11 Probabilistic Context Free Grammars
|
|
- Magdalena Skowrońska
- 7 lat temu
- Przeglądów:
Transkrypt
1 11 Probabilistic Context Free Grammars Ludzie piszą i mówią wiele rzeczy, a ich wypowiedzi mają zawsze jakąś określoną strukture i regularność. Celem jest znalezienie i wyizolowanie tego typu struktur. Syntaktyka pokazuje więcej niż tylko kolejność czy porządek słów w zdaniu, ukazuje jak grupy słów się łączą i jakie relacje wzajemne zachodzą między nimi PCFG Probabilistic Context Free Grammar są najprostrzymi i najbardziej naturalnymi modelami struktur drzewiastych. PCFG jest to gramatyka bezkontextowa (CFG) z dodanymi do reguł gramatycznych prawdopodobieństwami. Example: The velocity of the seismic waves rises to... PCFG Składa się z: zbioru znaków terminalnych: {w k }, k = 1,..., V zbioru znaków nieterminalnych: {N i }, i = 1,..., n ustalonego symbolu startowego: N 1 zbioru reguł {N i ς j }, gdzie ς j ciąg symboli terminalnych i nieterminalnych. P(N i ς j ) należy tutaj rozumieć jako prawdopodobieństwo warunkowe P(N i ς j N i ). Prawdopodobieństwa produkcji dołącza się w taki sposób, aby suma prawdopodobieństw reguł o tym samym poprzedniku wynosiła 1. i P (N i ς j N i ) = 1 j 1
2 Notacja {w 1,..., w m } - parsowane zdanie w ad - podłańcuch w a,..., w d N i ab N i - nieterminal dominujący nad podłańcuchem w a,..., w b yield(n j ) = w a,..., w b - poddrzewo z rootem N j dominującym tylko nad ciągiem w a,..., w b Prawdopodobieństwo drzewa parsingu Prawdopodobieństwo zdania P (w 1m ) = P (w 1m, t) = t P (t) {t:yield(t)=w 1m } gdzie t jest wyprowadzeniem zdania w 1m według reguł gramatyki G 2
3 Example: Przyjmując powyższą gramatykę zdanie [Astronomers saw stars with ears.] posiada dokładnie dwie poprawne metody parsowania. P(t 1 ) = 1.0 x 0.1 x 0.7 x 1.0 x 0.4 x 0.18 x 1.0 x 1.0 x 0.18 = P(t 2 ) = 1.0 x 0.1 x 0.3 x 0.7 x 1.0 x 0.18 x 1.0 x 1.0 x 0.18 = P(w 15 ) = P(t 1 ) + P(t 2 ) = Założenia modelu Niezmienniczość miejsca Identyczne poddrzewa mają zawsze takie same prawdopodobieństwa niezależnie od tego w jakim miejscu znajdują się w drzewie syntaktycznym k P (N j k(k+c) ς) jest to samo 3
4 Bezkontekstowość Prawdopodobieństwo poddrzewa nie zależy od słów znajdujących się przed poddrzewem. P (N j kl ς slowa poza w k,..., w l ) = P (N j kl ς) Ancestor-free Zewnętrzne węzły poddrzewa nie mają wpływu na jego prawdopodobieństwo. Cechy PCFG P (N j kl ς ancestor nodes N j kl ) = P (N j kl ς) Podczas rozwijania gramatyk do dużych i urozmaiconych korpusów, gramatyki stają się bardzo niejednoznaczne. Wówczas PCFG dają pogląd na prawdopodobieństwo danego zdania. W przeciwieństwie do CFG PCFG może się uczyć. Odporny na błedy gramatyczne PCFG daje probabilistyczny model językowy języka angielskiego. W praktyce PCFG jest gorszym modelem dla języka angielskiego od modelu trigram Modele PCFG dopuszczają, żeby małe drzewa rozbioru były bardziej prawdopodobne Nieodpowiedni rozkład S rhubarbp (1/3) S SSP (2/3) rhubarb 1/3 rhubarb rhubarb 2/3x1/3x1/3 = 2/27 rhubarb rhubarb rhubarb (2/3) 2 x(1/3) 3 x2 = 8/243 P(L)=1/3 + 2/27 + 8/ = 1/2 4
