

Warunki uzyskania oceny wyższej niż przewidywana ocena końcowa.

Część I: Podstawowe prawa chemiczne i budowa materii Urszula Lelek-Borkowska

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

FIZYKA IV etap edukacyjny zakres rozszerzony

Księgarnia PWN: K. Pigoń, Z. Ruziewicz - Chemia fizyczna. T. 1. Spis treści

Fizyka - opis przedmiotu

Chemia I Semestr I (1 )

I. Poziom: poziom rozszerzony (nowa formuła)

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia

Przedmiot i metody fizyki, definicje, prawa, rola pomiarów, wielkości i układy jednostek SI.

Wymagania edukacyjne FIZYKA. zakres rozszerzony

podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów.

W3-4. Praca i energia mechaniczna. Zasada zachowania energii mechanicznej.

KARTA KURSU. Physics. Kod Punktacja ECTS* 4

Karta (sylabus) modułu/przedmiotu Transport Studia I stopnia

Treść modułu zajęć (program wykładów i pozostałych zajęć)

Plan wynikowy fizyka rozszerzona klasa 3a

Klasa 1. Zadania domowe w ostatniej kolumnie znajdują się na stronie internetowej szkolnej. 1 godzina fizyki w tygodniu. 36 godzin w roku szkolnym.

KARTA KURSU. Chemia fizyczna I. Physical Chemistry I

Podstawowe pojęcia i prawa chemiczne

Z-ID-204. Inżynieria Danych I stopień Praktyczny Studia stacjonarne Wszystkie Katedra Matematyki i Fizyki Prof. dr hab.

2. Metody, których podstawą są widma atomowe 32

Fizyka - zakres materiału oraz kryteria oceniania. w zakresie rozszerzonym kl 2 i 3

Dotyczy to zarówno istniejących już związków, jak i związków, których jeszcze dotąd nie otrzymano.

UCHWAŁA Nr 7/2009 Rady Wydziału Fizyki i Astronomii Uniwersytetu Wrocławskiego podjęta w dniu r.

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Pytania do ćwiczeń na I-szej Pracowni Fizyki

KOMPENDIUM FIZYKI. Zbiór wszystkich pojęć, niezbędnych do pozytywnego zaliczenia, testów i egzaminów.

Karta modułu/przedmiotu

Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Pytania na egzamin po II roku Studiów Doktoranckich w IChF PAN

Karta (sylabus) przedmiotu MECHANIKA I BUDOWA MASZYN Studia stopnia I o profilu A P

DOŚWIADCZENIA POKAZOWE Z FIZYKI

ISBN Redaktor merytoryczny: Jadwiga Salach. Redaktor inicjujący: Anna Warchoł, Barbara Sagnowska

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Brak

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

KARTA PROGRAMOWA - Sylabus -

Księgarnia PWN: M.A. Herman, A. Kalestyński, L. Widomski Podstawy fizyki dla kandydatów na wyższe uczelnie i studentów

Ćwiczenie 1. Ćwiczenie Temat: Podstawowe reakcje nieorganiczne. Obliczenia stechiometryczne.

Karta (sylabus) modułu/przedmiotu FIZYKA Inżynieria Materiałowa Studia I stopnia

"Bialska Liga Matematyczna Gimnazjalistów" II EDYCJA Harmonogram i zakres materiału

KARTA MODUŁU KSZTAŁCENIA

SPIS TREŚCI I. MECHANIKA Kinematyka nauka o ruchu Dynamika Praca Prawo grawitacji Dynamika bryły sztywnej

Opis efektów kształcenia dla modułu zajęć

KONSPEKT PRZEDMIOTU PIERWSZEGO POZIOMU STUDIÓW STACJONARNYCH

Rok akademicki: 2017/2018 Kod: CIM s Punkty ECTS: 9. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

ROZKŁAD MATERIAŁU Z FIZYKI W PIERWSZYCH KLASACH TECHNIKUM

Zagadnienia na egzamin 2016/2017

Program zajęć z chemii w semestrze zimowym dla studentów kierunku weterynarii I roku studiów stacjonarnych na UJ-UR w roku akademickim 2017/2018

PROGRAM ĆWICZEŃ LABORATORYJNYCH Z CHEMII (SEMESTR LETNI) OCHRONA ŚRODOWISKA

Rok akademicki: 2013/2014 Kod: RBM s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

I. Poziom: poziom rozszerzony (nowa formuła)

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

Zagadnienia do ćwiczeń laboratoryjnych z fizyki

Opis efektów kształcenia dla modułu zajęć

Przedmiot: Chemistry HL. Poziom: rozszerzony. Opis kursu: Cele: Zadania:

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Kryteria oceniania z chemii kl VII

Dział: 7. Światło i jego rola w przyrodzie.

