Źródła światła w technice światłowodowej - podstawy
|
|
- Andrzej Milewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Źródła światła w technice światłowodowej - podstawy Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania źródła. Sergiusz Patela
2 Źródła światła - klasyfikacja Klasyfikacja zwyczajowa wg. parametrów fali elektromagnetycznej źródła światła białego (słońce, żarówka) źródła monochromatyczne (LED, żarówka z filtrem) źródła światła spójnego (lasery) Klasyfikacja wg zakresu spektralnego również: źródła UV, VIS, IR, FIR Klasyfikacja wg. mechanizmu generacji jądrowe (słońce) żarowe (żarówka) fluorescencyjne ( jarzeniówka ) jarzeniowe (neony) łukowe (Hg, Xe, Na) laserowe Inne klasyfikacje: wg. polaryzacji, mocy, zastosowania,... (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 3
3 Źródła światła charakterystyka użytkowa Optyczna moc wyjściowa (mw) P I th I o nachylenie = współczynnik modulacji (mw/ma) zmodulowany optyczny sygnał wyjściowy Prąd wejściowy (ma) Charakterystyka diody laserowej Ze względu na liniową zależność P(I) diody laserowe są chętniej stosowane niż diody luminescencyjne. Wśród laserów najlepsze parametry uzyskują konstrukcje DFB i DBF Laser pracuje w liniowym zakresie modulacji prąd-moc. Efektywność modulacji określa nachylenie prostej (typowo 0,2 mw/ma). (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 4
4 Klasyfikacja źródeł światła w technice światłowodowej Diody luminescencyjne (LED) diody powierzchniowe diody krawędziowe RCE LED (resonance cavity enhanced) LED Lasery (LD) lasery FP (Fabry-Perota) lasery DFB (distributed feedback) i DBR (distributed Bragg reflector) lasery VCSEL (vertical cavity surface emitting lasers) lasery światłowodowe (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 5
5 Konstrukcja diody LED 125 µm multimode optical fiber epoxy adhesive negative contact N-doped GaAs substrate P-doped GaAs light emitting region SiO 2 positive contact and heat sink 50 µm 150 µm surface-emitting LED (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 6
6 Warunki uzyskania akcji laserowej 1. Obecność stanów metastabilnych w materiale 2. Pompowanie atomów do stanów metastabilnych 3. Inwersja obsadzeń 4. Emisja wymuszona 5. Optyczne sprzężenie zwrotne (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 7
7 Oddziaływanie fotonów z atomami - absorpcja Jądro atomu i orbitale elektronowe Poziomy energetyczne w półprzewodniku foton E 1 E 2 E 3 Energia E 3 emisja spontaniczna absorpcja E 2 E 1 elektron jądro E 3 -E 2 = h c / λ (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 8
8 Oddziaływania fotonów z atomami - emisja spontaniczna i emisja wymuszona Emisja spontaniczna hν E 3 hν Emisja wymuszona hν hν E 1 E 2 E 1 E 2 E3 Emitowane fotony mają taką samą długość fali, fazę, polaryzację i kierunek rozchodzenia się. (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 9
9 Inwersja obsadzeń absorpcja, n 1 > n 2 wzmocnienie, n 2 > n 1 Obsadzenie n 2 Obsadzenie n 2 n 1 n 1 emisja wymuszona (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 10
10 Optyczne sprzężenie zwrotne - rezonator Fabry-Perota światło pompujące Z 1 Z 2 wyjściowa wiązka lasera światło pompujące (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 11
11 Mody podłużne lasera Z 1 Z 2 ν FSR ν FWHM ν (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 12
12 Mody poprzeczne lasera TEM 00 TEM 10 TEM 20 TEM 00 TEM 10 TEM 20 TEM 30 TEM 40 TEM 50 TEM 30 TEM 40 TEM 50 TEM 60 TEM 70 TEM 11 TEM 60 TEM 70 TEM 11 TEM 21 TEM 22 TEM 33 TEM 21 TEM 31 TEM 43 (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 13
