PRÓBA SUBPIKSELOWEJ LOKALIZACJI LINII KONTUROWYCH Z WYKORZYSTANIEM DRUGIEJ POCHODNEJ OBRAZU CYFROWEGO

Podobne dokumenty
PRÓBA SUBPIKSELOWEJ LOKALIZACJI LINII KONTUROWYCH Z WYKORZYSTANIEM DRUGIEJ POCHODNEJ OBRAZU CYFROWEGO

AUTOMATYCZNA IDENTYFIKACJA ELEMENTÓW LINIOWYCH NA OBRAZACH CYFROWYCH *

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli

W PŁYW R O Z D Z IELCZO ŚC I SK A NOW ANIA ZDJĘĆ L O TN IC ZY C H NA D O K Ł A D N O ŚĆ O DW ZO RO W ANIA SZC ZEG Ó ŁÓ W

IMPLEMENTACJA I TESTOWANIE PROCEDURY AUTOMATYCZNEGO ŚLEDZENIA KRAWĘDZI NA OBRAZACH CYFROWYCH

Archiwum Fotogrametrii, Kartografii i Teledetekcji Vol. 9,1999, s ISBN DO O P RA C O W AŃ N A A U TO G R A F IE V SD-A G H

Waldemar Izdebski - Wykłady z przedmiotu SIT / Mapa zasadnicza 30

W PŁYW SK A N O W A N IA NA G EOM ETRIĘ O BRAZÓ W C Y FR O W Y C H. Bardzo istotnym warunkiem zeskanowanych obrazów cyfrowych, wykorzystywanych

PRZYDATNOŚĆ ALGORYTMÓW PODPIKSELOWEJ DETEKCJI CECH W WYBRANYCH ZAGADNIENIACH FOTOGRAMETRYCZNYCH

Podstawy programowanie systemów wizyjnych InSight firmy Cognex. Środowisku InSight Explorer / Spreadshee

ORIENTACJA ZEWNĘTRZNA ZDJĘCIA Z WYKORZYSTANIEM GEOMETRYCZNYCH CECH OBIEKTÓW

Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia. Mgr inż.

PREZENTACJA AUTORSKIEGO PROGRAMU AUTOMATYCZNEGO POMIARU ZNACZKÓW TŁOWYCH NA OBRAZACH ZDJĘĆ LOTNICZYCH

WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku

Archiwum Fotogrametrii, Kartografii i Teledetekcji Vol. 9,1999, s ISBN Streszczenie

WYRÓWNANIE SIECI CYFROWYCH ZDJĘĆ NAZIEMNYCH DLA ZASTOSOWAŃ INŻYNIERSKICH I ARCHITEKTONICZNYCH*

ANALIZA DOKŁADNOŚCI PODSTAWOWYCH PRODUKTÓW FOTOGRAMETRYCZNYCH UZYSKANYCH Z ZOBRAZOWAŃ POZYSKANYCH TRZYLINIJKOWĄ CYFROWĄ LOTNICZĄ KAMERĄ ADS40

7. Metody pozyskiwania danych

Metoda eliminacji Gaussa. Autorzy: Michał Góra

BADANIE KSZTAŁTU SZYBOWEJ WIEŻY WYCIĄGOWEJ

Akademia Górniczo - Hutnicza im. Stanisława Staszica w Krakowie. Projekt. z przedmiotu Analiza i Przetwarzanie Obrazów

PROBLEM AUTOMATYCZNEGO POMIARU ZNACZKÓW TŁOWYCH NA ZDJĘCIACH LOTNICZYCH THE PROBLEM OF AUTOMATIC MEASUREMENT OF FIDUCIAL MARK ON AIR IMAGES

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych

METODA RZUTÓW MONGE A (II CZ.)

Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D

WSTĘPNA ANALIZA PRZYDATNOŚCI WIELOSPEKTRALNYCH ZDJĘĆ LOTNICZYCH DO FOTOGRAMETRYCZNEJ INWENTARYZACJI STRUKTUR PRZESTRZENNYCH W DRZEWOSTANACH 3

FOTOGRAMETRYCZNY CYFROWY SYSTEM BLISKIEGO ZASIĘGU DLA POMIARU SKRAJNI KOLEJOWEJ *

CYFROWA METODA BUDOWY NUMERYCZNEGO MODELU TERENU.