Rok akademicki: 2030/2031 Kod: CCE s Punkty ECTS: 9. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Sylabus modułu kształcenia/przedmiotu

Transkrypt:

PRZEBIEG EGZAMINU LICENCJACKIEGO DLA KIERUNKU INŻYNIERIA NANOSTRUKTUR W trakcie egzaminu licencjackiego student udziela ustnych odpowiedzi na pytania zadane przez komisję egzaminacyjną: jedno pytanie dotyczące zagadnień specjalistycznych związanych z tematyką pracy, jedno pytanie z fizyki, jedno pytanie z chemii w zakresie studiów. Na początku egzaminu student może przedstawić główne tezy pracy licencjackiej. Prezentacja nie powinna trwać dłużej niż 10 minut. Przy takim wyborze studenta ocena prezentacji jest oceną odpowiedzi na pytanie specjalistyczne związane z tematyką pracy. Pytania dotyczące wiedzy z fizyki i chemii są losowane z list zatwierdzonych przez Radę Wydziału dla kierunku Inżynieria nanostruktur. Listy pytań podzielone są na dwie części: A (fizyka) i B (chemia). Jedno z pytań losowane jest z części A, drugie z części B odpowiedniej listy.

PYTANIA EGZAMINACYJNE Lista A (fizyka) I. Podstawowe prawa fizyki 1. Zasady względności Galileusza; układy inercjalne. 2. Jednoczesność zdarzeń i przyczynowość w szczególnej teorii względności. 3. Transformacja Lorentza czasu i położenia i jej konsekwencje (skrócenie Lorentza, dylatacja czasu); przykłady wielkości podlegających transformacji Lorentza podobnie jak czas i położenie (czterowektory). 4. Pęd, energia całkowita i energia wewnętrzna cząstek relatywistycznych. 5. Zasady zachowania w fizyce. II. Mechanika 6. Zasady dynamiki Newtona i granice ich stosowalności. 7. Przykłady sił potencjalnych i niepotencjalnych. Prawo powszechnego ciążenia. 8. Opis ruchu N oddziałujących mas, w tym zagadnienie dwóch ciał i problem Keplera (środek masy i zasada zachowania momentu pędu). 9. Moment bezwładności i zasady dynamiki ruchu bryły sztywnej. 10. Hydrostatyka: ciśnienie, prawo Pascala, prawo Archimedesa i pływanie ciał. III. Elektrodynamika 11. Prawo Coulomba, prawo Gaussa, potencjał pola elektrycznego. 12. Prąd elektryczny, prawo Ohma, rozkład prądu i pola elektrycznego w przewodniku, zasada zachowania ładunku elektrycznego. równanie ciągłości dla prądu. 13. Pole magnetyczne prądu stałego. 14. Siła Lorentza i ruch cząstek naładowanych w polach elektrycznym i magnetycznym. 15. Prawo indukcji Faradaya i reguła Lenza. 16. Obwody LC i RLC: drgania, drgania tłumione i wymuszone oraz zjawisko rezonansu. 17. Pełny układ równań Maxwella z warunkami brzegowymi na granicy ośrodków. IV. Drgania i fale 18. Ruch okresowy (parametry); rozkład na drgania proste. 19. Oscylator harmoniczny: drgania swobodne, tłumione i wymuszone oraz zjawisko rezonansu. 20. Zjawisko Dopplera. 21. Fale elektromagnetyczne. Prawa odbicia i załamania fal elektromagnetycznych; współczynnik odbicia, polaryzacja fali odbitej i załamanej (kąt Brewstera). 22. Spójność, dyfrakcja i interferencja fal: dyfrakcja na pojedynczej szczelinie, doświadczenie Younga, siatka dyfrakcyjna.

