INTERFEJS CZŁOWIEK MASZYNA Z MAGISTRALĄ CAN

Podobne dokumenty
SYSTEM ROZPROSZONEGO STEROWANIA WYKORZYSTUJĄCY STEROWNIKI MOBILNE

MAGISTRALA CAN W WYROBACH I SYSTEMACH DIAGNOSTYCZNO-POMIAROWYCH OBRUM GLIWICE

SYSTEM STEROWANIA W STACJI RADIOLOKACYJNEJ BAZUJĄCY NA MAGISTRALI CAN

UKŁADY HYDRAULICZNE BOSCH REXROTH STEROWANE MAGISTRALĄ CAN

URZĄDZENIA FIRMY DIGA WSPÓŁPRACUJĄCE Z MAGISTRALĄ CAN

Terminal TR01. Terminal jest przeznaczony do montażu naściennego w czystych i suchych pomieszczeniach.

LABORATORIUM ENERGOOSZCZĘDNEGO BUDYNKU

REJESTRACJA DANYCH PRZESYŁANYCH MAGISTRALĄ CAN

MODERNIZACJA UKŁADÓW STEROWANIA W POJEŹDZIE GĄSIENICOWYM

ZASTOSOWANIE STANOWISKA LABORATORYJNEGO DO BADANIA MAGISTRALI CAN

1. Cel ćwiczenia. Celem ćwiczenia jest zestawienie połączenia pomiędzy dwoma sterownikami PLC za pomocą protokołu Modbus RTU.

Opis techniczny koncentratora wejść impulsowych KWI-1. APATOR SA,

PROGRAMOWALNE STEROWNIKI LOGICZNE

UKŁAD STEROWANIA MOSTU PRZEWOŹNEGO WYKORZYSTUJĄCY MAGISTRALĘ CAN

SYSTEMY STEROWANIA APARATURĄ POMIAROWĄ BAZUJĄCE NA MAGISTRALI CAN

CDIRO-360 Karta wejść binarnych i wyjść przekaźnikowych Instrukcja obsługi

SM Wyświetlacz 4x LED, 1x CAN, 1xRS232/485, 2x wejście analogowe

Opracował: Jan Front

Miernik poziomu cieczy MPC-1

CONV5 - B, C wersja 1.3 Konwerter protokołu Pelco na Sensormatic INSTRUKCJA OBSŁUGI

Interfejs RS485-TTL KOD: INTR. v.1.0. Zastępuje wydanie: 2 z dnia

AN ON OFF TEMPERATURE CONTROLLER WITH A MOBILE APPLICATION

Dokumentacja Techniczna. Konwerter USB/RS-232 na RS-285/422 COTER-24I COTER-24N

LDA-8/ Z wyświetlacz tekstowy

Uniwersalna klawiatura ELITE z wyświetlaczem LCD

Systemy wbudowane. Paweł Pełczyński

Technika Mikroprocesorowa

STEROWNIK MODUŁÓW PRZEKAŹNIKOWYCH SMP-8

CDI-360 Karta wejść binarnych Instrukcja obsługi

2. Zawartość dokumentacji. 1. Strona tytułowa. 2. Zawartość dokumentacji. 3. Spis rysunków. 4. Opis instalacji kontroli dostępu. 3.

Moduł CNT020. Przeznaczenie. Oprogramowanie i użyteczne właściwości modułu

Uniwersalny system automatyki budynkowej w oparciu o. moduł sterujący SAB i moduły wykonawcze MWD. Praca autonomiczna Moduł sterujący SAB...

SML3 październik

Protokół IEC

OPROGRAMOWANIE CANStudio

Miernik Poziomu Cieczy MPC-1

STEROWNIK LAMP LED MS-1 Agropian System

Kontroler LED programowalny czasowo 12V 20A 5 kanałów

Rysunek 1: Okno z lista

Instrukcja do oprogramowania ENAP DEC-1

SmartGuard 600. Funkcja. Dane techniczne. Produkty Komponenty bezpieczeństwa Sterowniki bezpieczeństwa S

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC

Karta katalogowa. Vision OPLC V560-T25B

System sygnalizacji centralnej

STEROWNIK LAMP LED MS-1 Konwerter sygnału 0-10V. Agropian System

System zdalnego sterownia łącznikami trakcyjnymi TEOL K3.

