COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Wprowadzenie do systemów wieloprocesorowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Wprowadzenie do systemów wieloprocesorowych"

Transkrypt

1 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface Wprowadzenie do systemów wieloprocesorowych

2 Wstęp Do tej pory mówiliśmy głównie o systemach z jednym procesorem Coraz trudniej wycisnąć więcej z pojedynczego procesora (ograniczenia fizyczne) Aby uzyskać większą wydajność musimy myśleć o systemach z wieloma procesorami Obecnie większość maszyn (serwery, PC, laptopy, konsole, nawet telefony komórkowe) ma wiele procesorów Duże zróżnicowanie systemów wieloprocesorowych (od układów dwurdzeniowych do układów z tysiącami procesorów)

3 Wstęp Urównoleglanie różnych operacji już widzialiśmy: Carry-select adder, array multiplier Przetwarzanie potokowe Przetwarzanie superskalarne VLIW (very large instruction word)

4 Wstęp Cel: połączyć wiele CPU w celu uzyskania większej wydajności: Multiprocessors Skalowalność, Uproszczenie budowy pojedynczego CPU Zużycie energii Równoległość na poziomie niezależnych zadań (procesów) Równoległe wykonanie pojedynczego zadania na wielu procesorach Chapter 6 Parallel Processors from Client to Cloud 4

5 Hardware i Software Hardware serial: np. Intel Pentium 4 parallel: np. Intel Core i7 Software sequential: np. eliminacja Gaussa concurrent: e.g., operating system Sequential/concurrent software może działać na on serial/parallel hardware Challenge: efektywnie wykorzystać równoległy hardware Chapter 6 Parallel Processors from Client to Cloud 5

6 Programowanie równoległe Pisanie efektywnego oprogramowania równoległego nie jest łatwe Problemy: Podział zadania na części Koorydancje wykonania Komunikacja Chapter 6 Parallel Processors from Client to Cloud 6

7 Prawo Amdahl a Część zadania może mieć charakter sekwencyjny i nie daje się urównoleglić Przykład: 100 procesorów, 90 speedup? Tnew = T parallelizable /100 + T sequential Speedup (1 F parallelizable 1 ) F parallelizable / Fparallelizable = Sekwencyjna część zadania nie może zająć więcej niż 0.1% oryginalnego czasu Chapter 6 Parallel Processors from Client to Cloud 7

8 Skalowalność: przykład Zadanie: suma 10 skalarów, oraz suma dwóch macierzy , 10, 100 procesorów 1 procesor: Time = ( ) t add 10 procesorów Time = 10 tadd + 100/10 t add = 20 t add Speedup = 110/20 = 5.5 (55% of optymalnego) 100 procesorów Time = 10 tadd + 100/100 t add = 11 t add Speedup = 110/11 = 10 (10% optymalnego) Zakładamy, że dane mogą być równomiernie przydzielone do procesorów Chapter 6 Parallel Processors from Client to Cloud 8

9 Skalowalność: przykład cd Co jeśli rozmiar macierzy jest ? 1 processor: Time = ( ) t add 10 procesorów Time = 10 tadd /10 t add = 1010 t add Speedup = 10010/1010 = 9.9 (99% of potential) 100 procesorów Time = 10 tadd /100 t add = 110 t add Speedup = 10010/110 = 91 (91% of potential) Chapter 6 Parallel Processors from Client to Cloud 9

10 Silna i słaba skalowalność Silna skalowalność: stały rozmiar problemu Słaba skalowalność: rozmiar problemu proporcjonalny do liczby procesorów 10 procesorów, macierz Time = 20 tadd 100 procesorów, macierz Time = 10 tadd /100 t add = 20 t add Stała efektywność Chapter 6 Parallel Processors from Client to Cloud 10

11 Teoria algoryt. równoległych Istnieją teoretyczne modele obliczeń równoległych (PRAM) Klasa problemów dobrze się,,urównoleglających'': NC (rozwiązywalne w czasie polilogarytmicznym na wielominowej liczbie procesorów) Status NC=P? podobny do P=NP? W NC: mnożenie macierzy, sortowanie P-zupełne: circuit value, linear programming Chapter 6 Parallel Processors from Client to Cloud 11

12 Strumienie instrukcji i danych Klasyfikacja Flynn'a (1960s) Data Streams Single Multiple Instruction Streams Single SISD: Intel Pentium 4 SIMD: SSE instructions of x86 Multiple MISD: No examples today MIMD: Intel Core I7 Chapter 6 Parallel Processors from Client to Cloud 12

13 SIMD Operują na wektorach danych Np., rozszerzenia MMX, SSE, AVX architektury x86 Procesory wykonują tą samą instrukcję Ale na innych danych Prosta synchonizacja Dobre do zastosowań,,data-parallel'' Chapter 6 Parallel Processors from Client to Cloud 13