Potencjał wysokorozdzielczych zobrazowań Ikonos oraz QuickBird dla generowania ortoobrazów.

Przetwarzanie obrazów rastrowych macierzą konwolucji

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do

Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Katedra Geodezji Rolnej, Katastru i Fotogrametrii

Podstawy fotogrametrii i teledetekcji

Podstawy Informatyki Wykład V

DOKŁADNOŚĆ POMIARU DŁUGOŚCI

3. JPEG a procesy fotogrametryczne - dotychczasowe badania

PL B1. Układ do lokalizacji elektroakustycznych przetworników pomiarowych w przestrzeni pomieszczenia, zwłaszcza mikrofonów

2. Charakterystyki geometryczne przekroju

2. Zarys metody SIFT (Scale Invariant Feature Transform)

Temat: Zaprojektowanie procesu kontroli jakości wymiarów geometrycznych na przykładzie obudowy.

Problematyka budowy skanera 3D doświadczenia własne

Obraz jako funkcja Przekształcenia geometryczne

Implementacja filtru Canny ego

Temat: Skanowanie 3D obrazu w celu pomiaru odkształceń deski podobrazia

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza

WYDZIAŁ ELEKTRYCZNY. Optoelektroniczne pomiary aksjograficzne stawu skroniowo-żuchwowego człowieka

Stereofotogrametryczna inwentaryzacja obiektu architektonicznego na podstawie niemetrycznych zdjęć cyfrowych średniej rozdzielczości

Automatyczne nastawianie ostrości

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1

BADANIE DOKŁADNOŚCI ODWZOROWANIA OBIEKTÓW NA PODSTAWIE STEREOPARY ZDJĘĆ TERMOGRAFICZNYCH 1)

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Dane teledetekcyjne. Sławomir Królewicz

Archiwum Fotogrametrii, Kartografii i Teledetekcji Voi. 9,1999, s ISBN NA PO DSTA W IE D A NYCH W E K T O R O W Y C H

Filtracja obrazu operacje kontekstowe

dr inż. Piotr Odya dr inż. Piotr Suchomski

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012

Metody numeryczne I Równania nieliniowe

w jednym kwadrat ziemia powietrze równoboczny pięciobok

Analiza obrazu. wykład 1. Marek Jan Kasprowicz Uniwersytet Rolniczy Marek Jan Kasprowicz Analiza obrazu komputerowego 2009 r.

WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA.

Proste pomiary na pojedynczym zdjęciu lotniczym

Fotogrametryczny pomiar lin odciągowych z wykorzystaniem przekształceń rzutowych

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.

Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5

Podstawy grafiki komputerowej

Temat Zasady projektowania naziemnego pomiaru fotogrametrycznego. 2. Terenowy rozmiar piksela. 3. Plan pomiaru fotogrametrycznego

ANALIZA PRZYDATNOŚCI ALGORYTMÓW DETEKCJI KRAWĘDZI W ZASTOSOWANIACH FOTOGRAMETRII BLISKIEGO ZASIĘGU

WYMAGANIA DLA LĄDOWISK SZPITALNYCH ODDZIAŁÓW RATUNKOWYCH

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności

Akademia Górniczo-Hutnicza

lim Np. lim jest wyrażeniem typu /, a

Funkcja liniowa - podsumowanie

SZa 98 strona 1 Rysunek techniczny

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

Wymagania dla lądowisk szpitalnych oddziałów ratunkowych

ANALIZA PRZYDATNOŚCI ALGORYTMÓW DETEKCJI KRAWĘDZI W ZASTOSOWANIACH FOTOGRAMETRII BLISKIEGO ZASIĘGU

ROLLEIMETRIC CDW - CYFROWY SYSTEM FOTOGRAMETRII BLISKIEGO ZASIĘGU

3. FUNKCJA LINIOWA. gdzie ; ół,.

POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.