Kod produktu: MP01611-ZK

LABORATORIUM ENERGOOSZCZĘDNEGO BUDYNKU

MiniModbus 4DO. Moduł rozszerzający 4 wyjścia cyfrowe. Wyprodukowano dla. Instrukcja użytkownika

LABORATORIUM INTELIGENTNYCH SYSTEMÓW ELEKTRYCZNYCH

Listopad

Moduł dodatkowych sygnałów wejścia-wyjścia

Moduł CON012. Wersja biurkowa. Przeznaczenie. Użyteczne właściwości modułu

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701.

Przetworniki pomiarowe obrotu Enkoder absolutny wieloobrotowy S ENDIX 5868, CANopen

CSMIO-MPG. 6-axis Manual Pulse Generator (MPG) Module. Rev copyright 2014 CS-Lab s.c.

microplc Sposoby monitoringu instalacji technologicznych przy pomocy sterownika

Instrukcja obsługi SPEED CONTROL. Electro-pneumatic Speed control system Elektropneumatyczny Regulator Wydajności Pompy

Moduł CON014. Wersja na szynę 35mm. Przeznaczenie. Użyteczne właściwości modułu

Modułowy programowalny przekaźnik czasowy firmy Aniro.

Arkusz danych produktu KX6300dc[******]

System TEO Kompleksowa obsługa energetyki trakcyjnej prądu stałego

LabVIEW PLATFORMA EDUKACYJNA Lekcja 5 LabVIEW i Arduino konfiguracja środowiska i pierwszy program

Nowe rozwiązania w układach sterowania firmy Tester

STEROWNIKI PROGRAMOWALNE

Moduł MUU020. Przeznaczenie. Oprogramowanie i użyteczne właściwości modułu

LABORATORIUM INTELIGENTNYCH SYSTEMÓW ELEKTRYCZNYCH. Ćwiczenie 10. Wykorzystanie funkcji ściemniacza w systemie TEBIS

OKABLOWANIE W WYBRANYCH SYSTEMACH KOMUNIKACJI

PROJECT OF FM TUNER WITH GESTURE CONTROL PROJEKT TUNERA FM STEROWANEGO GESTAMI

Podstawy PLC. Programowalny sterownik logiczny PLC to mikroprocesorowy układ sterowania stosowany do automatyzacji procesów i urządzeń.

Sterowniki Programowalne (SP) Wykład 11

MOBOT-RCR v2 miniaturowe moduły radiowe Bezprzewodowa transmisja UART

MultiTool instrukcja użytkownika 2010 SFAR

Routery RTR-XXX/XXX - Router RTR-FT10/FT10

Moduł rozszerzeń ATTO dla systemu monitorującego SMOK.

MOŻLIWOŚCI WYKORZYSTANIA W POJAZDACH SPECJALNYCH PODZESPOŁÓW Z MAGISTRALĄ CANBUS.

Autorzy. Zespół SABUR Sp. Z o.o. Wydanie Data. Sierpień SABUR Sp. Z o. o. Wszelkie prawa zastrzeżone

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA. Przetarg nieograniczony Dostawa stanowisk dydaktycznych do nauki protokołów Profinet oraz Profibus DP

1. Prace rozwojowe usługi informatyczne w zakresie opracowania prototypu oprogramowania serwisowo-instalatorskiego dla systemu testowego

Zestaw stacji wywoławczej PVA-CSK PAVIRO

INTEGRACJA CENTRALI ALARMOWEJ SATEL Z HOME CENTER 2 FIBARO

DVR KEYB v1.4. Interfejs PS-2 do rejestratorów DVR

Wittmann 4.0 wtryskarka jako centrum sterowania urządzeniami peryferyjnymi

MAGISTRALA MODBUS W SIŁOWNIKU XSM Opis sterowania

Politechnika Białostocka. Wydział Elektryczny. Katedra Automatyki i Elektroniki. Kod przedmiotu: TS1C