5 11.2 Zadania dla PCFG Nadanie prawdopodobieństwa każdemu zdaniu w 1m zgodnemu z gramatyką G P (w 1m G) Wyznacza najbardziej prawdopodobne drzewo rozbioru dla danego zdania. argmax t P (t w 1m, G) Zoptymalizowanie reguł danej gramatyki w celu maksymalizacji prawdopodobieństwa zdania Chomsky Normal Form N i N j N k N i w j argmax G P (w 1m G) dla j=1,...,n P (N j N r N s ) + r,s k P (N j w k ) = 1 Gramatyka regularna (PRG) N t w j N k N i w j PCFG i PRG vs HMM HMM - prawdopodobieństwo Stringu o określonej długości n w 1n P (w 1n ) = 1 PCFG i PRG - prawdopodobieństwo zbioru stringów należących do języka L generowanego przez gramatykę G P (w) = 1 w L 5
6 Example: P (John decide to bake a) Wysokie prawdopodobieństwo w HMM natomiast bardzo nieskie w PCFG i PRG, ponieważ nie jest to kompletne zdanie. Prawdopodobieństwo zewnętrzne Całkowite prawdopodobieństwo generowania ciągu słów poczynając od N 1 do N j pq i wszystkich słów poza w p,..., w q α j (p, q) = P (w 1(p 1), N 1 pq, w (q+1)m G) Prawdopodobieństwo wewnętrzne Całkowite prawdopodobieństwo generowania ciągu słów w p,..., w q wychodząc z nieterminala N j β j (p, q) = P (w pq N j pq, G) 11.3 Prawdopodobieństwo stringu Prawdopodobieństwo wewnętrzne Obliczanie prawdopodobieństwa stringu poprzez liczenie i sumowanie wszystkich prawdopodobieństw rozbioru gramatycznego jest nieefektywne. Efektywnym sposobem na liczenie prawdopodobieństwa jest tzw. algorytm wewnętrzny bazujący na prawdopodobieństwach wewnętrznych. P (w 1m G) = P (N 1 = w 1m G) = β 1 (1, m) 6
7 Przypadek podstawowy Szukamy β j (k, k) - prawdopodobieństwo reguły N j w k β j (k, k) = P (w k N j kk, G) = P (N j w k G) Indukcja Szukamy β j (p, q) dla p q j, 1 p < q m Example: β V P (2, 5) = P (V P V NP )β v (2, 2)β NP (3, 5)+P (V P V P P P )β v (2, 3)β NP (4, 5) 7
8 Prawdopodobieństwo zewnętrzne k 1 k m Przypadek podstawowy α 1 (1, m) = 1 α j (1, m) = 0 dla j 1 Indukcja Nieterminal N j pq może pojawić się po lewej jak i prawej stronie gałęzi węzłą rodzica. Sumujemy dwie możliwości przy założeniu, że w pierwszej sumie g j 8
9 Iloczyn prawdopodobieństwa wewnętrznego i zewnętrznego α j (p, q)β j (p, g) = P (w 1(p 1), Npq, j w (q+1)m G)P (w pq Npq, j G) = P (w 1m, Npq j G) Stąd P (w 1m, N pq G) = α j (p, q)β j (p, g) j 9
10 Viterbi Algorithm - Wyznaczanie najlepszego drzewa parsingu ϱ i (p, q) - największe wewnętrzne prawdopodobieństwo poddrzewa N i pq Krok. 1 - Inicjalizacja Krok. 2 - Indukcja ϱ i (p, p) = P (N i w p ) Krok. 3 - Odczytanie wyznaczonego drzewa Dla każdego nieterminala poczynając od N 1 1m rekurencyjnie czytamy Ψ i (p, q) = (j,k,r) i wyznaczamy gałęzie: left(&) = N j pr, right(&) = N k (r+1)q Training PCFG Szukamy gramatyki maksymalizującej prawdopodobieństwo danych treningowych Inside-Outside - problemy wolny - każda iteracja O(m 3 n 3 ), gdzie m = w i=1 m i, a n - liczbą nieterminali w gramatyce. problem z lokalnymi maximami - Charniak dla każdego testu otrzymywał różne maxima lokalne (algorytm jest bardzo wrażliwy na dane początkowe) potrzebne jest dużo więcej nieterminali, niż teoretycznie potrzebne do stworzenia dobrej gramatyki, aby otrzymać dobrą gramatyke do nauki. nie ma żadnych gwarancji, że nieterminale, których będzie się uczył algorytm będą miały pokrycie z nieterminalami używanymi podczas analizy językowej. 10
Gramatyki wykorzystywane w analizie języka naturalnego
Gramatyki wykorzystywane w analizie języka naturalnego PCFG=Probabilistic Context-Free Grammars HLPCFG=Head-Lexicalised PCFG HG=Head Grammar HPSG=Head Grammar IG=Indexed Grammar LIG=Linear Indexed Grammar
Języki formalne i automaty Ćwiczenia 2
Języki formalne i automaty Ćwiczenia 2 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Metoda brute force... 2 Konwersja do postaci normalnej Chomskiego... 5 Algorytm Cocke a-youngera-kasamiego
JAO - Wprowadzenie do Gramatyk bezkontekstowych
JAO - Wprowadzenie do Gramatyk bezkontekstowych Definicja gramatyki bezkontekstowej Podstawowymi narzędziami abstrakcyjnymi do opisu języków formalnych są gramatyki i automaty. Gramatyka bezkontekstowa
JAO - lematy o pompowaniu dla jezykow bezkontekstowy
JAO - lematy o pompowaniu dla jezykow bezkontekstowych Postać normalna Chomsky ego Gramatyka G ze zbiorem nieterminali N i zbiorem terminali T jest w postaci normalnej Chomsky ego wtw gdy każda produkcja
2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego
2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór
Programowanie w Logice Gramatyki metamorficzne. Przemysław Kobylański na podstawie [CM2003] i [SS1994]
Programowanie w Logice Gramatyki metamorficzne Przemysław Kobylański na podstawie [CM2003] i [SS1994] Gramatyki bezkontekstowe Gramatyką bezkontekstową jest uporządkowana czwórka G = Σ, N, S, P, gdzie
Języki formalne i automaty Ćwiczenia 1
Języki formalne i automaty Ćwiczenia Autor: Marcin Orchel Spis treści Spis treści... Wstęp teoretyczny... 2 Wprowadzenie do teorii języków formalnych... 2 Gramatyki... 5 Rodzaje gramatyk... 7 Zadania...
Gramatyka operatorowa
Gramatyki z pierwszeństwem operatorów Teoria kompilacji Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka operatorowa Definicja: G = G BK jest gramatyką operatorową (i) (ii) G jest gramatyką
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Gramatyki bezkontekstowe I Gramatyką bezkontekstową
Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd. Włodzimierz Bielecki WI ZUT
Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd Analiza Syntaktyczna Wstęp Parser dostaje na wejściu ciąg tokenów od analizatora leksykalnego i sprawdza: czy ciąg ten może być generowany przez gramatykę.
Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka
Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =
Wprowadzenie do analizy składniowej. Bartosz Bogacki.