Detekcja punktów zainteresowania

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

PORÓWNANIE EDUKACYJNEGO OPROGRAMOWANIA DO LOTNICZEJ FOTOGRAMETRII CYFROWEJ Z PROFESJONALNYMI SYSTEMAMI FOTOGRAMETRYCZNYMI

Animowana grafika 3D. Opracowanie: J. Kęsik.

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

PRZYDATNOŚĆ APARATU CYFROWEGO MINOLTA RD 175 W FOTOGRAMETRYCZNYCH OPRACOWANIACH CYFROWYCH *

Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska.

Diagnostyka obrazowa

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej

Polskie Towarzystwo Fotogrametrii i Teledetekcji oraz

Procedura szacowania niepewności

Podstawy przetwarzania obrazów teledetekcyjnych. Format rastrowy

Sekcja Fotogrametrii i Teledetekcji Komitetu Geodezji Polskiej Akademii Nauk oraz Zakład Fotogrametrii i Teledetekcji Akademii Rolniczej w Krakowie

Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ

Transkrypt:

Polskie Towarzystwo Fotogrametrii i Teledetekcji oraz Zakład Fotogrametrii i Informatyki Teledetekcyjnej Wydziału Geodezji Górniczej i Inżynierii Środowiska Akademii Górniczo-Hutniczej w Krakowie Archiwum Fotogrametrii, Kartografii i Teledetekcji VoL 8,1998, str. 25-1: 25-8 ISBN 83-906804-4-0 Józef Jachimski Sławomir Mikrut PRÓBA SUBPIKSELOWEJ LOKALIZACJI LINII KONTUROWYCH Z WYKORZYSTANIEM DRUGIEJ POCHODNEJ OBRAZU CYFROWEGO Wstęp Człowiek postrzega otaczający go świat z wykorzystaniem zmysłu wzroku. Obraz utworzony na siatkówce oka pada na czopki i pręciki, które są naturalnymi sensorami, mierzącymi natężenie światła w przedziałach swojej barwoczułości. Rozdzielczość postrzeganych w ten sposób obrazów pikselowych uwarunkowana jest gęstością rozmieszczenia i wymiarami naturalnych sensorów w oku ludzkim. Znane jest pojęcie dokładności widzenia. Dokładność widzenia monokulamego pierwszego rzędu odnosi się do możliwości rozróżnienia dwóch blisko siebie położonych punktów, które widzimy oddzielnie gdy rejestrowane są przez pobudzenie dwu sensorów rozdzielonych jednym nie pobudzonym sensorem. Dokładność widzenia monokulamego drugiego rzędu dotyczy możliwości postrzegania obrazów obiektów wydłużonych, o szerokości znacznie mniejszej niż wymiar pojedynczego sensora. Wiemy z doświadczenia, że kontrastowy obraz włosa, który jest postrzegany przez pobudzenie ciągu sąsiadujących ze sobą sensorów, jest postrzegany pomimo swej niezwykłej cienkości. Dzieje się tak dla tego, że fizjologiczny analizator obrazów łączy informacje punktowe w logiczny ciąg interpretowany jako obraz obiektu wydłużonego. Podobną logikę analizy można zastosować w odniesieniu do linii rejestrowanych na obrazach cyfrowych. Można automatycznie wyszukiwać i określać położenie linii zarejestrowanych na kontrastowym tle, lub linii konturowych, rozgraniczających powierzchnie obrazu różniące się jasnością (lub barwą). Doświadczenia prowadzone od lat w różnych ośrodkach naukowych doprowadziły w pierwszej fazie rozwoju do powstania algorytmów opartych o analizę zmian jasności pikseli wzdłuż przekrojów obrazu cyfrowego [Streilein, 1991; Jachimski, Trocka, 1992]. Analiza obrazu prowadzona w szeregu sąsiadujących ze sobą przekrojach pozwala na subpikselowe zlokalizowanie punktów, w których badany kontur przecinany jest osiami przekrojów. Punkty te aproksymowane są następnie matematycznym równaniem krzywej, która wpasowywana jest z zachowaniem reguł najmniejszej sumy kwadratów odchyłek. Położenie takiej krzywej aproksymującej kontur obrazu cyfrowego określane jest z dokładnością subpikselową. Badania testowe polegające na lokalizacji krzyży na obrazie testu rejestrowanym kamerą CCD, które przeprowadzono w laboratorium Zakładu Fotogrametrii i Informatyki Teledetekcyjnej AGH, wykazały dokładność lokalizacji rzędu jednej dziesiątej do jednej dwudziestej średnicy piksela analizowanego obrazu [Jachimski, Trocha 1992; Trocha 1993], co w owym czasie stanowiło bardzo dobry wynik.

