EGZAMIN MATURALNY Z MATEMATYKI



Podobne dokumenty
EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 120 minut

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 25 SIERPNIA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Czas pracy 170 minut

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ 2015

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

Czas pracy 170 minut

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI. dla osób niesłyszących CZERWIEC 2013 POZIOM PODSTAWOWY. Czas pracy: do 200 minut. Liczba punktów do uzyskania: 50

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 120 minut

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 120 minut

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 120 minut

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. (dla klas trzecich liceum i klas czwartych technikum)

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 8 MAJA 2015 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

LUBELSKA PRÓBA PRZED MATURĄ 2019

MAJ Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

Transkrypt:

ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku. 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. 5. Nie używaj korektora, a błędne zapisy przekreśl. 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie. 7. Obok każdego zadania podana jest maksymalna liczba punktów, którą możesz uzyskać za jego poprawne rozwiązanie. 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. 9. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora. Życzymy powodzenia! Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów Wypełnia zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO KOD ZDAJĄCEGO

2 Egzamin maturalny z matematyki Zadanie 1. (5 pkt) Funkcja f określona jest wzorem a) Uzupełnij tabelę: 2x 3 dla x< 2 f( x) = 1 dla 2 x 4 b) Narysuj wykres funkcji f. x 3 3 f ( x ) 0 c) Podaj wszystkie liczby całkowite x, spełniające nierówność f ( x) 6. Wypełnia egzaminator! Nr zadania 1.1 1.2 1.3 1.4 1.5 Maks. liczba pkt 1 1 1 1 1 Uzyskana liczba pkt

Egzamin maturalny z matematyki 3 Zadanie 2. (3 pkt) Dwaj rzemieślnicy przyjęli zlecenie wykonania wspólnie 980 detali. Zaplanowali, że każdego dnia pierwszy z nich wykona m, a drugi n detali. Obliczyli, że razem wykonają zlecenie w ciągu 7 dni. Po pierwszym dniu pracy pierwszy z rzemieślników rozchorował się i wtedy drugi, aby wykonać całe zlecenie, musiał pracować o 8 dni dłużej niż planował, (nie zmieniając liczby wykonywanych codziennie detali). Oblicz m i n. Nr zadania 2.1 2.2 2.3 Wypełnia Maks. liczba pkt 1 1 1

4 Egzamin maturalny z matematyki Zadanie 3. (5 pkt) 2 Wykres funkcji f danej wzorem f ( x) = 2x przesunięto wzdłuż osi Ox o 3 jednostki w prawo oraz wzdłuż osi Oy o 8 jednostek w górę, otrzymując wykres funkcji g. a) Rozwiąż nierówność f ( x) + 5< 3x. b) Podaj zbiór wartości funkcji g. 2 c) Funkcja g określona jest wzorem g( x) = 2x + bx+ c. Oblicz b i c.

Egzamin maturalny z matematyki 5 Nr zadania 3.1 3.2 3.3 3.4 3.5 Wypełnia Maks. liczba pkt 1 1 1 1 1

6 Egzamin maturalny z matematyki Zadanie 4. (3 pkt) 54 Wykaż, że liczba 3 jest rozwiązaniem równania 11 14 27 243 81 + 7x = 9. Nr zadania 4.1 4.2 4.3 Wypełnia Maks. liczba pkt 1 1 1

Egzamin maturalny z matematyki 7 Zadanie 5. (5 pkt) 3 2 Wielomian W dany jest wzorem W( x) = x + ax 4x+ b. a) Wyznacz a, b oraz c tak, aby wielomian W był równy wielomianowi P, gdy 3 2 P( x) = x + ( 2a+ 3) x + ( a+ b+ c) x 1. b) Dla a = 3 i b = 0 zapisz wielomian W w postaci iloczynu trzech wielomianów stopnia pierwszego. Nr zadania 5.1 5.2 5.3 5.4 5.5 Wypełnia Maks. liczba pkt 1 1 1 1 1