Wprowadzenie do analizy składniowej Bartosz Bogacki Bartosz.Bogacki@cs.put.poznan.pl Witam Państwa. Wykład, który za chwilę Państwo wysłuchają dotyczy wprowadzenia do analizy składniowej. Zapraszam serdecznie
Gramatyki rekursywne
Gramatyki bezkontekstowe, rozbiór gramatyczny eoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyki rekursywne Niech będzie dana gramatyka bezkontekstowa G =
Języki formalne i automaty Ćwiczenia 3
Języki formalne i automaty Ćwiczenia 3 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Algorytm LL(1)... 2 Definicja zbiorów FIRST1 i FOLLOW1... 3 Konstrukcja tabeli parsowania
Metody Kompilacji Wykład 3
Metody Kompilacji Wykład 3 odbywa się poprzez dołączenie zasad(reguł) lub fragmentów kodu do produkcji w gramatyce. Włodzimierz Bielecki WI ZUT 2 Na przykład, dla produkcji expr -> expr 1 + term możemy
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Metody Kompilacji Wykład 7 Analiza Syntaktyczna
Metody Kompilacji Wykład 7 Analiza Syntaktyczna Parsowanie Parsowanie jest to proces określenia jak ciąg terminali może być generowany przez gramatykę. Włodzimierz Bielecki WI ZUT 2/57 Parsowanie Dla każdej
0.1 Lewostronna rekurencja
0.1 Lewostronna rekurencja Sprawdź czy poniższa gramatyka E jest zgodna z LL(1), tzn. czy umożliwia przeprowadzenie analizy bez powrotu z wyprzedzeniem o jeden symbol. Wyjaśnienie pojęcia LL(1): Pierwsze
GRAMATYKI BEZKONTEKSTOWE
GRAMATYKI BEZKONTEKSTOWE PODSTAWOWE POJĘCIE GRAMATYK Przez gramatykę rozumie się pewien układ reguł zadający zbiór słów utworzonych z symboli języka. Słowa te mogą być i interpretowane jako obiekty językowe
Parsery wykorzystywane w analizie języka naturalnego
Parsery wykorzystywane w analizie języka naturalnego 1. Link Grammar Parser 2. Part of Speech Tagging 3. PCFG's 4. HPCFG's 5. Parser Charniak'a 6. LoPar 7. MiniPar Autorzy: Tomasz Masternak, Adam Łączyński
3.4. Przekształcenia gramatyk bezkontekstowych
3.4. Przekształcenia gramatyk bezkontekstowych Definicje Niech będzie dana gramatyka bezkontekstowa G = G BK Symbol X (N T) nazywamy nieużytecznym w G G BK jeśli nie można w tej gramatyce
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ)
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też L = {vw : vuw L dla pewnego u A takiego, że u = v + w } Rozwiązanie. Niech A =
Hierarchia Chomsky ego Maszyna Turinga
Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór
Efektywna analiza składniowa GBK
TEORETYCZNE PODSTAWY INFORMATYKI Efektywna analiza składniowa GBK Rozbiór zdań i struktur zdaniowych jest w wielu przypadkach procesem bardzo skomplikowanym. Jego złożoność zależy od rodzaju reguł produkcji
Definiowanie języka przez wyrażenie regularne(wr)
Wykład3,str1 Definiowanie języka przez wyrażenie regularne(wr) DEFINICJA: (wyrażenia regularne) M(specjalneznakinienależącedoalfabetu:{,},, ) literyalfabetusąwr złożeniawrsąwr: jeśliw 1 iw 2 sąwr,to{w
JIP. Analiza składni, gramatyki
JIP Analiza składni, gramatyki Książka o różnych językach i paradygmatach 2 Polecam jako obowiązkową lekturę do przeczytania dla wszystkich prawdziwych programistów! Podsumowanie wykładu 2 3 Analiza leksykalna
Analizator syntaktyczny
Analizator syntaktyczny program źródłowy analizator leksykalny token daj nast. token analizator syntaktyczny drzewo rozbioru syntaktycznego analizator semantyczny kod pośredni tablica symboli Analizator
Języki formalne i automaty Ćwiczenia 8
Języki formalne i automaty Ćwiczenia 8 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Konwersja NFA do DFA... 2 Minimalizacja liczby stanów DFA... 4 Konwersja automatu DFA do
Języki formalne i automaty Ćwiczenia 4
Języki formalne i automaty Ćwiczenia 4 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Sposób tworzenia deterministycznego automatu skończonego... 4 Intuicyjne rozumienie konstrukcji
Metody Kompilacji Wykład 13
Metody Kompilacji Wykład 13 Prosty Translator Translator dla prostych wyrażeń Schemat translacji sterowanej składnią często służy za specyfikację translatora. Schemat na następnym slajdzie zostanie użyty
Teoretyczne podstawy informatyki. Wykład 12: Gramatyki. E. Richter-Was 1
Teoretyczne podstawy informatyki Wykład 12: Gramatyki 1 18.12.2012 Gramatyki bezkontekstowe Opis wzorców polegający na wykorzystaniu modelu definicji rekurencyjnych, nazywamy gramatyką bezkontekstową (ang.