2 5-2 Archiwum Fotogrametrii, Kartografii i Teledetekcji, vol. 8, Kraków 1998 dwudziestej średnicy piksela analizowanego obrazu [Jachimski, Trochu 1992; Trocha 1993J, co w owym czasie stanowiło bardzo dobry wynik. Z czasem powstała możliwość osiągania lepszych dokładności z wykorzystaniem drugiej pochodnej obrazu cyfrowego, czyli z wykorzystaniem obrazów przefiltrowanych z użyciem operatora Laplace'a. Definicja drugiej pochodnej obrazu cyfrowego Przekrój mikrodensytometryczny obrazu cyfrowego jest krzywą obrazującą wielkość jasności pikseli sąsiadujących ze sobą na linii przekroju. W miejscu, w którym oś przekroju przecina krzywą konturu rozgraniczającego na obrazie cyfrowym dwie powierzchnie o różnej jasności, występuje punkt przegięcia krzywej przekrojowej (rys. 1). W punkcie przegięcia wartość drugiej pochodnej funkcji zmienia znak, a zatem ró wna jest zero. Rys.I: Krzywa przekroju mikrodensytometrycznego obrazu cyfrowego (a), oraz krzywe odpowiadające pierwszej (b) i drugiej pochodnej (c) krzywej przekrojowej. W miejscu, w którym oś przekroju przecina krzywą konturu rozgraniczającego na obrazie cyfrowym dwie powierzchnie o różnej jasności, występuje punkt przegięcia krzywej przekrojowej. W punkcie przegięcia wartość drugiej pochodnej funkcji zmienia znak, a zatem równa jest zero. Lokalizację krzywych konuirowych na obrazie cyfrowym można zatem sprowadzić do wyszukiwania miejsc zerowych, w których zmienia ona znak. Interpolacja takich miejsc prowadzona może być pomiędzy sąsiadującymi pikselami obrazu cyfrowego będącego drugą pochodną obrazu oryginalnego.

J. Jachimski, S. M ikrut: Próba subpikselowej lokalizacji linii konturowych... 25-3 wiersza lub kolumny pikseli można zdefiniować jako macierz przedstawiającą przyrosty jasności sąsiadujących ze sobą pikseli (np. jasność rozpatrywanego piksela minus jasność poprzedniego). Drugą pochodną otrzymać można w podobny sposób z macierzy przedstawiającej pierwszą pochodną, Dodając do siebie dwie macierze przedstawiające drugą pochodną obrazu cyfrowego liczoną wzdłuż wierszy i wzdłuż kolumn, otrzymuje się macierz, którą nazywamy drugą pochodną obrazu cyfrowego [Kraus 1993]. Drugą pochodną obrazu cyfrowego otrzymuje się filtrując obraz oryginalny operatorem filtrującym Laplace'a, który ma postać : 0 1 0 j 1-4 1 1 0 1 0 Na rysunku 2 pokazano wizualizację prostej linii konturowej zarejestrowanej na obrazie cyfrowym, oraz wizualizację drugiej pochodnej tego obrazu. W braku możliwości użycia kolorów, obszary wartości dodatniej i ujemnej drugiej pochodnej trudno jest rozróżnić w niniejszej publikacji (dodatkowo je oznaczono), natomiast dobrze widoczna jest linia konturu. Na iys.3 pokazano macierze obrazowe, których wizualizację podaje rys.2. Łatwo zauważyć zakreślone na rys 3b szeregi sąsiadujących ze sobą pikseli dodatnich i ujemnych, pomiędzy którymi należy przeprowadzić interpolację punktów zerowania się drugiej pochodnej. Znaczny skok wartości drugiej pochodnej w tych miejscach gwarantuje dużą subpikselową dokładność interpolacji, a co za tym idzie, dużą dokładność lokalizacji linii konturowych na obrazie cyfrowym. a) b) Rys.2. Wizualizacja prostej linii konturowej zarejestrowanej na obrazie cyfrowym (a), oraz wizualizacja drugiej pochodnej tego obrazu (b).