V. Termodynamika 23. Równowaga termiczna i temperatura; skale temperatury. Ciepło, procesy wymiany ciepła. 24. Promieniowanie cieplne ciał: współczynniki absorpcji i emisji promieniowania, ciało doskonale czarne, prawo przesunięć Wiena, prawo Stefana-Boltzmanna. 25. II zasada termodynamiki i pojęcie entropii. 26. Równowaga termodynamiczna. 27. Równanie stanu gazu doskonałego, przemiany gazowe, molowe ciepła właściwe gazów. 28. Przemiany fazowe I rodzaju (przykłady) i współistnienie faz; przemiany fazowe II rodzaju. 29. Gazy rzeczywiste i ciecze: para nasycona, parowanie i wrzenie. 30. III zasada termodynamiki i nieosiągalność zera bezwzględnego. VI. Fizyka kwantowa 31. Doświadczenia świadczące o istnieniu atomów i cząsteczek; liczba Avogadro. 32. Rozkład Boltzmanna: związek temperatury z energią kinetyczną cząsteczek gazu. 33. Statystyki kwantowe; bozony i fermiony. 34. Zjawisko fotoelektryczne i efekt Comptona energia i pęd fotonu. 35. Hipoteza de Broglie a, dualizm korpuskularno-falowy. 36. Dyfrakcja fotonów i elektronów (doświadczenie Younga, dyfrakcja na kryształach). 37. Pomiar w mechanice kwantowej (obserwable); zasada nieoznaczoności. 38. Równanie Schrödingera, funkcja falowa i jej interpretacja. 39. Atom wodoru w mechanice kwantowej. 40. Stany energetyczne atomów; absorpcja i emisja promieniowania elektromagnetycznego; emisja spontaniczna i wymuszona. 41. Atom w zewnętrznym polu elektrycznym i magnetycznym zjawisko Starka, zjawisko Zeemana. 42. Budowa jądra atomowego. Rozpady jąder atomowych (promieniowanie alfa, beta i gamma). 43. Rozszczepienie jąder ciężkich: reakcje łańcuchowe, reaktor jądrowy, masa krytyczna. 44. Rodzaje cząstek elementarnych: leptony i hadrony i kwarkowa teoria budowy hadronów. VII Fizyka nanostruktur, materia skondensowana 45. Co to jest nanotechnologia? W jaki sposób tworzone są nano-obiekty? 46. Metody otrzymywania nanostruktur 47. Metody charakteryzacji nanostruktur (rozmiar, własności strukturalne, optyczne, elektryczne i inne). 48. Półprzewodnikowe studnie, druty i kropki kwantowe. 49. Odmiany alotropowe węgla (diament, grafit, grafen, nanorurki, fulereny itp.) 50. Nanostruktury fotoniczne otrzymywanie i właściwości.