Odbiornik pilotów RC-5. z interfejsem RS-485 / MODBUS

Sterowanie oświetleniem poprzez TEBIS

INSTRUKCJA UŻYTKOWNIKA MPCC

ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC

Instrukcja instalacji interfejsu komunikacyjnego RUD-1

Szczegółowy opis techniczny przedmiotu zamówienia

Tytuł Aplikacji: Aplikacja przetwornic częstotliwości Danfoss w sieci przemysłowej Profinet

dokument DOK wersja 1.0

Ogranicznik prędkości

System INFIDIO. Bezprzewodowy system sterowania oświetleniem przemysłowym

RSD Uniwersalny rejestrator danych Zaprojektowany do pracy w przemyśle

UNIWERSALNY PULPIT STEROWANIA

Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100. Zestaw do samodzielnego montażu.

Moduł Komunikacyjny MCU42 do systemu AFS42

CYFROWY ANALIZATOR SIECI PRZEMYSŁOWYCH JAKO NARZĘDZIE DO DIAGNOSTYKI MAGISTRALI CAN

Transkrypt:

Szybkobieżne Pojazdy Gąsienicowe (23) nr 1, 2008 Sebastian CHWIEDORUK INTERFEJS CZŁOWIEK MASZYNA Z MAGISTRALĄ CAN Streszczenie: W artykule przedstawiono przykładowe rozwiązania interfejsów człowiek-maszyna (Human Machine Interface, HMI), a w szczególności pulpitów sterowania do maszyn mobilnych, projektowanych i produkowanych w OBRUM sp. z o.o.. Opisano modułową budowę pulpitów i tablic sterowania składających się z niezależnych elementów sieci CAN oraz metody bezpiecznego podłączenia ich do magistrali. Ponadto przedstawiono budowę i funkcje opracowanego w OBRUM uniwersalnego interfejsu klawiatury. Słowa kluczowe: CAN, interfejs człowiek maszyna, Human Machine Interface, HMI, OBRUM, pulpit sterujący, tablica sterująca. 1. WSTĘP W systemach sterowania, gdzie operator ma wpływ na działanie maszyny, musi występować element umożliwiający komunikację operator - maszyna (sterownik). Elementy interakcji można podzielić na układy wejściowe umożliwiające użytkownikowi ingerencję w system oraz układy wyjściowe wskazują stan maszyny, oraz reakcje na działania użytkownika. Określenie interfejs człowiek - maszyna (ang. Human Machine Interface HMI) obejmuje szeroki zakres urządzeń od pojedynczych przycisków, klawiatur, po złożone wyświetlacze programowalne i pulpity sterujące. Do podstawowych elementów mogących wchodzić w skład takich urządzeń można zaliczyć przyciski różnego typu, klawiatury, dżojstiki, wyświetlacze, moduły dźwiękowe, modemy bezprzewodowe itp. Tworząc systemy sterowania z komunikacją opartą o sieć CAN, naturalnym staje się stosowanie tej sieci do jak największej ilości elementów w niej pracujących, włączając w to pulpity operatorskie, wyświetlacze itp. Producenci elementów do systemów wychodzą na przeciw temu zapotrzebowaniu oferując szereg gotowych rozwiązań, mogących stanowić elementy interfejsu człowiek maszyna, jak i w pełni samodzielną część systemu. Dla urządzeń HMI nie ma konkretnego profilu publikowanego przez CAN In Automation (CiA). Proste interfejsy mogą być traktowane jako ogólne moduły I/O, podczas gdy bardziej złożone interfejsy zazwyczaj są urządzeniami programowalnymi (PLC). Można również, opierając się na podstawowych specyfikacjach CAN zbudować własny protokół komunikacji zarówno w oparciu o CANopen, jak i LLI (Lower Layer Interface). 2. STRUKTURA SIECI Z ELEMENTEM INTERFEJSU CZŁOWIEK-MASZYNA W wielu przypadkach zastosowanie transmisji bezprzewodowej do niezawodnego sterowania maszyną jest skomplikowanym problemem. W przypadku pojazdów wojskowych należy szczególnie uwzględniać wpływ bezprzewodowego sterowania na urządzenia elektroniczne pojazdu, systemy łączności oraz odporność na zakłócenia. W Ośrodku Badawczo-Rozwojowym Urządzeń Mechanicznych sp. z o.o. większość rozwiązań pulpitów do sterowania częściami ruchomymi maszyn (np. żurawi, wysięgników, układaczy mostów) Mgr inż. Sebastian CHWIEDORUK - Ośrodek Badawczo-Rozwojowy Urządzeń Mechanicznych OBRUM sp. z o.o., Gliwice

