6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro
Piotr Drozdowski MATEMATYKA. Na dobry start do liceum. Zadania Uczniom kończącym naukę w gimnazjum umożliwi samodzielne uzupełnienie wiedzy niezbędnej w dalszej nauce. Uczniom rozpoczynającym naukę w liceum umożliwi szybkie nadrobienie braków, ułatwi powtórzenie i zdobycie umiejętności, które przydadzą się aż do matury. Autor, doświadczony nauczyciel matematyki w gimnazjach i liceach, opracował te zagadnienia, które u progu liceum zwykle sprawiają największe trudności. Starannie dobrane zadania przeplatają się z przykładami i wyjaśnieniami, które przekazane są w sposób przypominający bezpośrednią, życzliwą rozmowę. Autor unika skomplikowanych wywodów, odwołuje się do intuicji, zachęca do samodzielnego zmierzenia się z drobnymi problemami i ćwiczeniami, których trudność powoli wzrasta. Czytanie i rozwiązywanie zadań można zacząć od dowolnego rozdziału. Wydawca
Spis treści 1. Zbiory liczbowe. Wyrażenia algebraiczne Wzory skróconego mnożenia. Równania i nierówności. Wartość bezwzględna. Układy równań Rozwiązywanie układów równań metodą podstawiania Rozwiązywanie układów równań metodą przeciwnych współczynników 6. Funkcja liniowa Rysowanie wykresu funkcji liniowej Obliczanie wzorów funkcji liniowych Punkty przecięcia wykresu funkcji liniowej z osiami układu współrzędnych Miejsce zerowe funkcji Wartości dodatnie i ujemne funkcji Inny sposób rysowania wykresu funkcji liniowej f(x) ax + b Funkcja rosnąca, funkcja malejąca Funkcje o wykresach równoległych Funkcje liniowe o wykresach prostopadłych Przecięcie wykresów funkcji liniowych. Potęgowanie i pierwiastkowanie Potęga o wykładniku naturalnym Prawa potęgowania Potęga o wykładniku całkowitym ujemnym Potęgowanie iloczynu i ilorazu Zadania różne z potęgowania Pierwiastek kwadratowy Obliczanie pierwiastków z ułamków zwykłych i dziesiętnych oraz z liczb mieszanych Usuwanie niewymiernych pierwiastków z mianownika Pierwiastek stopnia trzeciego (sześcienny) 8. Geometria na płaszczyźnie O wielokątach Prostokąt Różne wzory na pole trójkąta Romb Równoległobok Odpowiedzi
Fragment. Potęgowanie i pierwiastkowanie Potęga o wykładniku naturalnym Załóżmy, że w pojemniku są bakterie. Wiemy, że rozmnażają się przez podział, podwajając swoją liczbę w ciągu jednej doby. Ile będziemy mieli bakterii po 10 dobach? Jeżeli na początku jest b bakterii, to po jednej dobie jest b bakterii, po dwóch dobach b, po trzech dobach b, po czterech dobach b i tak dalej, aż po 10 dobach b bakterii. Zauważmy, że za każdym razem poprzedni wynik mnożymy przez, aż w końcu mamy iloczyn dziesięciu dwójek. Takie działanie nazywamy potęgowaniem o wykładniku naturalnym. a a a a... a a n, gdzie po lewej stronie jest n czynników, z których każdy jest równy a. W wyrażeniu a n wartość a nazywamy podstawą potęgi, a n wykładnikiem potęgi. 1. Oblicz. b) c) d) 9 e) 1 101 f) 0 g) 11 h) 6 6. Oblicz. ( ) b) ( ) c) ( ) d) ( 1) 10 e) ( 1) 1 f) ( ) g) ( ) h) ( 10) Jeżeli liczbę ujemną podnosimy do potęgi parzystej, to wynik jest dodatni. Jeżeli liczbę ujemną podnosimy do potęgi nieparzystej, to wynik jest ujemny. 60