2 5-4 Archiwum Fotogrametrii, Kartografii i Teledetekcji, vol. 8, Kraków 1998 a) 2S2 250 251 216 121 107 255 255 255 238 126 108 255 255 255 237 126 108 255 255 255 238 123 109 255 255 255 238 123 109 255 255 255 239 122 108 255 255 255 235 122 109 255 255 255 241 124 108 255 255 255 238 124 109 255 255 255 242 123 109 255 255 255 210 122 109 255 255 255 242 127 109 255 255 255 240 123 109 b) -58-67 -59-69 -35-11 -126-129 -112-108 -90-18 139 133 121 162 139-72 2 3 5 21 118-89 0 0 0 18 91-90 0 0 0 17 99-104 0 0 0 17 97-100 0 0 0 16 106-104 0 0 0 20 83-102 0 0 0 14 112-99 0 0 0 17 90-98 0 0 0 13 142-105 0 0 0 45-21 -81 Rys.3: Fragment macierzy obrazowej obrazu oryginalnego (a), na którym zarejestrowano linie konturową zwizualizowaną na rys. 2a, oraz fragment macierzy obrazowej drugiej pochodnej tego obrazu, która zwizualiozowana jest na rys 2b. Testowa ocena dokładności lokalizacji obrazów punktów siatki reseau na macierzy drugiej pochodnej obrazu cyfrowego Ocenę dokładności automatycznego lokalizowania linii konturowych przeprowadzono na obrazie siatki reseau (rys. 4). Płytkę z naniesioną siatką kilkakrotnie zeskanowano skanerem fotogrametrycznym Zeiss-Intergraph przy różnych, skręconych względem siebie ułożeniach płytki w skanerze. Każdy z analizowanych krzyży zlokalizowano w ten sposób, że zarówno dla poziomego jaki dla pionowego ramienia krzyża określono po dwie krawędzie linii wyznaczających krzyż. Punkt przecięcia linii symetralnych pionowych i poziomych krawędzi ramion krzyża uznano za poszukiwany środek krzyża. 2101 Rys.4: Fragment obrazu cyfrowego siatki reseau wykorzystywanej w badaniach testowych

J. Jachimski, S. Mikrut: Próba subpikselowej lokalizacji linii konturowych... 25-5 Na rys. 5 pokazano usytuowanie punktów wyinterpolowanych w przecięciu osi przekrojów mikrodensytometrycznych z krawędziami (liniami konturowymi) ramion obrazu przykładowego krzyża. Dzięki znacznej długości ramion krzyża, obrazowanych około 100 pikselami w poziomie lub w pionie, linie proste aproksymujące krawędzie ramion są określone z dużą pewnością. Konieczność wstępnej eliminacji pojedynczych punktów znacznie odbiegających od przebiegu krawędzi w niewielkim tylko stopniu zmniejszała cały aproksymowany zbiór punktów i była zaniedbywalna ze statystycznego punktu widzenia. Badania wykonano przy rozdzielczości skanowania równej 54^m (ok.470 dpi). Wyniki lokalizacji krzyży na testach skanowanych przy różnych ułożeniach płytki reseau w skanerze porównano pomiędzy sobą poprzez transformację wszystkich krzyży określonych w jednym położeniu płytki, na wszystkie krzyże określone innym, wybranym położeniu płytki, które uznano za wyjściowe. Wyniki wszystkich transformacji uśredniono, i tak uzyskane współrzędne uznano za wzorcowe. Porównanie wyników lokalizacji środków krzyży na obrazach cyfrowych pozyskanych przy różnych ułożeniach płytki reseau w skanerze podaje tabela 1.! Odchyłki na krzyżach V,... v >... trans. 1 ( krzyż 1 na 3 ) 0.020 0.012-0.032 0.007 0.013-0.020 trans. 2 (krzyż 1 na 2 ) 0.028 0.017-0.046 0.011 0.017-0.028 trans. 3 (krzyż 2 na 3 ) -0.005-0.002 0.014-0.002 0.001-0.006-0.009 0.011 wszystkie wartości w pikselach Tabela 1: Zestawienie odchyłek automatycznej lokalizacji środków krzyży na obrazach cyfrowych siatki reseau pozyskanych przy różnych ułożeniach płytki reseau w skanerze. Uzyskane dokładności lokalizacji środków krzyży w testowych warunkach laboratoryjnych, które mieszczą się w granicach około 1/50 piksela, świadczą zarówno o bardzo dużej precyzji użytego skanera, jak i o tym, że precyzja obrazów cyfrowych znacznie przewyższa ich rozdzielczość, określoną wymiarami pikseli.