14 Przykład: DAXPY (Y = a X + Y) Standardowy kod MIPS: l.d $f0,a($sp) ;load scalar a addiu r4,$s0,#512 ;upper bound of what to load loop: l.d $f2,0($s0) ;load x(i) mul.d $f2,$f2,$f0 ;a x(i) l.d $f4,0($s1) ;load y(i) add.d $f4,$f4,$f2 ;a x(i) + y(i) s.d $f4,0($s1) ;store into y(i) addiu $s0,$s0,#8 ;increment index to x addiu $s1,$s1,#8 ;increment index to y subu $t0,r4,$s0 ;compute bound bne $t0,$zero,loop ;check if done Kod na wektorową wersję MIPS: l.d $f0,a($sp) ;load scalar a lv $v1,0($s0) ;load vector x mulvs.d $v2,$v1,$f0 ;vector-scalar multiply lv $v3,0($s1) ;load vector y addv.d $v4,$v2,$v3 ;add y to product sv $v4,0($s1) ;store the result Chapter 6 Parallel Processors from Client to Cloud 14

15 Procesory wektorowe Silnie potokowe jednostki wykonawcze Dane przesyłane z rejestrów wektorowych do jednostek wykonawczych Pobierane z pamięci do rejestrów Zapisywane z rejestrów do pamięci Przykład: Wektorowe rozszerzenie MIPS 32 wektory 64-elementowe (elementy 64-bitowe) Instrukcje wektorowe lv, sv: load/store wektor addv.d: dodaj wektory addvs.d: dodaj skalar do każdego elementu wektora Mała liczba pobieranych instrukcji Chapter 6 Parallel Processors from Client to Cloud 15

16 Wektorowe kontra skalarne Architektura wektorawa: Ułatwia pisanie programów,,data-parallel'' Krótsze pętle (lub ich brak) brak hazardów sterowania Mniej hazardów danych Przy regularnym wzorze dostępów zysk z pamięci z przeplotem (interleaved) Ogólniejsza niż multimedia extensions (jak MMX, SSE) Lepiej zgrywają się z kompilatorami Chapter 6 Parallel Processors from Client to Cloud 16

17 Wektorowe kontra MMX, SSE Rozkazy wektorowe operują na wektorach różnej długości, rozszerzenia multimedialne: stałej Rozkazy wektorowe mogą tworzyć wektory,,z co którejś danej w pamięci''; MMX z kolejnych Jednostki wektorowe mogą być kombinacją jednostek potokowych i macierzowych Chapter 6 Parallel Processors from Client to Cloud 17

18 Wielowątkowość Wiele wątków procesu wykonywanych równolegle Zdublowane rejestry, PC,... Szybkie przełączanie między wątkami Fine-grain multithreading Przełącznie po każdym cyklu Przeplot rozkazów Jeśli jeden wątek czeka pozostałe działają Coarse-grain multithreading Przełączamy wątki przy długich przestojach (np. chybieniach w cache L2) Prostszy sprzęt, ale nie ukrywa krótszych przestojów (np. związanych z hazardami danych) Chapter 6 Parallel Processors from Client to Cloud 18

19 Simultaneous Multithreading Dotyczy procesorów superskalarnych z dynamicznym przydziałem Przydzielamy istrukcje z różnych wątków jednocześnie O ile są wolne jednostki wykonawcze Przykład: Intel Pentium-4 HT Dwa wątki: zdublowane rejestry, współdzielone jednostki wykonawcze i cache Chapter 6 Parallel Processors from Client to Cloud 19

20 Multithreading - przykład Chapter 6 Parallel Processors from Client to Cloud 20

21 MIMD: współdzielona pamięć SMP: shared memory multiprocessor Wspólna przestrzeń adresowa dla wszystkich procesorów Komunikacja za pomocą współdzielonych zmiennych I specjalnych rozkazów synchronizujących Dwa warianty, w zależności od rodzaju dostępu do pamięci: UMA (uniform) vs. NUMA (nonuniform) Chapter 6 Parallel Processors from Client to Cloud 21

22 Przykład: Sumowanie Sumujemy 100,000 liczb na 100 proc. UMA Każdy procesor ma ID: 0 Pn 99 Przydzialemy 1000 liczb każdemu procesorowi Każdy procesor sumuje swoje liczby: sum[pn] = 0; for (i = 1000*Pn; i < 1000*(Pn+1); i = i + 1) sum[pn] = sum[pn] + A[i]; Dodajemy te częściowe sumy Stragegia dziel i zwyciężaj Połowa procesorów sumuje wyniki z par procesorów, potem działa jedna czwarta procesorów itd. Potrzebna synchronizacja Chapter 6 Parallel Processors from Client to Cloud 22

23 Przykład: sumowanie half = 100; repeat synch(); if (half%2!= 0 && Pn == 0) sum[0] = sum[0] + sum[half-1]; /* Conditional sum needed when half is odd; Processor0 gets missing element */ half = half/2; /* dividing line on who sums */ if (Pn < half) sum[pn] = sum[pn] + sum[pn+half]; until (half == 1); Chapter 6 Parallel Processors from Client to Cloud 23

24 Grafika w systemie komp. Chapter 6 Parallel Processors from Client to Cloud 24

25 Architektury GPU Przetwarzanie typu,,data-parallel'' GPUs są silnie wielowątkowe Przełączanie wątków pozwala ukryć opóźnienie spowodowane dostępem do pamięci Mniejsza rola cache Pamięć grafiki szeroka, duża przepustowość Trend: użycie GPUs do innych zadań Heterogeniczny system CPU/GPU CPU zadanie sekwencyjne, GPU - równoległe Środowiska programistyczne i języki: DirectX, OpenGL C for Graphics (Cg), High Level Shader Language (HLSL) Compute Unified Device Architecture (CUDA) Chapter 6 Parallel Processors from Client to Cloud 25