. Potęgowanie i pierwiastkowanie Prawa potęgowania Spróbujmy iloczyn 11 zapisać krócej. to siedem mnożonych przez siebie piątek, 11 to jedenaście mnożonych przez siebie piątek. Mamy więc razem + 11 18 mnożonych przez siebie piątek, zatem: 11 + 11 18. Jeżeli to samo rozumowanie przeprowadzimy dla wyrażenia a m a n, otrzymamy: a m a n a m + n.. Zapisz w postaci jednej potęgi. b) 6 c) (0,) 1 (0,) d) 8 6 8 e) 10 10 10 1 f) g) 6 6 6 6 h) ( ) ( ) 11 i) 8. Zapisz w postaci jednej potęgi. x x b) n n c) t t d) a a 6 a 8 e) x x x x f) y y 8 y 11 A co się dzieje, gdy podnosimy potęgę do potęgi? ( ) + + 1 n. To rozumowanie możemy uogólnić dla wyrażenia a m m a n m n a. Zapisz jako jedną potęgę. ( ) b) ( ) 11 c) ( 6 ) d) (11 ) 1 e) [( ) ] f) [( ) ] 6 g) {[( ) ] } 6 h) {[( 1) ] } 6. Zapisz w postaci jednej potęgi. ( ) b) ( ) 6 c) ( ) ( ) d) ( ) 11 e) [( ) ] f) [( ) ] 11 Spójrzmy, co się dzieje z ilorazem potęg o jednakowych podstawach. 61
MATEMATYKA. Na dobry start do liceum. Zadania Widzimy, że otrzymany wykładnik potęgi jest różnicą wykładników potęg w liczniku i mianowniku. Jeżeli w liczniku i mianowniku skrócimy po piątki, to zostanie iloczyn:. Po przeprowadzeniu podobnego rozumowania na wartościach ogólnych otrzymamy: m a m n a n. a. Zapisz jako jedną potęgę. 11 9 b) c) 9 9 19 (,) 0 e) f) (,) 0 1 6 1 6 g) ( ) ( ) 11 d) 11 1 8 6 8. Zapisz w postaci jednej potęgi. 8 1 b) c) ( ) 16 d) e) 6 6 6 f) 6 16 6 1 We wszystkich wcześniejszych przykładach w ilorazie potęg wykładnik potęgi licznika był większy od wykładnika potęgi mianownika. Zobaczmy co się dzieje, gdy potęgi są równe. a a m m 1 dla a 0, bo w liczniku i mianowniku jest ta sama wartość. Zgodnie ze wzorem a a m m m m a a 0 otrzymujemy: a 0 1 dla a 0. 6 6
. Potęgowanie i pierwiastkowanie Potęga o wykładniku całkowitym ujemnym Rozpatrzmy wyrażenie. Zgodnie z podanym wcześniej wzorem. Zapisując potęgi jako iloczyny tych samych czynników, otrzymamy: 1 1. 1 A zatem. Mamy więc a m 1. m a 9. Zapisz w postaci potęgi o wykładniku ujemnym. 8 1 b) 1 c) 1 11 8 d) 1 e) f) 10. Oblicz. b) 10 c) d) (0,) e) 1 f) ( ) g) ( 8) h) ( 1) 6 11. Zapisz jak najprościej, korzystając z praw potęgowania. d) 8 b) c) 1 e) 6 f) Potęgowanie iloczynu i ilorazu 6 1 6 6 6 Przy podnoszeniu do potęgi ułamka zwykłego działamy tak, jak przy podnoszeniu do potęgi każdej liczby, czyli mnożymy ułamek przez siebie odpowiednio wiele razy. 6
MATEMATYKA. Na dobry start do liceum. Zadania n a a Mamy więc n b b. n Podobnie jest przy potęgowaniu iloczynu. 6 ( ) Ogólnie: (a b) n a n b n. 1. Oblicz. b) c) 10 9 d) 6 e) 9 f) 1. Oblicz, korzystając z praw potęgowania. b) 1 9 c) 8 10 9 d) ( ) Zadania różne z potęgowania Czasem spotykamy się z sytuacją, gdy w zadaniu są różne liczby w różnych potęgach. Próbujemy wtedy sprowadzić wszystkie potęgi do tej samej podstawy, wykorzystując prawa potęgowania. Przedstawmy wyrażenie w postaci potęgi jednej liczby i obliczmy jego wartość. 8 18 9 6 6 8