JĘZYKIFORMALNE IMETODYKOMPILACJI
Stefan Sokołowski JĘZYKIFORMALNE IMETODYKOMPILACJI Inst. Informatyki Stosowanej, PWSZ Elbląg, 2009/2010 JĘZYKI FORMALNE reguły gry Wykład1,2X2009,str.1 Zasadnicze informacje: http://iis.pwsz.elblag.pl/
Poprawność semantyczna
Poprawność składniowa Poprawność semantyczna Poprawność algorytmu Wypisywanie zdań z języka poprawnych składniowo Poprawne wartościowanie zdań języka, np. w języku programowania skutki wystąpienia wyróżnionych
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Algorytmy stochastyczne, wykład 05 Systemy Liendenmayera, modelowanie roślin
Algorytmy stochastyczne, wykład 5, modelowanie roślin Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 214-3-2 1 2 3 ze stosem Przypomnienie gramatyka to system (Σ, A, s,
Języki i gramatyki formalne
Języki i gramatyki formalne Języki naturalne i formalne Cechy języka naturalnego - duża swoboda konstruowania zdań (brak ścisłych reguł gramatycznych), duża ilość wyjątków. Języki formalne - ścisły i jednoznaczny
Efektywny parsing języka naturalnego przy użyciu gramatyk probabilistycznych
Uniwersytet im. Adama Mickiewicza Wydział Matematyki i Informatyki Paweł Skórzewski nr albumu: 301654 Efektywny parsing języka naturalnego przy użyciu gramatyk probabilistycznych Praca magisterska na kierunku:
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Podstawy Informatyki Gramatyki formalne
Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Języki i gramatyki Analiza syntaktyczna Semantyka 2 Podstawowe pojęcia Gramatyki wg Chomsky ego Notacja Backusa-Naura
Wstęp do programowania
Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie
Wykład 5. Jan Pustelnik
Wykład 5 Jan Pustelnik Konstruowanie parsera Istnieje kilka podstawowych metod konstrukcji parsera bez nawracania Ze względów wydajnościowych parser bez nawracania jest jedynym sensownym rozwiązaniem (prawo
Analiza semantyczna. Gramatyka atrybutywna
Analiza semantyczna Do przeprowadzenia poprawnego tłumaczenia, oprócz informacji na temat składni języka podlegającego tłumaczeniu, translator musi posiadać możliwość korzystania z wielu innych informacji
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 05 Biologia i gramatyka Jarosław Miszczak IITiS PAN Gliwice 07/04/2016 1 / 40 1 Nieformalne określenie fraktali. 2 Wymiar pudełkowy/fraktalny. 3 Definicja fraktali.
Lingwistyka Matematyczna Języki formalne i gramatyki Analiza zdań
Katedra Informatyki Stosowanej Politechnika Łódzka Lingwistyka Matematyczna Języki formalne i gramatyki Analiza zdań dr hab. inŝ. Lidia Jackowska-Strumiłło Historia rozwoju języków programowania 1955 1955
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 9: Własności języków bezkontekstowych Sławomir Lasota Uniwersytet Warszawski 27 kwietnia 2016 Plan 1 Pompowanie języków bezkontekstowych 2 Własności domknięcia 3 Obrazy
Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.
Opis wzorców polegający na na wykorzystaniu modelu definicji rekurencyjnych, nazywamy gramatyką bezkontekstową (ang. contex-free grammar).
