PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny zakres programu nauczania matematyki w danej klasie; Samodzielnie i twórczo rozwija swoje uzdolnienia; Biegle posługuje się zdobytymi umiejętnościami w rozwiązywaniu problemów teoretycznych i praktycznych; Potrafi stosować posiadaną wiedzę do rozwiązywania zadań i problemów w nowych sytuacjach. Ocenę bardzo dobrą otrzymuje uczeń, który: Opanował pełny zakres wiedzy i umiejętności określony programem nauczania matematyki w danej klasie; Sprawnie posługuje się zdobytymi wiadomościami; Samodzielnie rozwiązuje problemy teoretyczne i praktyczne ujęte programem nauczania; Ocenę dobrą otrzymuje uczeń, który: Opanował zdecydowaną większość wiadomości i umiejętności określonych programem nauczania w danej klasie; Poprawnie stosuje wiadomości, Samodzielnie wykonuje typowe zadania teoretyczne i praktyczne. Ocenę dostateczną otrzymuje uczeń który: Opanował umiejętności i wiadomości w stopniu zadowalającym; Wykonuje typowe zadania teoretyczne i praktyczne o średnim stopniu trudności. Ocenę dopuszczającą otrzymuje uczeń, który: Ma braki w opanowaniu programu, ale te braki nie przekraczają możliwości uzyskania przez ucznia podstawowej wiedzy z matematyki w ciągu dalszej nauki; Rozwiązuje zadania teoretyczne i praktyczne o niewielkim stopniu trudności.
Ocenę niedostateczną otrzymuje uczeń, który: Nie opanował wiadomości i umiejętności określonych programem nauczania matematyki w danej klasie, a braki w wiadomościach i umiejętnościach nie pozwalają na dalsze zdobywanie wiedzy z tego przedmiotu; Nie jest w stanie wykonać zadań o niewielkim stopniu trudności. 2. Formy sprawdzania i oceniania bieżącego wiedzy i umiejętności uczniów. 1. Nauczyciel na lekcjach matematyki może stosować następujące formy sprawdzania wiedzy i umiejętności ucznia: a) odpowiedzi ustne (min. udział w dyskusji, dialog, argumentowanie, wnioskowanie) b) prace pisemne w klasie: kartkówka dotyczy 3 ostatnich tematów zagadnień; bez zapowiedzi; czas trwania do 15 minut; sprawdzian zapowiedziany na tydzień przed terminem, potwierdzony wpisem w dzienniku, czas trwania do 45 minut; praca klasowa, zapowiedziana z tygodniowym wyprzedzeniem, poprzedzona wpisem do dziennika, lekcją powtórzeniową; czas trwania 45 min (oceny ze sprawdzianów wpisywane są do dziennika lekcyjnego kolorem czerwonym) testy różnego typu(otwarty, wyboru, zamknięty, problemowy, zadaniowy), zapowiedziany z tygodniowym wyprzedzeniem, sprawdzający znajomość treści problemowych etapami; czas trwania do 45 minut prace domowe: ćwiczenia, notatki, c) aktywność na lekcji: praca w grupach(organizacja pracy w grupie, komunikacja w grupie, zaangażowanie, sposób prezentacji, efekty pracy); częste zgłaszanie się w czasie lekcji i udzielanie poprawnych odpowiedzi; rozwiązywanie zadań dodatkowych na lekcji, d) aktywność pozalekcyjna: aktywny udział w pracach koła matematycznego, udział w konkursach matematycznych. 2. Prace klasowe, sprawdziany, odpowiedzi ustne i prace domowe są obowiązkowe. 3. Uczeń nieobecny na pracy klasowej, sprawdzianie, teście ma obowiązek ją zaliczyć w formie i czasie ustalonym z nauczycielem. 4. Uczeń ma prawo do trzykrotnego zgłoszenia nieprzygotowania do lekcji w ciągu semestru, jest to odnotowane w dzienniku. Za trzecie nieprzygotowanie uczeń otrzymuje ocenę niedostateczną.