2 5-6 Archiwum Fotogrametrii, Kartografii i Teledetekcji, vol. 8, Kraków 1998 49.4 49.38 49.36 49.34 49.32 49.3 49.28 49.26 krzyż 1 - krawędź lewa y = 0.000524x + 49.21 1 220 wiersz krzyż 1 - krawędź prawa y = 0.000851x + 50.613 50.9 50.88 50.86 50.84 50.82 50.8 50.78 50.76 50.74 50.72 190 210 230 250 270 W i T8 2 219.5 219.55 g 219.6 219.65 219.7 219.75 0 krzyżl - krawędź górna y = -0.0 0 1 2 IX + 219.684 kolum na 20 40 60 80 100 krzyżl - krawędź dolna y = 0.0 01 73x 220.1687 k o lum na 0 20 40 60 60 100 Rys.5. Zbiory punktów wyinterpolowanych z subpikselową dokładnością w przecięciu osi przekrojów mikrodensytometrycznych z krawędziami (liniami konturowymi) ramion obrazu przykładowego krzyża. Pokazano również linie proste aproksymujące punkty położone na krawędziach obrazów ramion krzyża. Ta aproksymacja jest drugim krokiem obliczeniowym zwiększającym pewność lokalizacji środka krzyża w układzie współrzędnych pikselowych.

J. Jachimski, S. Mikrut: Próba suhpikselowej lokalizacji linii konturowych... 25-7 Wnioski Testowe badania laboratoryjne potwierdziły wysoką dokładność lokalizacji linii konturowych na drugiej pochodnej obrazu cyfrowego. Dokładność ta sięga 1/50 wymiaru piksela. Przeprowadzenia wymagają doświadczenia z lokalizacją linii konturowych na obrazach rzeczywistych obiektów i urządzeń. Można przewidywać, że analizowana metoda pozwoli wykorzystywać do precyzyjnych prac pomiarowych również obrazy cyfrowe o małej rozdzielczości, min. obrazy pozyskane kamerami cyfrowymi CCD. Ważnym zastosowaniem metody może być też subpikselową lokalizacja punktów przejściowych bloku terratriangulacji, zdefiniowanych w przecięciach prosytych linii konturowych na fasadach budowli. Literatura 1. Streilein A., Bay er H.A., 1991, Development o f a digital system fo r architectural photogrammetry, Materiały XVI Sympozjum International Committee for Architectural Photogrammetry, 2-5 October 1991, Delphi, Grecja; 2. Jachim ski J., Trocha W., 1992, Determination o f the position o f crosses with the subpixel accuracy on the image taken with the CCD camera, International Archives of Photogrammetry and remote Sensing, vol,17-b5, s.391, Washington; 3. K raus K., 1993, Photogrammetry, Dummler, Bonn; 4. Trocha W., 1993, Automatyzacja pomiaru wzorców reseau na zdjęciach fotogrametrycznych z wykorzystaniem kamery CCD i autografu analitycznego, Maszynopis rozprawy doktorskiej, Biblioteka AGH, Kraków; 5. Streilein A., 1996, Utilisation o f CAD models fo r the object oriented measurement o f industrial and architectural objects, International Archives of Photogrammetry and Remeote Sensing, vol.31-b5, s. 548, Wiedeń. Recenzował: dr inż. Krystian Pyka