26 MIMD: komunikacja sieciowa Każdy procesor ma prywatną przestrzeń adresową Komunikacja za pomocą wiadomości przesyłanych siecią Chapter 6 Parallel Processors from Client to Cloud 26

27 Loosely Coupled Clusters Sieć niezależnych komputerów Każdy z pamięcią prywatną i własnymos Połączenia za pomocą I/O Np., Ethernet/switch, Internet Dobre do zastosowań z niezależnymi zadaniami Serwery WWW, bazy danych, symulacje, Łatwo dostępne, skalowalne, niedrogie Problemy Koszt zarządzania Mała przepustowość komunikacji Chapter 6 Parallel Processors from Client to Cloud 27

28 Sumowanie raz jeszcze Sumujemy 100,000 liczb na 100 proc. Rozsyłamy po 1000 liczb Wyliczamy sumy częściowe sum = 0; for (i = 0; i<1000; i = i + 1) sum = sum + AN[i]; Składanie wyniku Połowa procesorów wysyła, połowa odbiera dodaje Jedna czwarta wysyła, jedna czwarta odbiera i dodaje, Chapter 6 Parallel Processors from Client to Cloud 28

29 Sumowanie raz jeszcze Mamy operacje send(), receive() limit = 100; half = 100;/* 100 processors */ repeat half = (half+1)/2; /* send vs. receive dividing line */ if (Pn >= half && Pn < limit) send(pn - half, sum); if (Pn < (limit/2)) sum = sum + receive(); limit = half; /* upper limit of senders */ until (half == 1); /* exit with final sum */ Send/receive zapewniają synchronizację Chapter 6 Parallel Processors from Client to Cloud 29

30 Grid Computing Samodzielne maszyny połączone np. za pomocą internetu Np. Chapter 6 Parallel Processors from Client to Cloud 30

16. Taksonomia Flynn'a.

16. Taksonomia Flynn'a. 16. Taksonomia Flynn'a. Taksonomia systemów komputerowych według Flynna jest klasyfikacją architektur komputerowych, zaproponowaną w latach sześćdziesiątych XX wieku przez Michaela Flynna, opierająca się

Bardziej szczegółowo

Nowoczesne technologie przetwarzania informacji

Nowoczesne technologie przetwarzania informacji Projekt Nowe metody nauczania w matematyce Nr POKL.09.04.00-14-133/11 Nowoczesne technologie przetwarzania informacji Mgr Maciej Cytowski (ICM UW) Lekcja 2: Podstawowe mechanizmy programowania równoległego

Bardziej szczegółowo

Architektury komputerów Architektury i wydajność. Tomasz Dziubich

Architektury komputerów Architektury i wydajność. Tomasz Dziubich Architektury komputerów Architektury i wydajność Tomasz Dziubich Przetwarzanie potokowe Przetwarzanie sekwencyjne Przetwarzanie potokowe Architektura superpotokowa W przetwarzaniu potokowym podczas niektórych

Bardziej szczegółowo

Architektura mikroprocesorów TEO 2009/2010

Architektura mikroprocesorów TEO 2009/2010 Architektura mikroprocesorów TEO 2009/2010 Plan wykładów Wykład 1: - Wstęp. Klasyfikacje mikroprocesorów Wykład 2: - Mikrokontrolery 8-bit: AVR, PIC Wykład 3: - Mikrokontrolery 8-bit: 8051, ST7 Wykład

Bardziej szczegółowo

Podstawy Techniki Mikroprocesorowej wykład 13: MIMD. Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej

Podstawy Techniki Mikroprocesorowej wykład 13: MIMD. Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej Podstawy Techniki Mikroprocesorowej wykład 13: MIMD Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl Kompjuter eta jest i klasyfikacja jednostka centralna

Bardziej szczegółowo

Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system.

Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system. Wstęp Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system. Przedstawienie architektur sprzętu wykorzystywanych do

Bardziej szczegółowo

Architektura von Neumanna

Architektura von Neumanna Architektura von Neumanna Klasyfikacja systemów komputerowych (Flynna) SISD - Single Instruction Single Data SIMD - Single Instruction Multiple Data MISD - Multiple Instruction Single Data MIMD - Multiple

Bardziej szczegółowo

Klasyfikacja systemów komputerowych. Architektura von Neumanna Architektura harwardzka Zmodyfikowana architektura harwardzka. dr inż.

Klasyfikacja systemów komputerowych. Architektura von Neumanna Architektura harwardzka Zmodyfikowana architektura harwardzka. dr inż. Rok akademicki 2011/2012, Wykład nr 6 2/46 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2011/2012

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2011/2012 Wykład nr 6 (27.04.2012) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

Podstawy Informatyki Systemy sterowane przepływem argumentów

Podstawy Informatyki Systemy sterowane przepływem argumentów Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Komputer i jego architektura Taksonomia Flynna 2 Komputer i jego architektura Taksonomia Flynna Komputer Komputer

Bardziej szczegółowo

Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1 Metodologia programowania równoległego Przykłady podziałów zadania na podzadania: Podział ze względu na funkcje (functional

Bardziej szczegółowo

Obliczenia Wysokiej Wydajności

Obliczenia Wysokiej Wydajności Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności i łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk

