Metoda Elementów Skończonych Projekt opracowany za pomocą programu COMSOL Multiphysics 3.4. Wykonali: Michał Mach Piotr Mańczak Prowadzący: dr hab. Tomasz Stręk Wydział: Budowa Maszyn i Zarządzanie Kierunek: Mechanika i Budowa Maszyn Rok akademicki: 2009/2010 Rok studiów: III Semestr: VI Specjalizacja: IME, IRW
Spis treści: 1. Analiza odkształceń haka holowniczego kulowego 1.1 Wstęp 1.2 Przykłady haków holowniczych kulowych 1.3 Dane do analizy 1.4 Analiza 1.5 Wyniki i wnioski 2. Przepływ ciepła przecinaka tokarskiego 2.1 Wstęp 2.2 Model 2.3 Warunki brzegowe przepływu ciepła 2.4 Analiza 2.5 Wyniki i wnioski 3. Przepływ cieczy przez kaloryfer 3.1 Wstęp 3.2 Model 3.3 Parametry wyjściowe analizy 3.4 Definicja warunków brzegowych 3.5 Analiza 3.6 Wyniki i wnioski
1. Analiza odkształceń haka holowniczego 1.1 Wstęp Tematem symulacji jest przeprowadzenie analizy odkształceń haka holowniczego kulowego. W wyniku przeprowadzonej symulacji otrzymamy maksymalne wartości ugięć oraz naprężeń panujących w haku holowniczym. Model wyjściowy 3D został zaprojektowany w programie CATIA V5R17 na podstawie wymiarów uzyskanych ze strony producenta takowych haków kulowych. W elemencie badanym największym obciążeniom poddana jest kula, na która montowany jest zaczep przyczepy ciągnionej. Hak holowniczy w przemyśle motoryzacyjnym jest zaczepem do przyłączenia przyczepy. Model, na którym przeprowadziliśmy analizę, był utwierdzony na dwóch śrubach o Ø16mm, wykonany ze stali, o średnicy kuli= 50mm. Rys.1 Model haka z programu CATIA
1.2 Przykładowe haki holownicze Rys. 2 Rys.3 Rys.4 1.3 Dane potrzebne do analizy w programie COMSOL Materiał: Stal St3 Gęstość 7850 kg/m 3 Współczynnik Poissona ν = 0,30 Moduł Younga E= 2.05*10 11
Rys. 5 parametry modelu 1.4 Analiza Do analizy problemu program COMSOL posłużył się równaniem: gdzie: F- wartość obciążenia ρ- gęstość stali Na rysunkach poniżej przedstawiono płaszczyzny utwierdzenia. Dla naszego modelu były to dwa otwory Ø16, przez które hak jest przykręcany śrubami do samochodu, oraz dolna ściana płytki, przez którą przechodzą śruby. Dla uproszczenia śruby traktujemy jako elementy nieodkształcalne, dlatego utwierdzenie dla otworów występuje we wszystkich płaszczyznach. Dolna ściana płytki jest utwierdzona tylko, w jendej płaszczyźnie, ponieważ w tej płaszczyźnie ta ściana zapiera się o ścianę, do której przykręcony jest hak.