13 Klasyfikacja laserów 1. Lasery na ciele stałym: czynnik laserujący umieszczony jest w matrycy ciała stałego. Przykłady: lasery neodymowy-yag <Yttrium Aluminum Garnet> 1,064 um, rubinowy 2. Lasery gazowe Atomowy He-Ne, 632,8 nm Cząsteczkowy (molekularny) CO 2, 10,6 um Jonowy Ar +, podstawowe długości fali 488, 514 nm Ekscymerowe (Ekscymery zjonizowane fluorki gazów szlachetnych) ultrafiolet 3. Lasery barwnikowe zawierają barwnik organiczny w ciekłym roztworze. Lasery te umożliwiają strojenie długości fali; zkres widzialny i bliska podczerwień. Zakres strojenia zależy od użytego barwnika Rodamina 6G umożliwia strojenie nm. 4. Lasery półprzewodnikowe (diody laserowe) 5. Lasery światłowodowe 6. Lasery na swobodnych elektronach (FEL) (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 14
14 Pompowanie w laserze półprzewodnikowym - polaryzacja złącza n type junction p type n type junction p type Conduction band Conduction band Electron energy Valence band E g hν Valence band Inne (niż prądowe w złączu pn) metody pompowania: optyczne, wiązką elektronową, - + Diody laserowe można wykonać w półprzewodnikach z prostą przerwą energetyczną, np. GaAs, InGaAs, GaN, InGaAs, InGaAsP. Lasera nie można wykonać z półprzewodników z przerwą skośną, np. Si, Ge. (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 15
15 Laser w homostrukturze półprzewodnikowej Prąd Zwierciadło (łupane) Złącze Wyjściowa wiązka światła (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 16
16 Laser w heterostrukturze półprzewodnikowej P i N N n Buried heterostructure (BH) laser (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 17
17 Różne typy laserów półprzewodnikowych 1. Homostruktura, gęstość prądu progowego (300K) A/cm 2 2. Pojedyncza heterostruktura. (300K) A/cm 2 3. Podwójna heterostruktura (300K) 500 A/cm GRINSCH (Graded-index separate confinement heterostructure), prąd progowy ~30mA 5. VCSEL (Vertical Cavity Surface Emitting Laser), prąd progowy ~1mA (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 18
18 Zależność mocy od prądu lasera [mw] P wy I th [ma] I (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 19
19 Charakterystyki laserów półprzewodnikowych Voltage [V] Power [W] intensity 0.5 FWHM = 2 nm Current [A] wavelength [nm] Intensity Perpend. 40 deg. Parallel 10 deg Angle (degrees) (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 20
20 Schemat lasera DFB Λ 3 µm 3 µm GaAs Al 0.3 Ga 0.7 As DFB (distributed feedback)- z rozłożonym sprzężeniem zwrotnym podłoże GaAs Warunek Bragga dla reflektora: 2 Λ = ν λ, ν = 1, 2, 3,... gdzie: λ = λ o /n światłow Siatka odbija efektywnie falę o długości λ o = 2 Λ n światłow /ν (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 21
21 Laser typu VCSEL (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 22
22 podstawa Konstrukcja modułu laserowego laser uchwyt soczewki uchwyt izolatora osłona płytka przesuwna soczewka izolator mocowanie włókna Mocowanie włókna laser soczewka izolator włókno lut pokrycie włókna H. van Tongeren, et al., IEEE Transactions on Components, Packaging and Manufacturing Technology - Part, vol. 18, (1995) 227. (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 23
23 Parametry diod LED stosowanych w sieciach światłowodowych Długość fali LED i LD jest określona przez wybór materiału: AlGaAs: nm, InGaAsP: 1300, 1550 nm. LED parameters typ materiał λ moc we włóknie - typ włókna szerokość linii (FWHM) pasmo 3 db nm µw nm MHz SLED AlGaAs / / /125 ELED InGaAsP / ELED InGaAsP /125 (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 24