Bardziej szczegółowo

Systemy wieloprocesorowe i wielokomputerowe

Systemy wieloprocesorowe i wielokomputerowe Systemy wieloprocesorowe i wielokomputerowe Taksonomia Flynna Uwzględnia następujące czynniki: Liczbę strumieni instrukcji Liczbę strumieni danych Klasyfikacja bierze się pod uwagę: Jednostkę przetwarzającą

Bardziej szczegółowo

Klasyfikacje systemów komputerowych, modele złożoności algorytmów obliczeniowych

Klasyfikacje systemów komputerowych, modele złożoności algorytmów obliczeniowych Wykład 5 Klasyfikacje systemów komputerowych, modele złożoności algorytmów obliczeniowych Spis treści: 1. Klasyfikacja Flynna 2. Klasyfikacja Skillicorna 3. Klasyfikacja architektury systemów pod względem

Bardziej szczegółowo

Przetwarzanie potokowe pipelining

Przetwarzanie potokowe pipelining Przetwarzanie potokowe pipelining (część A) Przypomnienie - implementacja jednocyklowa 4 Add Add PC Address memory ister # isters Address ister # ister # memory Wstęp W implementacjach prezentowanych tydzień

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU

Programowanie procesorów graficznych GPGPU Programowanie procesorów graficznych GPGPU 1 GPGPU Historia: lata 80 te popularyzacja systemów i programów z graficznym interfejsem specjalistyczne układy do przetwarzania grafiki 2D lata 90 te standaryzacja

Bardziej szczegółowo

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Wprowadzenie Procesory graficzne GPU (Graphics Processing Units) stosowane są w kartach graficznych do przetwarzania grafiki komputerowej

Bardziej szczegółowo

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK 1 PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK POLITECHNIKA CZĘSTOCHOWSKA 2 Część teoretyczna Informacje i wstępne wymagania Cel przedmiotu i zakres materiału Zasady wydajnego

Bardziej szczegółowo

Larrabee GPGPU. Zastosowanie, wydajność i porównanie z innymi układami

Larrabee GPGPU. Zastosowanie, wydajność i porównanie z innymi układami Larrabee GPGPU Zastosowanie, wydajność i porównanie z innymi układami Larrabee a inne GPU Różnią się w trzech podstawowych aspektach: Larrabee a inne GPU Różnią się w trzech podstawowych aspektach: Larrabee

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 14 Procesory równoległe Klasyfikacja systemów wieloprocesorowych Luźno powiązane systemy wieloprocesorowe Każdy procesor ma własną pamięć główną i kanały wejścia-wyjścia.

Bardziej szczegółowo

Programowanie współbieżne i rozproszone

Programowanie współbieżne i rozproszone Programowanie współbieżne i rozproszone WYKŁAD 1 dr inż. Literatura ogólna Ben-Ari, M.: Podstawy programowania współbieżnego i rozproszonego. Wydawnictwa Naukowo-Techniczne, Warszawa, 2009. Czech, Z.J:

Bardziej szczegółowo

Programowanie równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz

Programowanie równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz Programowanie równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 23 października 2009 Spis treści Przedmowa...................................................

Bardziej szczegółowo

Architektura Komputerów

Architektura Komputerów 1/3 Architektura Komputerów dr inż. Robert Jacek Tomczak Uniwersytet Przyrodniczy w Poznaniu Architektura a organizacja komputera 3.1 Architektura komputera: atrybuty widzialne dla programisty, atrybuty

Bardziej szczegółowo

Numeryczna algebra liniowa

Numeryczna algebra liniowa Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak podstawowe operacje na wektorach i macierzach, a także rozwiązywanie układów

Bardziej szczegółowo

Programowanie współbieżne Wykład 2. Iwona Kochańska

Programowanie współbieżne Wykład 2. Iwona Kochańska Programowanie współbieżne Wykład 2 Iwona Kochańska Miary skalowalności algorytmu równoległego Przyspieszenie Stały rozmiar danych N T(1) - czas obliczeń dla najlepszego algorytmu sekwencyjnego T(p) - czas

Bardziej szczegółowo

Przetwarzanie Równoległe i Rozproszone

Przetwarzanie Równoległe i Rozproszone POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNOLOGII INFORMACYJNYCH Przetwarzanie Równoległe i Rozproszone www.pk.edu.pl/~zk/prir_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl

Bardziej szczegółowo

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK 1 PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK POLITECHNIKA CZĘSTOCHOWSKA 2 Trendy rozwoju współczesnych procesorów Budowa procesora CPU na przykładzie Intel Kaby Lake

Bardziej szczegółowo

RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC,

RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC, RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC, zapoczątkowana przez i wstecznie zgodna z 16-bitowym procesorem

Bardziej szczegółowo

Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz

Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz Obliczenia równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 15 czerwca 2001 Spis treści Przedmowa............................................