Rys. 6 otwory utwierdzające hak w trzech płaszczyznach Rys.7 płaszczyzna utwierdzenia tylko w osi y
Na rysunku 8 pokazano płaszczyznę(kulkę), którą poddano obciążeniu Rys. 8 Płaszczyzna obciążona Zadane obciążenie wynosiło: W osi Y= 10000 N/m² W osi Z= 100 N/m²
Rys.9 Model haka wczytany do programu COMSOL Rys. 10 Model z wygenerowaną siatką 19837 elementów
Rys. 11 Wynik symulacji odkształcenia w µm Rys. 12 Wynik symulacji naprężeńa w MPa
1.5 Wyniki i wnioski Jak widać na powyższych rysunkach punkt maksymalnego przesunięcia, znajduje się na kuli. Maksymalne przesuniecie wyniosło= 1.141 µm. Przy zadanym obciążeniu 1 tony jest to odkształcenia bardzo małe i nie ma ono wpływu na eksploatacje takiegoż urządzenia. Wyniku tego, z góry można było się spodziewać, ponieważ hak holowniczy służy do przenoszenia tego typu obciążeń. Obciążeń przeciwnym wypadku, tj. większych odkształceń w granicach kilku milimetrów, można było by mówić o: a) wadzie konstrukcyjnej urządzenia b) nieprzydatności haka do użytkowania
2. Przepływ ciepła przecinaka tokarskiego 2.1 Wstęp Przewodzenie ciepła proces wymiany ciepła między ciałami o różnej temperaturze pozostającymi ze sobą w bezpośrednim kontakcie. Polega on na przekazywaniu energii kinetycznej bezładnego ruchu cząsteczek w wyniku ich zderzeń. Proces prowadzi do wyrównania temperatury między ciałami. Przewodnictwem cieplnym nie jest przekazywanie energii w wyniku uporządkowanego (makroskopowego) ruchu cząstek. Ciepło płynie tylko wtedy, gdy występuje różnica temperatur, w kierunku od temperatury wyższej do temperatury niższej. Z dobrym przybliżeniem dla większości substancji ilość energii przekazanej przez jednostkę powierzchni w jednostce czasu jest proporcjonalna do różnicy temperatur, co opisuje równanie różniczkowe Fouriera: Prawo Fouriera mówi, że gęstość przewodzonego strumienia ciepła jest wprost proporcjonalna do gradientu temperatury lub w postaci skalarnej, gdzie q - natężenie strumienia ciepła, λ - współczynnik przewodzenia ciepła, inaczej przewodność cieplna, T - temperatura, - pochodna temperatury w kierunku prostopadłym do powierzchni izotermicznej
2.2 Model Do przeprowadzenia analizy wybraliśmy przecinak tokarski, przedstawiony na rysunku poniżej: Rys. 13 Przecinak tokarski Rys. 14 Przecinak tokarski model Catia
2.3 Warunki brzegowe przepływu ciepła 1) Warunek brzegowy Dirichleta -znana temperatura Tb(x,y) na części brzegu Γ1: T(x,y) = Tb(x,y) 2) Warunek brzegowy Neumana - znany strumień ciepła qx(x,y) na części brzegu Γ2:,gdzie: n jest wektorem normalnym jednostkowym skierowanym na zewnątrz, od brzegu Γ2 3) Warunek brzegowy Robina znana liniowa kombinacja strumienia ciepła i t temperatury na części brzegu Γ2: 2.4 Analiza Do wykonania analizy program COMSOL wykorzystuje poniższe równanie: gdzie: δts- współrzędne skalowania w czasie ρ- gęstość Cp- pojemność cieplna k- tensor przewodności cieplnej Q- źródło ciepła
Na początku wybieramy w programie moduł Heat Transfer Transient Analysist Rys. 15 Zdjęcie wyboru modułu z programu Comsol Następnie importowaliśmy, wcześniej zamodelowany, obiekt z programu Catia Rys. 16 Import modelu z programu Catia
Po zaimportowaniu modelu przecinaka do programu Comsol zadajemy warunki analizy Rys. 17 Warunki analizy I Rys. 18 Warunki analizy II Następnie zadajemy warunki brzegowe z zaznaczoną powierzchnią najbardziej nagrzewaną, co wynika z prędkości skrawania Rys. 19 Warunki brzegowe z zaznaczoną powierzchnią nagrzewającą się.