. Potęgowanie i pierwiastkowanie Zauważamy, że: 8, 8 ( ) 1,, ( ) 1,, 9 ( ) 9 18, 6 6, 6 ( 6 ) 18, 18. Korzystając z powyższych przekształceń, otrzymamy: 1 1 1 + 1 + 8 18 9 18 18 18 + 18 6 6 1 1. 6 1. Zapisz w postaci potęgi jednej liczby. 9 81 b) 1 c) 16 6 d) 16 6 e) 9 81 f) 81 9 1. Oblicz. 81 6 9 b) 6 16 6 c) 1 d) 16 6 e) ( ) 6 1 1 f) 9 Spotykamy się również z sytuacjami, gdy dodajemy różne potęgi tej samej liczby. + 8 + 9 + 10 (1 + + + ) (1 + 6 + 9 + ) Wyciągnęliśmy przed nawias najniższą z możliwych potęg liczby, a na wartościach pozostałych w nawiasach dokonaliśmy wskazanych działań. 16. Przedstaw w najprostszej postaci. 8 6 + b) 9 8 + c) 11 9 + 10 d) 1 + 1 e) 9 + 9 f) + Pierwiastek kwadratowy Dla a 0 a b wtedy, gdy a b Ponieważ kwadrat dowolnej liczby jest zawsze liczbą nieujemną, to pierwiastek kwadratowy obliczamy tylko z liczb większych lub równych zero. 6 6, bo 6 6 169 1, bo 1 169 9 6
MATEMATYKA. Na dobry start do liceum. Zadania Aby obliczyć wartość pierwiastka kwadratowego, szukamy takiej liczby, która podniesiona do kwadratu daje liczbę podpierwiastkową. 1. Oblicz pierwiastki. 6 b) 11 c) d) Nie zawsze możemy podać dokładnie wartość pierwiastka. Takie liczby, jak na przykład,, (i wiele innych) są liczbami niewymiernymi i ich wartości cyfrowe podajemy tylko w przybliżeniu. Nie można podać ich zapisu za pomocą skończonej liczby cyfr. Pierwiastków o wartościach niewymiernych jest dużo więcej niż wymiernych, dlatego istotne jest dla nas, abyśmy umieli przedstawić pierwiastek z dużej liczby za pomocą pierwiastka z wartości mniejszej. Jeżeli mamy pierwiastek z dużej liczby, to ważne, abyśmy, jeżeli to możliwe, umieli przedstawić go za pomocą pierwiastka z wartości mniejszej. Liczby złożone często możemy przedstawić w postaci iloczynu takich czynników, aby z niektórych z nich można było wyciągnąć pierwiastek. 18 9 Liczbę 18 łatwo rozłożyć na iloczyn liczby i liczby 9, która jest kwadratem. Jeżeli nie uda się od razu zobaczyć takiego iloczynu, musimy liczbę rozłożyć na czynniki pierwsze. Umożliwia to sprawdzenie, czy otrzymamy pary jednakowych czynników. 1 6 18 9 1 60 180 90 1 1 6 60 6 10 66 10
. Potęgowanie i pierwiastkowanie Po rozkładzie na czynniki pierwsze z każdej pary jednakowych czynników jeden wstawiamy przed pierwiastkiem, a te, które występują pojedynczo, pozostawiamy pod pierwiastkiem. Tę czynność nazywamy wyciąganiem czynnika przed znak pierwiastka. 18. Wyciągnij, jeśli to możliwe, czynnik przed znak pierwiastka. b) 0 c) 1 d) e) f) 8 g) 10 h) 6 i) 9 j) 10 Obliczanie pierwiastków z ułamków zwykłych i dziesiętnych oraz z liczb mieszanych Obliczając pierwiastek z ułamka zwykłego, działamy według bardzo prostej zasady obliczamy pierwiastek z licznika i dzielimy go przez pierwiastek z mianownika. 9 9 Jeżeli pod pierwiastkiem znajduje się liczba mieszana, to musimy zamienić ją na ułamek niewłaściwy. 9 11 9 11 Przy obliczaniu pierwiastków z ułamków dziesiętnych korzystniej jest zamienić je na ułamki zwykłe. Nie trzeba wtedy uważać na liczbę miejsc po przecinku. 6 8 6, liczba niewymierna 10 10 6 8 0, 00006 0, 008 1000 000 1000 11 6