Lista B (chemia) 1) Funkcje stanu. Zasady termodynamiki. Termochemia - entalpia, molowa pojemność cieplna; prawo Hessa. Energia swobodna, entalpia swobodna. Zależność entalpii swobodnej od temperatury i ciśnienia. 2) Potencjał chemiczny czystej substancji i substancji w mieszaninie. Potencjał chemiczny w układzie rzeczywistym -lotność, aktywność, współczynniki aktywności. Mieszaniny cieczy - opis termodynamiczny. 3) Termodynamika przemian fazowych. Warunki równowagi w układach wielofazowych i wieloskładnikowych. Diagramy fazowe w układach jedno i wieloskładnikowych. 4) Entalpia swobodna reakcji. Równowaga chemiczna. Wpływ ciśnienia i temperatury na stan równowagi. 5) Podstawy elektrochemii roztworów elektrolitów, przewodnictwo. Półogniwa, rodzaje i zachodzące w nich reakcje, równanie Nernsta. Ogniwa galwaniczne w stanie równowagi i w czasie pracy. Elektroliza. 6) Termodynamika fazy powierzchniowej. Zjawiska na granicy różnych faz, energia powierzchniowa, napięcie powierzchniowe, adsorpcja, dyfuzja powierzchniowa, aktywność katalityczna powierzchni. 7) Koloidy i surfaktanty właściwości, zastosowania, procesy agregacji. 8) Podstawy kinetyki chemicznej: Szybkość i rząd reakcji. Równania kinetyczne i wykresy charakterystyczne dla reakcji o różnej rzędowości. Wyznaczanie stałych szybkości i rzędu reakcji. 9) Budowa atomów i cząsteczek, powiązanie właściwości pierwiastków z ich położeniem w układzie okresowym. 10) Wiązania chemiczne. 11) Równowagi chemiczne w roztworach wodnych (równowagi kwasowo-zasadowe, wytrącania trudno rozpuszczalnych soli, kompleksowania, reakcji utleniania redukcji). 12) Siła jonowa roztworu, aktywność i stężenie, współczynnik aktywności. Wpływ zmian siły jonowej na równowagę chemiczną w roztworze. 13) Potencjometria, stosowane elektrody w potencjometrii. 14) Spektrofotometria, podstawowe prawa. Odstępstwa. 15) Metody miareczkowe w analizie chemicznej. 16) Obliczenia w analizie chemicznej. 17) Błędy w analizie chemicznej. 18) Analiza statystyczna wyników pomiaru. 19) Węglowodory nasycone (alkany i cykloalkany). Budowa. Właściwości chemiczne. 20) Węglowodory nienasycone (alkeny i alkiny). Budowa. Właściwości chemiczne. Reakcje addycji. 21) Węglowodory aromatyczne. Budowa. Reakcje substytucji elektrofilowej. 22) Alkohole. Budowa. Podział. Reakcje. Właściwości chemiczne. 23) Fenole. Budowa i właściwości chemiczne. 24) Aldehydy i ketony. Utlenianie aldehydów. Redukcja aldehydów i ketonów. Reakcje addycji aldehydów i ketonów. 25) Kwasy karboksylowe. Otrzymywanie. Własności chemiczne. 26) Pochodne funkcyjne kwasów karboksylowych. Estry, chlorki kwasowe, bezwodniki, amidy. Właściwości i otrzymywanie. 27) Aminy. Podział. Otrzymywanie. Właściwości. 28) Aminokwasy. Budowa i właściwości chemiczne. 29) Cukry. Podział i właściwości.

30) Izomeria związków organicznych. Rodzaje. Przykłady. 31) Mechanizmy reakcji. Substytucja: wolnorodnikowa, nukleofilowa, elektrofilowa. 32) Nomenklatura związków organicznych. Zasady nazewnictwa zgodnie z regułami IUPAC. 33) Na czym polegają różnice między grupami punkowymi, grupami Lauego, grupami dyfrakcyjnymi i przestrzennymi. 34) Czynniki wpływające na intensywność wiązki promieniowania rentgenowskiego ugiętego na krysztale. 35) Główne etapy i zależności związane z procedurą rozwiązywania struktury kryształu. 36) Związek spinu ze statystyką, symetria permutacyjna funkcji falowej dla układu wielu ciał. 37) Przybliżenie jednoelektronowe i równania Hartree-Focka. 38) Przybliżenie Borna-Oppenheimera. W jakich sytuacjach przybliżenie to nie działa. 39) Metoda LCAO MO w kontekście struktury elektronowej cząsteczek na przykładzie cząsteczki wody. 40) Przybliżone wielkości charakteryzujące strukturę elektronową cząsteczki: gęstość elektronowa, ładunki cząstkowe na atomach, analiza populacyjna, orbitale naturalne i inne. Sens fizyczny tych wielkości. 41) Omówić wszystkie przybliżenia, które prowadzą do podziału energii cząsteczki na wkłady: elektronowy, oscylacyjny i rotacyjny. 42) Zastosowania teorii grup w chemii kwantowej i spektroskopii molekularnej. 43) Reguły wyboru w spektroskopii molekularnej. 44) Drgania normalne, Hamiltonian opisujący ruch jąder w cząsteczce, klasyfikacja drgań. 45) Kwantowy opis rotacji i drgań cząsteczek. 46) Podstawy fizyczne spektroskopii rotacyjnej. Zasady pomiaru i metody interpretacji wyników. Jakie wielkości fizyczne można wyznaczyć z pomiarów spektroskopii rotacyjnej? 47) Metody eksperymentalne wyznaczania geometrii cząsteczki. Czy wszystkie te metody prowadzą do tych samych wyników i dlaczego? 48) Podstawy fizyczne spektroskopii Ramana. Zasady pomiaru i metody interpretacji wyników. Jakie wielkości fizyczne można wyznaczyć z pomiarów spektroskopii Ramana? 49) Podstawy fizyczne jądrowego rezonansu magnetycznego. Zasady pomiaru i metody interpretacji wyników. Jakie wielkości fizyczne można wyznaczyć z pomiarów spektroskopii NMR? 50) Podstawy fizyczne elektronowego rezonansu paramagnetycznego. Zasady pomiaru i metody interpretacji wyników. Jakie wielkości fizyczne można wyznaczyć z pomiarów spektroskopii EPR? lub Nowa Lista B (chemia) 1. Funkcje stanu. Energia swobodna, entalpia swobodna. Zależność entalpii swobodnej od temperatury i ciśnienia. 2. Zasady termodynamiki oraz ich zastosowanie do opisu procesów fizycznych i chemicznych. 3. Termochemia definicje i znaczenie w obliczeniach termodynamicznych entalpii i molowej pojemności cieplnej. Prawo Hessa. Zależność efektu cieplnego reakcji chemicznej od temperatury.