24 Parametry laserów półprzewodnikowych stosowanych w sieciach światłowodowych Diody laserowe (LD) są dostępne w wersji z wyprowadzeniem światłowodowym lub z gniazdem dla standardowego złącza światłowodowego. typ LD λ moc lasera moc we włóknie typ włókna nm mw mw FP /125 FP /125 FP /125 DFB /125 (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 25
25 Bezpieczeństwo pracy z laserami - klasyfikacja Klasa I: Lasery światła widzialnego, uważane za bezpieczne nawet przy spoglądaniu w wiązkę. Dopuszczalna moc < 0,4 µw Klasa II: Lasery światła widzialnego małej mocy (pracy ciągłej lub impulsowe o dużej częstości powtarzania) dla których krótkie spojrzenie w wiązkę nie uszkadza oka. Moc poniżej 1 mw dla λ=0,6µm. Klasa IIIa: Lasery średniej mocy. Zogniskowana wiązka może uszkodzić oko. Moc 1 do 5 mw dla λ=0,6µm. Klasa IIIb: Lasery średniej mocy. Odbite światło rozproszone nie stanowi zagrożenia. Lasery nie tworzą zagrożenia pożarowego. Dla światła widzialnego (laser Ar) moc 5 do 500 mw. Klasa IV: Lasery dużej mocy. Nawet światło rozproszone jest groźne. Lasery tworzą zagrożenie pożarowe. Uwaga: Moc bezpieczna zależy od długości fali - im krótsza długość, tym dopuszczalna moc mniejsza. Moc dopuszczalna zależy również od konfiguracji urządzenia. (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 26
26 Zastosowania laserów półprzewodnikowych komunikacja drukowanie, poligrafia obróbka materiałów układy pomiarowe, badania naukowe gromadzenie, przechowywanie danych (CD-ROM) pompowanie optyczne medycyna wskaźniki, czytniki kodów paskowych, poziomowanie, geodezja prototypy nowych urządzeń (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 27
27 Pytania kontrolne 1. Wymienić czynniki niezbędne do uzyskania akcji laserowej i do zbudowania lasera. 2. Co to jest absorpcja, emisja spontaniczna i emisja wymuszona? 3. Klasyfikacja laserów ze względu na rodzaj ośrodka laserującego. Wymienić znane typy laserów półprzewodnikowych. (c) Sergiusz Patela Systemy światłowodowe - Podstawy działania laserów 28
Lasery - konstrukcje i parametry. Sergiusz Patela 1999-2004 Lasery - konstrukcje 1
Lasery - konstrukcje i parametry Sergiusz Patela 1999-2004 Lasery - konstrukcje 1 Źródło światła (laser półprzewodnikowy) Optyczna moc wyjściowa (mw) P I th I o nachylenie = współczynnik modulacji (mw/ma)
Bardziej szczegółowoPostawy sprzętowe budowania sieci światłowodowych
Postawy sprzętowe budowania sieci światłowodowych cz. 2. elementy aktywne nadajniki odbiorniki wzmacniacze i konwertery optyczne rutery i przełączniki optyczne Prezentacja zawiera kopie folii omawianych
Bardziej szczegółowoOptyczne elementy aktywne
Optyczne elementy aktywne Źródła optyczne Diody elektroluminescencyjne Diody laserowe Odbiorniki optyczne Fotodioda PIN Fotodioda APD Generowanie światła kontakt metalowy typ n GaAs podłoże typ n typ n
Bardziej szczegółowoWzmacniacze optyczne
Wzmacniacze optyczne Wzmocnienie sygnału optycznego bez konwersji na sygnał elektryczny. Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim.
Bardziej szczegółowoRezonatory ze zwierciadłem Bragga
Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny
Bardziej szczegółowoLasery. Własności światła laserowego Zasada działania Rodzaje laserów
Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez
Bardziej szczegółowo!!!DEL są źródłami światła niespójnego.
Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji
Bardziej szczegółowoII. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet
II. WYBRANE LASERY BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet Laser gazowy Laser He-Ne, Mechanizm wzbudzenia Bernard Ziętek IF UMK Toruń 2 Model Bernard Ziętek IF UMK Toruń 3 Rozwiązania stacjonarne
Bardziej szczegółowoELEMENTY OPTOELEKTRONICZNE UKŁADY NADAWCZO-ODBIORCZE
ELEMENTY OPTOELEKTRONICZNE UKŁADY NADAWCZO-ODBIORCZE Plan wykładu: 1. Oddziaływanie fotonów z materią 2. Fotodioda. Dioda świecąca 4. Lasery półprzewodnikowe 5. Układy odbiorcze 6. Układy nadawcze DOSTĘP
Bardziej szczegółowoSprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)
Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic
Bardziej szczegółowoWprowadzenie do optyki nieliniowej
Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania
Bardziej szczegółowoLasery półprzewodnikowe. przewodnikowe. Bernard Ziętek
Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Bardziej szczegółowoŹródła światła: Lampy (termiczne) na ogół wymagają filtrów. Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18
Źródła światła: Lampy (termiczne) na ogół wymagają filtrów Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18 Lampy: a) szerokopasmowe, rozkład Plancka 2hc I( λ) = 5 λ 2 e 1 hc λk T B
Bardziej szczegółowoLASERY NA CIELE STAŁYM BERNARD ZIĘTEK
LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział
Bardziej szczegółowoDyspersja światłowodów Kompensacja i pomiary
Dyspersja światłowodów Kompensacja i pomiary Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem
Bardziej szczegółowoPrzemysłowe urządzenia elektrotermiczne działające w oparciu o pozostałe metody nagrzewania elektrycznego Prof. dr hab. inż.
Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Przemysłowe urządzenia elektrotermiczne działające w oparciu o
Bardziej szczegółowoŹródła promieniowania optycznego problemy bezpieczeństwa pracy. Lab. Fiz. II
Źródła promieniowania optycznego problemy bezpieczeństwa pracy Lab. Fiz. II Reakcje w tkankach wywołane przez promioniowanie optyczne (podczerwień, widzialne, ultrafiolet): Reakcje termiczne ze wzrostem
Bardziej szczegółowoWzmacniacze optyczne ZARYS PODSTAW
Wzmacniacze optyczne ZARYS PODSTAW REGENERATOR konwertuje sygnał optyczny na elektryczny, wzmacnia sygnał elektryczny, a następnie konwertuje wzmocniony sygnał elektryczny z powrotem na sygnał optyczny
Bardziej szczegółowoWykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy
Wykład IV Dioda elektroluminescencyjna Laser półprzewodnikowy Półprzewodniki - diagram pasmowy Kryształ Si, Ge, GaAs Struktura krystaliczna prowadzi do relacji dyspersji E(k). Krzywizna pasm decyduje o
Bardziej szczegółowoOptyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018
Optyka Wykład XII Krzysztof Golec-Biernat Dyfrakcja. Laser Uniwersytet Rzeszowski, 17 stycznia 2018 Wykład XII Krzysztof Golec-Biernat Optyka 1 / 23 Plan Dyfrakcja na jednej i dwóch szczelinach Dyfrakcja
Bardziej szczegółowon n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
Bardziej szczegółowoLasery. Własności światła laserowego Zasada działania Rodzaje laserów
Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Bardziej szczegółowoVI. Elementy techniki, lasery
Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,
Bardziej szczegółowo1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego
1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD
Bardziej szczegółowoOptoelektronika cz.i Źródła światła
Prowadzący: Optoelektronika cz.i Źródła światła dr hab. inŝ. Marcin Lipiński AGH C-3, pok 514,tel.: 12 617 30 20 e-mail: mlipinsk@agh.edu.pl Literatura uzupełniająca: 1.B.E.A. Saleh, M.C.Teich Fundamentals
Bardziej szczegółowoA21, B21, B12 współczynniki wprowadzone przez Einsteina w 1917 r.
Absorpcja i emisja fotonu przez atom, który ma dwa poziomy energii hν=e2-e1 h=6,63 10-34 J s Emisja spontaniczna A21 prawdopodobieństwo emisji fotonu przez atom w stanie E2 w ciągu sekundy Absorpcja (wymuszona)
Bardziej szczegółowoLASERY SĄ WSZĘDZIE...