8 Egzamin maturalny z matematyki Zadanie 6. (5 pkt) Miara jednego z kątów ostrych w trójkącie prostokątnym jest równa α. a) Uzasadnij, że spełniona jest nierówność sinα tgα < 0. 2 2 3 2 b) Dla sinα = oblicz wartość wyrażenia cos α + cosα sin α. 3 Wypełnia egzaminator! Nr zadania 6.1 6.2 6.3 6.4 6.5 Maks. liczba pkt 1 1 1 1 1 Uzyskana liczba pkt

Egzamin maturalny z matematyki 9 Zadanie 7. (6 pkt) Dany jest ciąg arytmetyczny a ) dla n 1, w którym a 1, 9 ( n a) Oblicz pierwszy wyraz a 1 i różnicę r ciągu ( a n ). a, a a jest geometryczny. b) Sprawdź, czy ciąg ( ) 7 8, 11 c) Wyznacz takie n, aby suma n początkowych wyrazów ciągu ( a n ) miała wartość najmniejszą. 7 = 11 = Nr zadania 7.1 7.2 7.3 7.4 7.5 7.6 Wypełnia Maks. liczba pkt 1 1 1 1 1 1

10 Egzamin maturalny z matematyki Zadanie 8. (4 pkt) W trapezie ABCD długość podstawy CD jest równa 18, a długości ramion trapezu AD i BC są odpowiednio równe 25 i 15. Kąty ADB i DCB, zaznaczone na rysunku, mają równe miary. Oblicz obwód tego trapezu. D C A B

Egzamin maturalny z matematyki 11 Nr zadania 8.1 8.2 8.3 8.4 Wypełnia Maks. liczba pkt 1 1 1 1

12 Egzamin maturalny z matematyki Zadanie 9. (4 pkt) Punkty B = ( 0,10) i O = ( 0,0) są wierzchołkami trójkąta prostokątnego OAB, w którym 1 OAB = 90. Przyprostokątna OA zawiera się w prostej o równaniu y = x. Oblicz 2 współrzędne punktu A i długość przyprostokątnej OA. Nr zadania 9.1 9.2 9.3 9.4 Wypełnia Maks. liczba pkt 1 1 1 1

Egzamin maturalny z matematyki 13 Zadanie 10. (5 pkt) Tabela przedstawia wyniki części teoretycznej egzaminu na prawo jazdy. Zdający uzyskał wynik pozytywny, jeżeli popełnił co najwyżej dwa błędy. liczba błędów 0 1 2 3 4 5 6 7 8 liczba zdających 8 5 8 5 2 1 0 0 1 a) Oblicz średnią arytmetyczną liczby błędów popełnionych przez zdających ten egzamin. Wynik podaj w zaokrągleniu do całości. b) Oblicz prawdopodobieństwo, że wśród dwóch losowo wybranych zdających tylko jeden uzyskał wynik pozytywny. Wynik zapisz w postaci ułamka zwykłego nieskracalnego. Nr zadania 10.1 10.2 10.3 10.4 10.5 Wypełnia Maks. liczba pkt 1 1 1 1 1

14 Egzamin maturalny z matematyki Zadanie 11. (5 pkt) Powierzchnia boczna walca po rozwinięciu na płaszczyznę jest prostokątem. Przekątna tego prostokąta ma długość 12 i tworzy z bokiem, którego długość jest równa wysokości walca, kąt o mierze 30. a) Oblicz pole powierzchni bocznej tego walca. b) Sprawdź, czy objętość tego walca jest większa od 18 3. Odpowiedź uzasadnij.

Egzamin maturalny z matematyki 15 Nr zadania 11.1 11.2 11.3 11.4 11.5 Wypełnia Maks. liczba pkt 1 1 1 1 1

16 Egzamin maturalny z matematyki BRUDNOPIS