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

3.Przeglądarchitektur

3.Przeglądarchitektur Materiały do wykładu 3.Przeglądarchitektur Marcin Peczarski Instytut Informatyki Uniwersytet Warszawski 24 stycznia 2009 Architektura a organizacja komputera 3.1 Architektura komputera: atrybuty widzialne

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 7 Jan Kazimirski 1 Pamięć podręczna 2 Pamięć komputera - charakterystyka Położenie Procesor rejestry, pamięć podręczna Pamięć wewnętrzna pamięć podręczna, główna Pamięć zewnętrzna

Bardziej szczegółowo

3.Przeglądarchitektur

3.Przeglądarchitektur Materiały do wykładu 3.Przeglądarchitektur Marcin Peczarski Instytut Informatyki Uniwersytet Warszawski 17 marca 2014 Architektura a organizacja komputera 3.1 Architektura komputera: atrybuty widzialne

Bardziej szczegółowo

Programowanie Rozproszone i Równoległe

Programowanie Rozproszone i Równoległe Programowanie Rozproszone i Równoległe OpenMP (www.openmp.org) API do pisania wielowątkowych aplikacji Zestaw dyrektyw kompilatora oraz procedur bibliotecznych dla programistów Ułatwia pisanie programów

Bardziej szczegółowo

Algorytmy dla maszyny PRAM

Algorytmy dla maszyny PRAM Instytut Informatyki 21 listopada 2015 PRAM Podstawowym modelem służącym do badań algorytmów równoległych jest maszyna typu PRAM. Jej głównymi składnikami są globalna pamięć oraz zbiór procesorów. Do rozważań

Bardziej szczegółowo

Tesla. Architektura Fermi

Tesla. Architektura Fermi Tesla Architektura Fermi Tesla Tesla jest to General Purpose GPU (GPGPU), GPU ogólnego przeznaczenia Obliczenia dotychczas wykonywane na CPU przenoszone są na GPU Możliwości jakie daje GPU dla grafiki

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 13 Jan Kazimirski 1 KOMPUTERY RÓWNOLEGŁE 2 Klasyfikacja systemów komputerowych SISD Single Instruction, Single Data stream SIMD Single Instruction, Multiple Data stream MISD

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 12: Wstęp

Bardziej szczegółowo

Co to jest lista top500. Omów mikrotechnologię Core

Co to jest lista top500. Omów mikrotechnologię Core Co to jest lista top500 Lista top500 to lista 500 najbardziej wydajnych systemów komputerowych na świecie. Lista uaktualniana jest 2 razy do roku. Głównym celem listy top500 jest możliwość śledzenia postępu

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Motywacja - memory wall Krzysztof Banaś, Obliczenia wysokiej wydajności. 2 Organizacja pamięci Organizacja pamięci:

Bardziej szczegółowo

Architektura Systemów Komputerowych. Rozwój architektury komputerów klasy PC

Architektura Systemów Komputerowych. Rozwój architektury komputerów klasy PC Architektura Systemów Komputerowych Rozwój architektury komputerów klasy PC 1 1978: Intel 8086 29tys. tranzystorów, 16-bitowy, współpracował z koprocesorem 8087, posiadał 16-bitową szynę danych (lub ośmiobitową

Bardziej szczegółowo

Klasyfikacja systemów komputerowych. Architektura von Neumanna. dr inż. Jarosław Forenc

Klasyfikacja systemów komputerowych. Architektura von Neumanna. dr inż. Jarosław Forenc Rok akademicki 2010/2011, Wykład nr 6 2/56 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2010/2011

Bardziej szczegółowo

Dr inż. hab. Siergiej Fialko, IF-PK,

Dr inż. hab. Siergiej Fialko, IF-PK, Dr inż. hab. Siergiej Fialko, IF-PK, http://torus.uck.pk.edu.pl/~fialko sfialko@riad.pk.edu.pl 1 Osobliwości przedmiotu W podanym kursie główna uwaga będzie przydzielona osobliwościom symulacji komputerowych

Bardziej szczegółowo

Mikroprocesory rodziny INTEL 80x86

Mikroprocesory rodziny INTEL 80x86 Mikroprocesory rodziny INTEL 80x86 Podstawowe wła ciwo ci procesora PENTIUM Rodzina procesorów INTEL 80x86 obejmuje mikroprocesory Intel 8086, 8088, 80286, 80386, 80486 oraz mikroprocesory PENTIUM. Wprowadzając

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 6 (28.03.2011) Rok akademicki 2010/2011, Wykład

Bardziej szczegółowo

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1 Literatura 1. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010, 2013 2. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 3. Designing

Bardziej szczegółowo

Witold Komorowski: RISC. Witold Komorowski, dr inż.

Witold Komorowski: RISC. Witold Komorowski, dr inż. Witold Komorowski, dr inż. Koncepcja RISC i przetwarzanie potokowe RISC koncepcja architektury i organizacji komputera Aspekty opisu komputera Architektura Jak się zachowuje? Organizacja Jak działa? Realizacja

Bardziej szczegółowo

PODSTAWY PRZETWARZANIA RÓWNOLEGŁEGO INFORMACJI

PODSTAWY PRZETWARZANIA RÓWNOLEGŁEGO INFORMACJI ZESZYTY NAUKOWE 105-114 Dariusz CHAŁADYNIAK 1 PODSTAWY PRZETWARZANIA RÓWNOLEGŁEGO INFORMACJI Streszczenie W artykule poruszono wybrane podstawowe zagadnienia związane z przetwarzaniem równoległym. Przedstawiono

Bardziej szczegółowo

Programowanie Niskopoziomowe

Programowanie Niskopoziomowe Programowanie Niskopoziomowe Wykład 3: Architektura procesorów x86 Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Pojęcia ogólne Budowa mikrokomputera Cykl