4. Potencjał chemiczny czystej substancji i substancji w mieszaninie. Potencjał chemiczny w układzie rzeczywistym - lotność, aktywność, współczynniki aktywności. Mieszaniny cieczy - opis termodynamiczny. 5. Termodynamika przemian fazowych. Warunki równowagi w układach wielofazowych i wieloskładnikowych. Diagramy fazowe w układach jedno i wieloskładnikowych. 6. Reakcje utleniania-redukcji, pojęcie utleniacza i reduktora. Równanie Nernsta. 7. Na czym polegają zjawiska elektrolizy i korozji. 8. Ogniwa galwaniczne i zachodzące w nich reakcje chemiczne na przykładzie ogniwa cynkowo-miedziowego (Daniella). Pojęcie półogniwa. Ogniwa galwaniczne w stanie równowagi i w czasie pracy. 9. Podstawy elektrochemii w wodnych roztworach elektrolitów na przykładzie woltamperometrii cyklicznej 10. Przewodnictwo elektryczne roztworów elektrolitów. Zależność przewodnictwa roztworów elektrolitów od temperatury, stężenia jonów i lepkości roztworu. 11. Elektryczna warstwa podwójna i rozkład potencjału elektrycznego w funkcji odległości od elektrody. 12. Termodynamika fazy powierzchniowej. Zjawiska na granicy różnych faz, energia powierzchniowa, napięcie powierzchniowe, adsorpcja, izoterma adsorpcji Gibbsa. 13. Dyfuzja powierzchniowa, aktywność katalityczna powierzchni. 14. Koloidy i surfaktanty właściwości, klasyfikacja układów koloidalnych, zastosowania surfaktantów, procesy agregacji, wyznaczanie krytycznego stężenia micelizacji. Zjawisko rozproszenia światła na układach koloidalnych. 15. Podstawy kinetyki chemicznej: Szybkość i rząd reakcji. Równania kinetyczne i wykresy charakterystyczne dla reakcji o różnej rzędowości. 16. Budowa atomów i cząsteczek, powiązanie właściwości pierwiastków z ich położeniem w układzie okresowym. Elektroujemność. 17. Wiązania chemiczne: definicja, klasyfikacja, przykłady, typowe wartości energii wiązania chemicznego. 18. Równowagi chemiczne w roztworach wodnych (równowagi kwasowo-zasadowe, równowagi rozpuszczalności, kompleksowania, reakcji utleniania redukcji). 19. Siła jonowa roztworu, aktywność i stężenie, współczynnik aktywności. Wpływ siły jonowej na równowagę chemiczną w roztworze.