Sebastian CHWIEDORUK jest podłączana do układu przewodem o długości od kilku do kilkudziesięciu metrów. Długość przewodów musi być taka, żeby zapewnić bezpieczeństwo i dobrą widoczność operatorowi. Pulpit wynośny, połączony przewodem z systemem CAN na pojeździe, jest narażony na uszkodzenie tegoż przewodu, co w skrajnym przypadku może powodować zaburzenie pracy całej sieci. Jest to szczególnie niebezpieczne jeśli przewód zewnętrzny jest podłączany bezpośrednio do głównej magistrali CAN. Z tych powodów celowe jest odizolowane tej części magistrali. Możliwe jest to przez zastosowanie układów oddzielających elektrycznie czyli urządzeń typu repeater lub w bardziej złożonych przypadkach typu most (ang. Bridge). Repeater stanowi oddzielenie elektryczne, a nie logiczne. W związku z tym, z punktu widzenia programowego, wstawienie elementu takiego typu nie ma znaczenia. Z punktu widzenia elektrycznego wypięcie części oddzielonej elementem typu repeater nie zmienia struktury sieci jako magistrali. W podobny sposób można uniknąć ingerencji w magistralę od strony złącza diagnostycznego, jeżeli takie jest przewidziane w aplikacji. Przykład takiego podłączenia przedstawiono na rys.1. b). Rys.1. Podłączenia interfejsu człowiek maszyna z pojedynczą siecią CAN: a) podłączenie bezpośrednie b) podłączenie poprzez repeater c) podłączenie drogą radiową Podobną strukturę można uzyskać stosując transmisję radiową (rys.1.c). W tym przypadku ograniczenia, co do sposobu i ilości przesyłanych danych mogą występować po stronie transmisyjnej. Współczesne sterowniki czy też wyświetlacze, wspierające technologie CAN wyposażone są w dwa lub więcej niezależnych interfejsów CAN. Dlatego możliwe jest podzielenie całej struktury sieci na podsieci, w tym na przykład jedną do obsługi HMI. 2

Interfejs człowiek maszyna z magistralą CAN Rysunek 2 przedstawia możliwe podłączenia w przypadku dwóch sieci w systemie. Przykład a) pokazuje klasyczną sytuację, w której sterownik obsługuje dwie sieci CAN - jedną główną sieć sterowania i drugą sieć komunikacji z HMI. Jeżeli jest to uzasadnione technicznie, interfejs człowiek - maszyna może również monitorować bezpośrednio stan magistrali sterowania i niezależnie wymieniać dane poprzez drugą magistralę. Taką sytuację przedstawia przypadek b) rysunku 2. Nowoczesne panele operatorskie czy też wyświetlacze mogą w wielu przypadkach spełniać również rolę sterownika w systemie. Jedną z możliwych struktur w takim rozwiązaniu pokazuje przypadek c) rysunku 2. Sterowanie systemu może być realizowane poprzez rozproszone układy wejścia wyjścia (I/O), połączone z jednostką sterującą magistralą CAN. Rys.2. Podłączenia interfejsu człowiek maszyna dla struktury z większą liczbą sieci CAN: a) podłączenie HMI odrębną siecią b) podłączenie HMI odrębną siecią z nadzorem sieci głównej c) HMI pełni rolę PLC i obsługuje dwie sieci CAN 3. PRZYKŁADOWE ROZWIĄZANIA W Ośrodku Badawczo - Rozwojowym OBRUM, od wielu lat stosuje się układy sterowania, w których komunikacja pomiędzy elementami systemu bazuje na magistrali CAN. Są to głównie układy sterowania pojazdów specjalnych, w których zapewnienie bezpieczeństwa i niezawodności działania jest bardzo istotne. Sterowanie tego typu maszyn opiera się głównie na hydraulice siłowej, często realizującej złożone sekwencje ruchów. Kontrola stanu pracy maszyny oraz parametry pracy układu hydraulicznego, np. położenia kątowe ciśnienia, przepływy, temperatury, są niezbędne dla działania samego algorytmu sterowania, ale również muszą być dostępne operatorowi, który może wykonywać pewne czynności sterowania manualnie. W przypadku sekwencji wykonywanych automatycznie przez sterownik maszyny, operator również powinien mieć możliwość kontroli stanu pracy. Z tych powodów w OBRUM sp. z o.o. kładzie się duży nacisk na stworzenie odpowiedniej jakości i funkcjonalności tablic i pulpitów sterowania. W większości rozwiązań 3