Bardziej szczegółowo

PR sprzęt (systemy z pamięcią współdzieloną) Rafał Walkowiak Wersja: jesień 2016

PR sprzęt (systemy z pamięcią współdzieloną) Rafał Walkowiak Wersja: jesień 2016 PR sprzęt (systemy z pamięcią współdzieloną) Rafał Walkowiak Wersja: jesień 2016 Wewnętrzna współbieżność przetwarzania procesora Uwarunkowania: 1. Dotychczas imponujący wzrost prędkości taktowania procesora

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1 Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej Krzysztof Banaś Obliczenia równoległe 1 Model równoległości danych Model SPMD (pierwotnie dla maszyn SIMD) Zrównoleglenie

Bardziej szczegółowo

Projektowanie. Projektowanie mikroprocesorów

Projektowanie. Projektowanie mikroprocesorów WYKŁAD Projektowanie mikroprocesorów Projektowanie układ adów w cyfrowych - podsumowanie Algebra Boole a Bramki logiczne i przerzutniki Automat skończony System binarny i reprezentacja danych Synteza logiczna

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1 Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej Krzysztof Banaś Obliczenia równoległe 1 Model równoległości danych Model SPMD (pierwotnie dla maszyn SIMD) Zrównoleglenie

Bardziej szczegółowo

OWS1 (systemy z pamięcią współdzieloną) Rafał Walkowiak Wersja: wiosna 2016

OWS1 (systemy z pamięcią współdzieloną) Rafał Walkowiak Wersja: wiosna 2016 OWS1 (systemy z pamięcią współdzieloną) Rafał Walkowiak Wersja: wiosna 2016 Wewnętrzna współbieżność przetwarzania procesora Uwarunkowania: 1. Dotychczas imponujący wzrost prędkości taktowania procesora

Bardziej szczegółowo

1. ARCHITEKTURY SYSTEMÓW KOMPUTEROWYCH

1. ARCHITEKTURY SYSTEMÓW KOMPUTEROWYCH 1. ARCHITEKTURY SYSTEMÓW KOMPUTEROWYCH 1 Klasyfikacje komputerów Podstawowe architektury używanych obecnie systemów komputerowych można podzielić: 1. Komputery z jednym procesorem 2. Komputery równoległe

Bardziej szczegółowo

Przetwarzanie równoległesprzęt

Przetwarzanie równoległesprzęt Przetwarzanie równoległesprzęt 1 (systemy z pamięcią współdzieloną) Rafał Walkowiak Wersja: przed wykładem 2013/2014 Wewnętrzna współbieżność przetwarzania procesora Uwarunkowania: 1. Dotychczas imponujący

Bardziej szczegółowo

Metody optymalizacji soft-procesorów NIOS

Metody optymalizacji soft-procesorów NIOS POLITECHNIKA WARSZAWSKA Wydział Elektroniki i Technik Informacyjnych Instytut Telekomunikacji Zakład Podstaw Telekomunikacji Kamil Krawczyk Metody optymalizacji soft-procesorów NIOS Warszawa, 27.01.2011

Bardziej szczegółowo

Architektura von Neumanna. Jak zbudowany jest współczesny komputer? Schemat architektury typowego PC-ta. Architektura PC wersja techniczna

Architektura von Neumanna. Jak zbudowany jest współczesny komputer? Schemat architektury typowego PC-ta. Architektura PC wersja techniczna Architektura von Neumanna CPU pamięć wejście wyjście Jak zbudowany jest współczesny komputer? magistrala systemowa CPU jednostka centralna (procesor) pamięć obszar przechowywania programu i danych wejście

Bardziej szczegółowo

Układ sterowania, magistrale i organizacja pamięci. Dariusz Chaberski

Układ sterowania, magistrale i organizacja pamięci. Dariusz Chaberski Układ sterowania, magistrale i organizacja pamięci Dariusz Chaberski Jednostka centralna szyna sygnałow sterowania sygnały sterujące układ sterowania sygnały stanu wewnętrzna szyna danych układ wykonawczy

Bardziej szczegółowo

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności.

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności. Procesory wielordzeniowe (multiprocessor on a chip) 1 Procesory wielordzeniowe 2 Procesory wielordzeniowe 3 Intel Nehalem 4 5 NVIDIA Tesla 6 ATI FireStream 7 NVIDIA Fermi 8 Sprzętowa wielowątkowość 9 Architektury

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

Systemy wieloprocesorowe i wielokomputerowe

Systemy wieloprocesorowe i wielokomputerowe Systemy wieloprocesorowe i wielokomputerowe Taksonomia Flynna Uwzględnia następujące czynniki: Liczbę strumieni instrukcji Liczbę strumieni danych Klasyfikacja bierze się pod uwagę: Jednostkę przetwarzającą

Bardziej szczegółowo

Architektura Systemów Komputerowych. Architektura potokowa Klasyfikacja architektur równoległych

Architektura Systemów Komputerowych. Architektura potokowa Klasyfikacja architektur równoległych Archiekura Sysemów Kompuerowych Archiekura pookowa Klasyfikacja archiekur równoległych 1 Archiekura pookowa Sekwencyjne wykonanie programu w mikroprocesorze o archiekurze von Neumanna Insr.1 Φ1 Insr.1

Bardziej szczegółowo

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 MMX i SSE Zbigniew Koza Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wrocław, 10 marca 2011 Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 Spis treści Spis treści 1 Wstęp Zbigniew Koza (WFiA UWr) MMX