20. Potencjometria: podstawy metody. Elektrody pierwszego i drugiego rodzaju, ich zastosowanie w potencjometrii. Elektroda szklana, wodorowa i chlorosrebrowa. Zależność potencjału elektrody wskaźnikowej od stężenia oznaczanych jonów. 21. Spektrofotometria: podstawy metody. Budowa i zasada działania spektrofotometru jednowiązkowego. Prawo Lamberta-Beera i odstępstwa od niego. Pojęcie absorbancji i transmitancji. 22. Metody miareczkowe w analizie chemicznej. Miareczkowanie bezpośrednie, pośrednie i odwrotne. Alkacymetria, redoksymetria i kompleksometria. Metody detekcji punktu końcowego. 23. Analiza statystyczna wyników pomiaru. Średnia, mediana, odchylenie standardowe, względne odchylenie standardowe. Rozkład normalny. Poziom ufności. 24. Węglowodory nasycone (alkany i cykloalkany). Budowa. Właściwości chemiczne. 25. Węglowodory nienasycone (alkeny i alkiny). Budowa. Właściwości chemiczne. Reakcje addycji. 26. Węglowodory aromatyczne. Budowa. Reakcje substytucji elektrofilowej. 27. Alkohole i fenole. Budowa. Podział. Reakcje. Właściwości chemiczne. 28. Aldehydy i ketony. Utlenianie aldehydów. Redukcja aldehydów i ketonów. Reakcje addycji aldehydów i ketonów. 29. Kwasy karboksylowe. Otrzymywanie. Własności chemiczne. 30. Pochodne funkcyjne kwasów karboksylowych. Estry, chlorki kwasowe, bezwodniki, amidy. Właściwości i otrzymywanie. 31. Aminy. Podział. Otrzymywanie. Właściwości. 32. Aminokwasy. Budowa i właściwości chemiczne. 33. Cukry. Budowa, podział i właściwości 34. Izomeria związków organicznych. Rodzaje. Przykłady. 35. Mechanizmy reakcji w chemii organicznej. Substytucja: wolnorodnikowa, nukleofilowa, elektrofilowa. 36. Grupy punktowe symetrii, grupy Lauego, grupy dyfrakcyjne i grupy przestrzenne. 37. Podstawy fizyczne metod dyfrakcyjnych wyznaczania struktury kryształu. Zasady pomiaru oraz główne etapy analizy uzyskanych danych. Czynniki wpływające na intensywność wiązki promieniowania rentgenowskiego ugiętego na krysztale. 38. Związek spinu ze statystyką, symetria permutacyjna funkcji falowej dla układu wielu ciał. 39. Przyblizenie jednoelektronowe i metoda Hartree-Focka

40. Przybliżenie Borna-Oppenheimera. W jakich sytuacjach przybliżenie to nie działa? 41. Metoda LCAO MO w kontekście struktury elektronowej cząsteczek na przykładzie cząsteczki wody. Konfiguracje elektronowe cząsteczek dwuatomowych. 42. Omówić wszystkie przybliżenia, które prowadzą do podziału energii cząsteczki na wkłady: elektronowy, oscylacyjny i rotacyjny. 43. Reguły wyboru w spektroskopii molekularnej na wybranym przykładzie (spektroskopia przejść elektronowych, spektroskopia w podczerwieni, spektroskopia efektu Ramana). 44. Podstawy fizyczne spektroskopii rotacyjnej. Zasady pomiaru i metody interpretacji wyników. Jakie wielkości fizyczne można wyznaczyć z pomiarów spektroskopii rotacyjnej? 45. Metody eksperymentalne wyznaczania geometrii cząsteczki. Czy wszystkie te metody prowadzą do tych samych wyników i dlaczego? 46. Zastosowania teorii grup punktowych w chemii kwantowej i spektroskopii molekularnej 47. Konfiguracje elektronowe atomów i termy atomowe. 48. Suma statystyczna i jej związek z funkcjami termodynamicznymi. Pojęcie temperatury i entropii w termodynamice statystycznej. 49. Podstawy teorii pasmowej ciała stałego. Budowa i właściwości przewodników, izolatorów i półprzewodników. 50. Ogólna charakterystyka najważniejszych związków nieorganicznych: tlenków, wodorotlenków, kwasów, wodorków, soli oraz powiązanie ich właściwości z położeniem pierwiastków w układzie okresowym.