Sebastian CHWIEDORUK są to projekty dedykowane do poszczególnych wyrobów. Produkcja małoseryjna powoduje, że bardzo uzasadnione ekonomicznie jest stosowanie modułowej budowy tablic i pulpitów, programowanych, konfigurowanych i modyfikowanych pod konkretne rozwiązania. Połączenie elementów tablicy magistralą CAN daje ogromne możliwości konfiguracyjne i rozwojowe tych konstrukcji. Rysunek 3 przedstawia przykładowe rozwiązania interfejsów człowiek maszyna konstrukcji OBRUM sp. z o.o. Rys. 3. Przykłady urządzeń sterujących produkcji OBRUM sp. z o.o.: a) pulpit sterowania b) tablica sterowania W najnowszych konstrukcjach tablic sterowania wykonywanych w OBRUM zastosowano graficzne wyświetlacze do zastosowań mobilnych firmy Inter Control. W zależności od potrzeb stosowane są wyświetlacze: czarno-biały - DigsyCGM lub kolorowy - DigsyCMV. Są one programowane zgodnie z normą IEC 1131-3 (aktualny polski odpowiednik tej normy to PN-EN 61131-3:2004). Wyświetlacze wyposażone są w dwa interfejsy CAN i jeden RS232. W przykładowej tablicy sterowania jedna magistrala CAN obsługuje komunikację ze sterownikiem głównym maszyny. Drugą magistralę CAN użyto do obsługi przez wyświetlacz pozostałych elementów tablicy tj., modułu z interfejsem CAN obsługującym przyciski (projektu OBRUM sp. z o.o.). 4

Interfejs człowiek maszyna z magistralą CAN Rys. 4. Schemat blokowy wyświetlacza DigsyCMV Wyświetlacz w wersji kolorowej pozwala dodatkowo na obsługę do czterech kamer. Informacje mogą być wyświetlane jako bargrafy, wskaźniki, ikony przez co mogą być całkowicie niezależne językowo. W razie potrzeby może być również tworzone wielojęzyczne menu. Rysunek 5 przedstawia przykładowe ekrany pokazujące możliwości wyświetlaczy. Rys. 5. Przykłady ekranów z wyświetlacza graficznego W celu podłączenia odpowiedniej liczby przycisków do magistrali CAN opracowano w OBRUM konfigurowalny interfejs klawiatury z protokołem CANopen. Umożliwia on bezpośrednie podłączenie do 20 przycisków oraz sterowanie poprzez CAN dla każdego z przycisków indykatora i podświetlenia LED. Wejścia przycisków zbudowane są na specjalizowanych układach scalonych do podłączania elementów stykowych w środowisku z dużym poziomem zakłóceń. Dodatkowo płytkę wyposażono w wejście dla przycisku awaryjnego. Prędkość i numer ID ustawiane są przełącznikami na powierzchni płytki drukowanej. Interfejs klawiatury jest przeznaczony do zabudowy wewnątrz pulpitu i może być zasilana napięciem 9-36V (czyli bezpośrednio napięciem pokładowym pojazdu). 5