Bardziej szczegółowo

Programowanie w asemblerze Architektury równoległe

Programowanie w asemblerze Architektury równoległe Programowanie w asemblerze Architektury równoległe 24 listopada 2015 1 1 Ilustracje: Song Ho Anh Klasyfikacja Flynna Duża różnorodność architektur równoległych, stad różne kryteria podziału. Najstarsza

Bardziej szczegółowo

Obliczenia Wysokiej Wydajności

Obliczenia Wysokiej Wydajności Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności oraz łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk

Bardziej szczegółowo

Architektury Komputerów. Tomasz Dziubich p.530, konsultacje czwartek. 9-10 i 11-12, dziubich@eti.pg.gda.pl

Architektury Komputerów. Tomasz Dziubich p.530, konsultacje czwartek. 9-10 i 11-12, dziubich@eti.pg.gda.pl Architektury Komputerów Tomasz Dziubich p.530, konsultacje czwartek. 9-10 i 11-12, dziubich@eti.pg.gda.pl Urządzenia przetwarzające zwane komputerami - kiedyś EDSAC, University of Cambridge, UK, 1949 i

Bardziej szczegółowo

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący

Bardziej szczegółowo

Przetwarzanie Rozproszone i Równoległe

Przetwarzanie Rozproszone i Równoległe WYDZIAŁ INŻYNIERII ELEKTRYCZNEJ I KOMPUTEROWEJ KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Przetwarzanie Rozproszone i Równoległe www.pk.edu.pl/~zk/prir_hp.html Wykładowca: dr inż. Zbigniew Kokosiński

Bardziej szczegółowo

Sprzęt czyli architektury systemów równoległych

Sprzęt czyli architektury systemów równoległych Sprzęt czyli architektury systemów równoległych 1 Architektura von Neumanna Program i dane w pamięci komputera Pojedynczy procesor: pobiera rozkaz z pamięci rozkodowuje rozkaz i znajduje adresy argumentów

Bardziej szczegółowo

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

Literatura. 3/26/2018 Przetwarzanie równoległe - wstęp 1

Literatura. 3/26/2018 Przetwarzanie równoległe - wstęp 1 Literatura 1. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010, 2013 2. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 3. Designing

Bardziej szczegółowo

System obliczeniowy laboratorium oraz. mnożenia macierzy

System obliczeniowy laboratorium oraz. mnożenia macierzy System obliczeniowy laboratorium.7. oraz przykładowe wyniki efektywności mnożenia macierzy opracował: Rafał Walkowiak Materiały dla studentów informatyki studia niestacjonarne październik 1 SYSTEMY DLA

Bardziej szczegółowo

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu Literatura 1. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 2. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010. 3. Designing

Bardziej szczegółowo

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Organizacja przedmiotu Dr inż. Robert Banasiak Dr inż. Paweł Kapusta 1 2 Nasze kompetencje R n D Tomografia 3D To nie tylko statyczny obraz!

Bardziej szczegółowo

Analiza ilościowa w przetwarzaniu równoległym

Analiza ilościowa w przetwarzaniu równoległym Komputery i Systemy Równoległe Jędrzej Ułasiewicz 1 Analiza ilościowa w przetwarzaniu równoległym 10. Analiza ilościowa w przetwarzaniu równoległym...2 10.1 Kryteria efektywności przetwarzania równoległego...2

Bardziej szczegółowo

Wykład 2 Podstawowe pojęcia systemów równoległych, modele równoległości, wydajność obliczeniowa, prawo Amdahla/Gustafsona

Wykład 2 Podstawowe pojęcia systemów równoległych, modele równoległości, wydajność obliczeniowa, prawo Amdahla/Gustafsona Wykład 2 Podstawowe pojęcia systemów równoległych, modele równoległości, wydajność obliczeniowa, prawo Amdahla/Gustafsona Spis treści: 1. Równoległe systemy komputerowe a rozproszone systemy komputerowe,

Bardziej szczegółowo

SSE (Streaming SIMD Extensions)

SSE (Streaming SIMD Extensions) SSE (Streaming SIMD Extensions) Zestaw instrukcji wprowadzony w 1999 roku po raz pierwszy w procesorach Pentium III. SSE daje przede wszystkim możliwość wykonywania działań zmiennoprzecinkowych na 4-elementowych

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności.

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności. Procesory wielordzeniowe (multiprocessor on a chip) 1 Procesory wielordzeniowe 2 Procesory wielordzeniowe 3 Konsekwencje prawa Moore'a 4 Procesory wielordzeniowe 5 Intel Nehalem 6 Architektura Intel Nehalem

Bardziej szczegółowo

Komputery równoległe. Zbigniew Koza. Wrocław, 2012

Komputery równoległe. Zbigniew Koza. Wrocław, 2012 Komputery równoległe Zbigniew Koza Wrocław, 2012 Po co komputery równoległe? Przyspieszanie obliczeń np. diagnostyka medyczna; aplikacje czasu rzeczywistego Przetwarzanie większej liczby danych Przykład:

Bardziej szczegółowo

Skalowalność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Skalowalność obliczeń równoległych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Skalowalność obliczeń równoległych Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Skalowalność Przy rozważaniu wydajności przetwarzania (obliczeń, komunikacji itp.) często pojawia się pojęcie skalowalności

Bardziej szczegółowo

Wstęp do informatyki. Architektura co to jest? Architektura Model komputera. Od układów logicznych do CPU. Automat skończony. Maszyny Turinga (1936)

Wstęp do informatyki. Architektura co to jest? Architektura Model komputera. Od układów logicznych do CPU. Automat skończony. Maszyny Turinga (1936) Wstęp doinformatyki Architektura co to jest? Architektura Model komputera Dr inż Ignacy Pardyka Slajd 1 Slajd 2 Od układów logicznych do CPU Automat skończony Slajd 3 Slajd 4 Ile jest automatów skończonych?