1 2 Opis wzorców polegający na na wykorzystaniu modelu definicji rekurencyjnych, nazywamy gramatyką bezkontekstową (ang. contex-free grammar). Jednym z ważnych zastosowań gramatyksą specyfikacje języków
Gramatyka TAG dla języka polskiego
Gramatyka TAG dla języka polskiego Katarzyna Krasnowska IPI PAN 25 lutego 2013 Katarzyna Krasnowska (IPI PAN) Gramatyka TAG dla języka polskiego 25 lutego 2013 1 / 31 Plan prezentacji 1 TAG 2 Ekstrakcja
Wprowadzenie. Teoria automatów i języków formalnych. Literatura (1)
Wprowadzenie Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Literatura (1) 1. Aho A. V., Sethi R., Ullman J. D.: Compilers. Principles, Techniques and Tools, Addison-Wesley,
Języki formalne i automaty Ćwiczenia 9
Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej
Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST)
Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie
Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu
Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady
Wykład 10. Translacja sterowana składnią
Wykład 10 Translacja sterowana składnią Translacja sterowana składnią Z konstrukcjami języków programowania wiąże się pewną informację przez dołączenie atrybutów do symboli gramatyki reprezentujących te
Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty. Literatura
Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty Dr inŝ. Janusz Majewski Katedra Informatyki Literatura Aho A. V., Sethi R., Ullman J. D.: Compilers. Principles, Techniques
Wysokość drzewa Głębokość węzła
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń
Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 21 marca 2019 1 Gramatyki! Gramatyka to taki przepis
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka
ALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Analiza metodą zstępującą. Bartosz Bogacki.
Analiza metodą zstępującą Bartosz Bogacki Bartosz.Bogacki@cs.put.poznan.pl Witam Państwa. Wykład, który za chwilę Państwo wysłuchają dotyczy analizy metodą zstępującą. Zapraszam serdecznie do wysłuchania.
Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ.
Gramatyki grafowe Def. Nieskierowany NL-graf (etykietowane wierzchołki) jest czwórką g = (V, E, Σ, ϕ), gdzie: V niepusty zbiór wierzchołków, E V V zbiór krawędzi, Σ - skończony, niepusty alfabet etykiet
JĘZYKI FORMALNE I METODY KOMPILACJI
Stefan Sokołowski JĘZYKI FORMALNE I METODY KOMPILACJI Inst Informatyki Stosowanej, PWSZ Elbląg, 2015/2016 JĘZYKI FORMALNE reguły gry Wykład1,str1 Zasadnicze informacje: http://iispwszelblagpl/ stefan/dydaktyka/jezform
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Wprowadzenie do programowania języki i gramatyki formalne. dr hab. inż. Mikołaj Morzy
Wprowadzenie do programowania języki i gramatyki formalne dr hab. inż. Mikołaj Morzy plan wykładu wprowadzenie gramatyki podstawowe definicje produkcje i drzewa wywodu niejednoznaczność gramatyk hierarchia
Podstawy Informatyki. Metody dostępu do danych
Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie
KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F
KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:
Analiza leksykalna 1. Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki
Analiza leksykalna 1 Teoria kompilacji Dr inż. Janusz Majewski Katedra Informatyki Zadanie analizy leksykalnej Kod źródłowy (ciąg znaków) Analizator leksykalny SKANER Ciąg symboli leksykalnych (tokenów)
Uproszczony schemat działania kompilatora
Wykład7,13XI2009,str.1 Uproszczony schemat działania kompilatora program źródłowy ciąg leksemów drzewo wywodu drzewo i tablice symboli analiza leksykalna analiza syntaktyczna analiza semantyczna KOMPILATOR
Jaki język zrozumie automat?
Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy
Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik
Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym
2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew
0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury
Indukcja reguł gramatyki j. polskiego
Indukcja reguł gramatyki języka polskiego dr inż. m.golebski@elka.pw.edu.pl Instytut Informatyki Politechnika Warszawska 25 lutego 2008 Plan prezentacji 1 Aktualny stan wiedzy 2 Wyniki badań D. Magermana
Algorytmy zwiazane z gramatykami bezkontekstowymi
Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk
Pierścień wielomianów jednej zmiennej
Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów
Hierarchia Chomsky ego
Hierarchia Chomsky ego Gramatyki nieograniczone Def. Gramatyką nieograniczoną (albo typu 0) nazywamy uporządkowaną czwórkę G= gdzie: % Σ - skończony alfabet symboli końcowych (alfabet, nad którym
Gramatyki (1-2) Definiowanie języków programowania. Piotr Chrząstowski-Wachjtel
Gramatyki (1-2) Definiowanie języków programowania Piotr Chrząstowski-Wachjtel Zagadnienia Jak zdefiniować język programowania? Gramatyki formalne Definiowanie składni Definiowanie semantyki l 2 Pożądane
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015 Plan 1 Gramatyki 2 Języki
Maksymalne powtórzenia w tekstach i zerowa intensywność entropii
Maksymalne powtórzenia w tekstach i zerowa intensywność entropii Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Warszawa 1 Wprowadzenie 2 Ograniczenia górne i dolne 3 Przykłady
Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują
Semantyka i Weryfikacja Programów - Laboratorium 6
Semantyka i Weryfikacja Programów - Laboratorium 6 Analizator leksykalny i składniowy - kalkulator programowalny Cel. Przedstawienie zasad budowy i działania narzędzi do tworzenia kompilatorów języków
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Gramatyki regularne i automaty skoczone
Gramatyki regularne i automaty skoczone Alfabet, jzyk, gramatyka - podstawowe pojcia Co to jest gramatyka regularna, co to jest automat skoczony? Gramatyka regularna Gramatyka bezkontekstowa Translacja
MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI
MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości
dr hab. Maciej Witek, prof. US MODELE UMYSŁU rok akademicki 2016/2017, semestr letni
dr hab. Maciej Witek, prof. US http://kognitywistyka.usz.edu.pl/mwitek MODELE UMYSŁU rok akademicki 2016/2017, semestr letni Temat 2: Gramatyki Chomsky'ego jako modele umysłu Narodziny kognitywistyki 1957:
1. Maszyna Turinga, gramatyki formalne i ONP
1. Maszyna uringa, gramatyki formalne i OP 1.1.Maszyna uringa Automat skończony składa się ze skończonego zbioru stanów i zbioru przejść ze stanu do stanu, zachodzących przy różnych symbolach wejściowych
ALGORYTMY I STRUKTURY DANYCH
LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu
Sortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Wprowadzenie i pojęcia wstępne.
Wprowadzenie i pojęcia wstępne. X\A a b c x 1 a 1 b 1 c 1 x 2 a 1 b 1 c 2 x 3 a 1 b 2 c 3 x 4 a 2 b 1 c 4 x 5 a 1 b 2 c 1 x 6 a 1 b 2 c 2 x 7 a 1 b 1 c 1 S = X = {x 1,,x 8 } A = {a, b, c}
Metodologie programowania
Co kształtuje języki programowania? Wykład2,str.1 Metodologie programowania Koszty obliczeń: 1980 1960:sprzętdrogi,a wysiłek programistów niewielki 1970: sprzęt coraz tańszy, a programowane problemy coraz
Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne
Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia
Wykład 2. Drzewa poszukiwań binarnych (BST)
Wykład 2 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
wagi cyfry 7 5 8 2 pozycje 3 2 1 0
Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień
(j, k) jeśli k j w przeciwnym przypadku.
Zadanie 1. (6 punktów) Rozważmy język słów nad alfabetem {1, 2, 3}, w których podciąg z pozycji parzystych i podciąg z pozycji nieparzystych są oba niemalejące. Na przykład 121333 należy do języka, a 2111
Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303
Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp
Języki formalne i automaty Ćwiczenia 7
Języki formalne i automaty Ćwiczenia 7 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Automaty... 2 Cechy automatów... 4 Łączenie automatów... 4 Konwersja automatu do wyrażenia
8. Drzewa decyzyjne, bagging, boosting i lasy losowe
Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane
Generatory analizatorów
Generatory analizatorów Generator analizatora leksykalnego flex ( http://www.gnu.org/software/flex/ ) Generator analizatora składniowego bison ( http://www.gnu.org/software/bison/ ) Idea ogólna Opis atomów
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD IX: Agent przetwarza język naturalny
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD IX: Agent przetwarza język naturalny Przetwarzanie języka naturalnego Natural Language Processing, NLP... to formułowanie i testowanie obliczeniowo
Modelowanie sieci złożonych
Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone
Języki programowania zasady ich tworzenia
Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie
Uproszczony schemat działania kompilatora
Uproszczony schemat działania kompilatora Wykład7,str.1 program źródłowy ciąg leksemów drzewo wywodu drzewo i tablice symboli analiza leksykalna analiza syntaktyczna analiza semantyczna KOMPILATOR generacja