Po zadaniu warunków analizy, przechodzimy do wyznaczenia siatki. Program podzielił Nam obiekt na 16802 elementy. Rys. 20 Podział obiektu na elementy skończone Analizę przeprowadzaliśmy w czasie 600s=10 min. Poniżej zamieszczone są zdjęcia z poszczególnych etapów nagrzewania się przecinaka wywołane czynnością toczenia Po 10s :
Po 20s: Po 30s:
Po 40s: Po 60s:
Po 120s: Po 300s: Po 600s:
2.5 Wyniki i wnioski: Jak widać na zamieszczonych poprzednio zdjęciach, z przeprowadzonej analizy, wzrost temperatury wygląda następująco: Temperatura początkowa przecinaka to ok. 20 C Po upływie 10 sekund, temperatura wzrosła do 65 C; po kolejnych 10 sekundach wynosiła już 73 C. Dodatkowe 10 sekund spowodowały wzrost temperatury do 79 C. Po 40 sekundach przeprowadzania analizy temperatura wynosiła już 84 C. Minuta użytkowania przecinaka tokarskiego spowoduje nagrzanie jego krawędzi roboczej do temperatury 91 C. i Kolejno po 120 sekundach wynosiła: 106 C; po 300 sekundach:125 C, żeby na zakończenie analizy wynieść 139 C Temperatura 139 C była ostateczną temperaturą nagrzania się przecinaka tokarskiego podczas, wirtualnie zasymulowanej, czynności toczenia w czasie 600sekund. Z wyników przedstawionych wyników wyraźnie widać, iż największy skok temperatury, krawędzi roboczej, przecinaka miał miejsce na początku eksperymentu, gdzie to od temperatury poczwarkowej, wynoszącej ok. 20 C, po 10 sekundach wzrosła do 65 C, czyli, aż o 45 C. Następnie temperatura wzrastała liniowo o wartość każdej kolejnej, zbliżoną do poprzedniej.
3. Przepływ cieczy przez grzejnik 3.1 Wstęp Na temat przepływu cieczy wzięliśmy sobie podstawowe narzędzie grzewcze, jakim jest grzejnik łazienkowy (tzw. drabinka). Na ciecz, która przepływa/ wypełnia grzejnik, wybraliśmy wodę- najczęściej stosowana. Grzejnik (potocznie nazywany kaloryferem z fr. calorifère), czyli wymiennik cieplny typu woda-powietrze lub para-powietrze; element układu centralnego ogrzewania. Powszechnie stosowany w najróżniejszych pomieszczeniach. Obecnie najczęściej stosowane są grzejniki płytowe zbudowane ze zgrzewanych płyt stalowych. W nowych instalacjach centralnego ogrzewania praktycznie nie są już stosowane grzejniki żebrowe, mimo że w niektórych rozwiązaniach modułowość konstrukcji pozwala na dodanie większej ilości żeber, a dzięki temu prostą zmianę mocy grzejnika. Przez grzejnik przepływa gorąca woda lub para, która zazwyczaj nie pochodzi bezpośrednio z elektrociepłowni. Woda zasilająca centralne ogrzewanie ogrzewana jest w wymienniku ciepła przez wodę z sieci ciepłowniczej, lub w kotle, a następnie płynie do odbiorników cciepła, jakimisą grzejnik 3.2 Model Rys. 21 Grzejnik łazienkowy
Element, zamodelowany w programie Comsol: Rys. 22 Grzejnik, zamodelowany w programie Comsol 3.3 Parametry wyjściowe analizy Definicja równania Obliczenia zostały oparte o następujące równanie: η- Lepkość dynamiczna [Pa*s] ρ- gęstość [kg/m³] T- temperatura P- ciśnienie ρ= 977.78 [kg/m³] η= 407*10-6 [Pa*s] P= 300000 Pa
Rys. 22 Warunki początkowe analizy 3.4 Definicja warunków brzegowych Rys.23 Warunki brzegowe I
Rys. 24 Warunki brzegowe II 3.5 Analiza Zamodelowany element, program Comsol podzielił na 2864 elementów: Rys. 25 Grzejnik po podzieleniu na elementy Analizę przeprowadziliśmy na odcinku czasu 600sekund= 10 minut. Na kolejnych zdjęciach widać poszczególne prędkości i etapy rozprowadzania się cieczy wewnątrz grzejnika po upływie:
10 sekund 30 sekund
60 sekund 600 sekund
3.6 Wyniki i wnioski Jak widać z załączonych do projektu rysunków, najwyższa wartość prędkości rozchodzenia ciecz miała po 30 sekundach przeprowadzania analizy i wynosiła: 13.506 m/s, a najniższą wartość po 60 sekundach, która wynosiła 13.037 m/s. Generalnie wszystkie wartości oscylowały w granicy 13 m/s, więc możemy przyjąć, iż przepływ cieczy odbywał się w sposób ustatkowany i stały.