Bardziej szczegółowo

dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL

dr inż. Rafał Klaus Zajęcia finansowane z projektu Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle POKL Architektura komputerów wprowadzenie materiał do wykładu 3/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Alternatywne modele programowania równoległego

Alternatywne modele programowania równoległego Alternatywne modele programowania równoległego 1 PRAM Teoretyczne modele obliczeń (do analizy algorytmów) maszyna o dostępie swobodnym (RAM) procesor, rejestry, magistrala, pamięć równoległa maszyna o

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 6 (06.05.2011) Rok akademicki 2010/2011, Wykład

Bardziej szczegółowo

Systemy operacyjne i sieci komputerowe Szymon Wilk Superkomputery 1

Systemy operacyjne i sieci komputerowe Szymon Wilk Superkomputery 1 i sieci komputerowe Szymon Wilk Superkomputery 1 1. Superkomputery to komputery o bardzo dużej mocy obliczeniowej. Przeznaczone są do symulacji zjawisk fizycznych prowadzonych głównie w instytucjach badawczych:

Bardziej szczegółowo

Wstęp. Przetwarzanie współbieżne, równoległe i rozproszone

Wstęp. Przetwarzanie współbieżne, równoległe i rozproszone Wstęp. 1 Cel zajęć Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów równoległych Przedstawienie sprzętu wykorzystywanego do obliczeń równoległych Nauczenie sposobów

Bardziej szczegółowo

OWS1 (systemy z pamięcią współdzieloną) Rafał Walkowiak Wersja: wiosna 2017

OWS1 (systemy z pamięcią współdzieloną) Rafał Walkowiak Wersja: wiosna 2017 OWS1 (systemy z pamięcią współdzieloną) Rafał Walkowiak Wersja: wiosna 2017 Wewnętrzna współbieżność przetwarzania procesora Uwarunkowania: 1. Dotychczas imponujący wzrost prędkości taktowania procesora

Bardziej szczegółowo

OWS1 (systemy z pamięcią współdzieloną) Rafał Walkowiak Wersja: wiosna 2017

OWS1 (systemy z pamięcią współdzieloną) Rafał Walkowiak Wersja: wiosna 2017 OWS1 (systemy z pamięcią współdzieloną) Rafał Walkowiak Wersja: wiosna 2017 Wewnętrzna współbieżność przetwarzania procesora Uwarunkowania: 1. Dotychczas imponujący wzrost prędkości taktowania procesora

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1

Programowanie procesorów graficznych GPGPU. Krzysztof Banaś Obliczenia równoległe 1 Programowanie procesorów graficznych GPGPU Krzysztof Banaś Obliczenia równoległe 1 Projektowanie kerneli Zasady optymalizacji: należy maksymalizować liczbę wątków (w rozsądnych granicach, granice zależą

Bardziej szczegółowo

Oprogramowanie komputerów wer. 9

Oprogramowanie komputerów wer. 9 Oprogramowanie komputerów wer. 9 Wojciech Myszka, Maciej Panek listopad 2014 r. Od czego zależy szybkość komputerów? Od czego zależy szybkość komputerów? 1. Częstość zegara. Od czego zależy szybkość komputerów?

Bardziej szczegółowo

Introduction to Computer Science

Introduction to Computer Science Introduction to Computer Science Grzegorz J. Nalepa Katedra Automatyki AGH spring 2011 c by G.J.Nalepa, 2004-11 (AGH) Introduction to Computer Science spring 2011 1 / 55 c by G.J.Nalepa,

Bardziej szczegółowo

Systemy operacyjne. Systemy operacyjne. Systemy operacyjne. Zadania systemu operacyjnego. Abstrakcyjne składniki systemu. System komputerowy

Systemy operacyjne. Systemy operacyjne. Systemy operacyjne. Zadania systemu operacyjnego. Abstrakcyjne składniki systemu. System komputerowy Systemy operacyjne Systemy operacyjne Dr inż. Ignacy Pardyka Literatura Siberschatz A. i inn. Podstawy systemów operacyjnych, WNT, Warszawa Skorupski A. Podstawy budowy i działania komputerów, WKiŁ, Warszawa

Bardziej szczegółowo

Budowa Mikrokomputera

Budowa Mikrokomputera Budowa Mikrokomputera Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Podstawowe elementy komputera Procesor Pamięć Magistrala (2/16) Płyta główna (ang. mainboard, motherboard) płyta drukowana komputera,

Bardziej szczegółowo

Analiza efektywności przetwarzania współbieżnego

Analiza efektywności przetwarzania współbieżnego Analiza efektywności przetwarzania współbieżnego Wykład: Przetwarzanie Równoległe Politechnika Poznańska Rafał Walkowiak 1/4/2013 Analiza efektywności 1 Źródła kosztów przetwarzania współbieżnego interakcje

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2018/2019 Wykład nr 10 (17.05.2019) Rok akademicki 2018/2019, Wykład

Bardziej szczegółowo