MATEMATYKA. Na dobry start do liceum. Zadania 19. Oblicz pierwiastki, nie korzystając z kalkulatora. 81 16 b) 196 c) 1 16 d) 1 9 16 e) 00, f), g), 0 h) 1, 10 i) 81 j) 8 1 W zadaniach mamy czasem do czynienia z sumami pierwiastków z różnych liczb. W takich przypadkach nie wolno dodawać do siebie wartości podpierwiastkowych, bo nie otrzymamy tej samej wartości. 16 + 9 + 16 + 9 Jeżeli liczby podpierwiastkowe są różne, a pierwiastki są liczbami niewymiernymi, to chcąc zajmować się cyframi możemy tylko podstawić wartości przybliżone. 1 + 11, 110 +, 166, 9 Jeżeli liczby podpierwiastkowe są takie same, to pierwiastki możemy dodać. + 10 Dodając pierwiastki o różnych liczbach podpierwiastkowych, powinniśmy sprawdzić, czy możemy je sprowadzić do pierwiastków z tej samej liczby. 8 + 1 16 + + + 10 + + 10 1 0. Uprość wyrażenia. 6 + b) 1 11 9 11 c) 6 + d) 0 + 180 68 1
. Potęgowanie i pierwiastkowanie e) 0 + f) 1 g) 1000 + 60 + 90 h) 108 18 + 8 + i) 88 + 0 1. Oblicz. c) e) 1 + 8 + 98 0 + 8 b) d) f) 8 1 80 Usuwanie niewymiernych pierwiastków z mianownika Bardzo niewygodnie dzieli się przez liczbę niewymierną. W przypadku otrzymania niewymiernego pierwiastka w mianowniku, staramy się usunąć go z mianownika. 11 11 11 mnożymy przez 1 przedstawione w postaci 11 11 11 mnożymy przez 1 przedstawione w postaci 8 11 11. Usuń niewymierny pierwiastek z mianownika. b) 6 10 c) 6 d) e) 1 f) 1 6 g) 10 h) 8 Trochę inaczej wygląda sytuacja, gdy w mianowniku występuje suma bądź różnica pierwiastków. Musimy wtedy skorzystać z wzoru na różnicę kwadratów. a b (a b)(a + b) 1 69
MATEMATYKA. Na dobry start do liceum. Zadania 11 + 11 11 11 + ( 11+ ) ( 11) 11+ 11 11+ 8 ( 11+ ) ( 11) 11+ 11 11+ 8 11 + Pomnożyliśmy wyrażenie przez 1, aby można było zastosować powyższy wzór. Zauważmy, że w mianowniku muszą pojawić się dwa wyrażenia, różniące 11 + się tylko znakiem. + + 8 9 19. Usuń pierwiastki niewymierne z mianownika. 1 b) c) d) 1 + 1 e) 6 f) 8 1 g) h) + + 8 80 Pierwiastek stopnia trzeciego (sześcienny) a b wtedy, gdy b a Inaczej niż w przypadku pierwiastka kwadratowego, nie musimy podawać zastrzeżenia co do znaku liczby a. Wartość a może być dodatnia, ujemna lub równa zero. Wynika to z tego, że podnosząc liczbę do potęgi trzeciej, możemy uzyskać dowolną liczbę rzeczywistą. 8, bo 8 6, bo ( ) 6 11 11, bo 11 11 0 1
. Potęgowanie i pierwiastkowanie. Oblicz pierwiastki stopnia trzeciego. d) 0 b) e) 1000 000 c) 16 f) 1 Jeżeli obliczamy pierwiastek stopnia trzeciego, to podobnie jak przy pierwiastku kwadratowym, możemy spróbować wyciągnąć czynnik przed znak pierwiastka. Tyle tylko, że przy rozkładzie na czynniki pierwsze poszukujemy nie par jednakowych czynników, ale trójek jednakowych czynników. 6 8 1 1 1080 0 0 1 1 1 6 1080 6 1080 6. Wyciągnij czynnik przed znak pierwiastka. 19 d) b) 10 e) c) 1 f) 18 6. Uprość wyrażenie. 10 + 0 b) 108 c) 18 + 000 d) 19 1 1
8 Oficyna Edukacyjna * Krzysztof Pazdro www.pazdro.com.pl