Sebastian CHWIEDORUK Rys. 6. Widok płytki drukowanej interfejsu klawiatury Tryb pracy przycisków, podświetleń i indykatorów ustawiany jest poprzez plik EDS. Przyciski mogą działać w trybie on/off, czyli przełączać swój stan po każdym przyciśnięciu, lub jako przyciski mono stabilne. Wówczas informacja o przyciśnięciu jest transmitowana tylko raz w PDO. Tryby pracy interfejsu ustawiane są poprzez rejestry: - Keys Mode (indeks 0x3004): 0 przycisk mono stabilny (naciśnięty transmituje jedynkę na danej pozycji); 1 przycisk bistabilny (po naciśnięciu przełącza dany bit na wartość przeciwną on/off); - Indicators Mode (indeks 0x3005): 0 indykator zapalany jest na podstawie danych przychodzących przez PDO 200+ID (indykator zapalany jedynką na danej pozycji); 1 indykator powtarza stan przycisku; jeśli przycisk ma wartość 1 na danej pozycji to odpowiedni indykator świeci. Informacje o stanie przycisków są transmitowane poprzez TxPDO1 (180+ID). Przyciśnięcie ustawia jedynkę na odpowiedniej pozycji w polu danych PDO. Sterowanie indykatorami odbywa się poprzez odbierane RxPDO1 (200+ID). Jedynka na danej pozycji w trybie Indicators Mode = 0 oznacza zapalenie indykatora. Zapalanie podświetleń przycisków sterowane jest RxPDO2 (300+ID). Podobnie jak w przypadku indykatorów jedynka oznacza zapalenie diody podświetlającej. Rysunek 7 przedstawia schemat komunikacji w przykładowym systemie sterowania. Wyświetlacz poprzez jedną magistralę CAN obsługuje klawiaturę, retransmitując dane o stanie przycisków wyświetlacza i klawiatury do sterownika głównego poprzez drugą magistralę CAN. Sterownik transmituje zestaw sformatowanych danych do wyświetlenia oraz sterowania podświetleniami i indykatorami klawiatury. W wyświetlaczu zaprogramowana jest lista awarii i ostrzeżeń, wyświetlanych na osobnym ekranie. Lista awarii jest transmitowana poprzez odrębne PDO ze sterownika i kodowane przez ustawienie odpowiedniego bitu w polu danych. 6

Interfejs człowiek maszyna z magistralą CAN Rys. 7. Schemat komunikacji w systemie sterowania platformy 4. PODSUMOWANIE Przytoczone w punkcie drugim rozważania na temat możliwych struktur sieci oczywiście nie wyczerpują tematu. Elastyczność sieci CAN z punktu widzenia możliwych implementacji i liczba dostępnych urządzeń daje projektantom ogromne możliwości tworzenia systemów. Przy zachowaniu pewnych zasad projektowania sieci otrzymuje się niezawodną konstrukcję, o bardzo dobrej wydajności i dającą wymierne korzyści ekonomiczne. Protokół CANopen daje projektantom narzędzia do tworzenia uniwersalnych rozwiązań z możliwością łatwej konfiguracji parametrów i trybu pracy poprzez rejestry słownika obiektów (ang. Object Dictionary). Stosowanie magistrali CAN w konstrukcji nie tylko całego systemu, ale również elementów tego systemu, pozwala skrócić czas projektowania i sprzyja uniwersalności rozwiązań. Przyszłe konstrukcje wynośnych pulpitów sterowania w OBRUM sp. z o.o. prawdopodobnie będą składały się wyłącznie z elementów z interfejsem CAN, np. modułu obsługi przycisków i indykatorów, modułu obsługi dżojstików, modułu dźwiękowego, układu rejestracji itd. połączonych w jedną sieć. 7

Sebastian CHWIEDORUK 5. LITERATURA [1] INTERNATIONAL STANDARD ISO 11898-2 : Road vehicles Controller area network (CAN) Part 2: High-speed medium access unit. [2] Jura J., Barcik J., Chwiedoruk S., Pawełko J.: Introduction of System with CANBus for Land Vehicles. MP-AVT-100-25. [3] Inter Control: Manual Digsy CGM. [4] Inter Control: Manual Digsy CMV. [5] OBRUM: Interfejs Klawiatury. Materiały nie publikowane. [6] OBRUM: Interfejs Człowiek-Maszyna. Materiały nie publikowane. HUMAN MACHINE INTERFACE WITH CAN BUS Abstract: Article describes some examples of Human Machine Interfaces, especially consoles for mobile vehicles developed and made in OBRUM. Modular structure of the console based on independent CAN nodes and methods for safety connection to bus was described. Additionally article presents construction and functions of the Universal Keyboard Interface developed in OBRUM. Recenzent: dr hab. inż. Gabriel KOST 8