5. Przez nieprzygotowanie do lekcji rozumiemy: brak pracy domowej, zeszytu, zeszytu ćwiczeń nieprzygotowanie do odpowiedzi ustnej. 6. Aktywność na lekcji jest traktowana jako prezentacja umiejętności i wiedzy ucznia i podlega ocenie. 7. Za niesamodzielną pracę podczas pomiaru wiedzy i umiejętności uczeń otrzymuje ocenę niedostateczną. 8. Jeżeli uczeń nie odrobił pracy domowej na dany dzień, to zobowiązany jest zrobić ją na następną lekcję. 3. Kryteria oceniania prac pisemnych z matematyki. Aby zachować maksymalną obiektywność oceny prac pisemnych nauczyciel: stosuje punktację za wybór poprawnej metody rozwiązania i konsekwencję w jej stosowaniu oraz poprawność wyniku, w razie wątpliwości, co do prawidłowości rozumowania ucznia, nauczyciel przeprowadza rozmowę w celu ich wyjaśnienia, uzależnia ostateczną ocenę nie tylko od liczby zdobytych punktów, ale również od ilości rozwiązanych w pełni zadań. 4. Formy poprawy oceny niedostatecznej przez uczniów 1. Poprawie podlegają: a) sprawdziany, b) prace klasowe, c) testy 2. Uczeń ma prawo do poprawy otrzymanej oceny niedostatecznej w terminie 14 dni nauki szkolnej od jej otrzymania. 3. Ocena otrzymana z poprawy jest wpisywana do dziennika obok wcześniej otrzymanej oceny niedostatecznej.
Kryteria ocen z matematyki w klasie VI Na ocenę dopuszczającą: Uczeń musi umieć: dodawać i odejmować ułamki zwykłe o bardzo prostych mianownikach, mnożyć i dzielić proste ułamki zwykłe, wykonywać powyższe działania na prostych liczbach dziesiętnych, porównywać liczby dziesiętne, rozpoznawać i mierzyć kąty, rozpoznawać wielokąty, rozróżniać prostopadłościany, rozpoznawać i redukować proste wyrazy podobne, rozwiązywać bardzo proste równania, określać położenie punktu w układzie współrzędnych za pomocą współrzędnych będących liczbami naturalnymi, konstruować trójkąty o danych bokach, konstruować środek odcinka. Na ocenę dostateczną: dodawać, odejmować, mnożyć i dzielić ułamki zwykłe, wykonywać powyższe działania na prostszych liczbach dziesiętnych, potęgować liczby wymierne dodatnie, znać własności wielokątów, znać wzory i obliczać proste pola powierzchni wielokątów, rysować siatki i modele prostopadłościanów, zamieniać ułamki na procenty i odwrotnie, obliczać procent danej liczby,
znać zasady i prawidłowo wykonywać działania: dodawania, odejmowania, mnożenia i dzielenia na prostych liczbach ujemnych, obliczać wartości liczbowe prostych wyrażeń algebraicznych, redukować wyrazy podobne, rozwiązywać proste równania i nierówności, określać położenie punktu w prostokątnym układzie współrzędnych za pomocą współrzędnych będących liczbami całkowitymi, konstruować proste prostopadłe i równoległe, konstruować dwusieczną kąta. Na ocenę dobrą: wykonywać działania z uwzględnieniem kolejności wykonywania działań, znać jednostki długości i masy i je przeliczać, stosować własności wielokątów do rozwiązywania zadań, wskazywać figury osiowosymetryczne, obliczać pola wielokątów znać wzory i obliczać pola powierzchni i objętości prostopadłościanów, wykonywać obliczenia procentowe, tworzyć i odczytywać diagramy procentowe, wykonywać podstawowe działania na liczbach wymiernych, znać pojęcie wartości bezwzględnej liczby, obliczać wartości liczbowe wyrażeń algebraicznych, mnożyć i dzielić sumy algebraiczne przez liczby, rozwiązywać równania i nierówności bardziej rozbudowane, określać położenie punktu w prostokątnym układzie współrzędnych za pomocą współrzędnych będących liczbami wymiernymi, konstruować trójkąty mając dane boki i kąty, konstruować kąty o zadanych miarach.
Na ocenę bardzo dobrą: wykonywać działania z uwzględnieniem pierwiastkowania, przeliczać jednostki pól powierzchni, przeliczać jednostki objętości, rysować siatki i obliczać pole i objętość ostrosłupa, rozwiązywać zadania tekstowe z wykorzystaniem procentów, wykonywać bardziej rozbudowane działania na liczbach wymiernych, mnożyć sumy algebraiczne przez siebie, rozwiązywać zadania tekstowe za pomocą równań i nierówności, odczytywać dane z wykresu i diagramu, rozwiązywać zadania konstrukcyjne z wykorzystaniem co najmniej dwóch konstrukcji. Na ocenę celującą: Uczeń zna wszystkie dotychczasowe zagadnienia, a ponadto jest bardzo aktywny na lekcjach, wykonuje dodatkowe zadania, rozwija się samodzielnie.