LASERY wprowadzenie LASERY SĄ WSZĘDZIE... TROCHĘ HISTORII 1917 Einstein postuluje obecność procesów emisji wymuszonej (i kilka innych rzeczy ) 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 TROCHĘ
Bardziej szczegółowoLasery półprzewodnikowe na złączu p-n. Laser półprzewodnikowy a dioda świecąca
Laser półprzewodnikowy a dioda świecąca Emisja laserowa pojawia się po przekroczeniu progowej wartości natężenia prądu płynącego w kierunku przewodzenia przez heterozłącze p-n w strukturze lasera. Przy
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Bardziej szczegółowoPODSTAWY FIZYKI LASERÓW Wstęp
PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe
Bardziej szczegółowoLasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Lasery budowa, rodzaje, zastosowanie Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Budowa i zasada działania lasera Laser (Light Amplification by Stimulated
Bardziej szczegółowo6. Emisja światła, diody LED i lasery polprzewodnikowe
6. Emisja światła, diody LED i lasery polprzewodnikowe Typy rekombinacji Rekombinacja promienista Diody LED Lasery półprzewodnikowe Struktury niskowymiarowe OLEDy 1 Promieniowanie termiczne Rozkład Plancka
Bardziej szczegółowoTrzy rodzaje przejść elektronowych między poziomami energetycznymi
Trzy rodzaje przejść elektronowych między poziomami energetycznymi absorpcja elektron przechodzi na wyższy poziom energetyczny dzięki pochłonięciu kwantu o energii równej różnicy energetycznej poziomów
Bardziej szczegółowoOgólne cechy ośrodków laserowych
Ogólne cechy ośrodków laserowych Gazowe Cieczowe Na ciele stałym Naturalna jednorodność Duże długości rezonatora Małe wzmocnienia na jednostkę długości ośrodka czynnego Pompowanie prądem (wzdłużne i poprzeczne)
Bardziej szczegółowoLasery. Własności światła laserowego Zasada działania Rodzaje laserów
Lasery Własności światła laserowego Zasada działania Rodzaje laserów Lasery Laser - nazwa utworzona jako akronim od Light Amplification by Stimulated Emission of Radiation - wzmocnienie światła poprzez
Bardziej szczegółowoWłaściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ
Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów
Bardziej szczegółowoUNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja
UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej
Bardziej szczegółowoOPTOTELEKOMUNIKACJA. dr inż. Piotr Stępczak 1
OPTOTELEKOMUNIKACJA dr inż. Piotr Stępczak 1 Optyczne elementy aktywne Źródła optyczne Diody elektroluminescencyjne Diody laserowe Laser światłowodowy Wzmacniacze optyczne Półprzewodnikowe Światłowodowe
Bardziej szczegółowoParametry i technologia światłowodowego systemu CTV
Parametry i technologia światłowodowego systemu CTV (Światłowodowe systemy szerokopasmowe) (c) Sergiusz Patela 1998-2002 Sieci optyczne - Parametry i technologia systemu CTV 1 Podstawy optyki swiatlowodowej:
Bardziej szczegółowoASER. Wykład 18: M L. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok.321.
Wykład 18: M L ASER Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Amplification by Stimulated Emission of Radiation Kwantowe
Bardziej szczegółowoSystemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki
Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Lasery półprzewodnikowe Charakterystyka lasera półprzewodnikowego pierwszy laser półprzewodnikowy został opracowany w 1962 r. zastosowanie
Bardziej szczegółowoOpracowanie nowych koncepcji emiterów azotkowych ( nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych.
Opracowanie nowych koncepcji emiterów azotkowych (380 520 nm) w celu ich wykorzystania w sensorach chemicznych, biologicznych i medycznych. (zadanie 14) Piotr Perlin Instytut Wysokich Ciśnień PAN 1 Do
Bardziej szczegółowoTechnika laserowa, otrzymywanie krótkich impulsów Praca impulsowa
Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja
Bardziej szczegółowoTechnika laserowa, ośrodek czynny. Moc (bezpieczeństwo) Sposób pracy (ciągłe, impulsowe) Długość fali Ośrodek czynny Zastosowania
Kryteria podziału laserów Moc (bezpieczeństwo) Sposób pracy (ciągłe, impulsowe) Długość fali Ośrodek czynny Zastosowania Podział laserów ze względu na ośrodek czynny Lasery na ciele stałym Lasery gazowe
Bardziej szczegółowoSYLABUS DOTYCZY CYKLU KSZTAŁCENIA / /20 (skrajne daty)
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA... 2016/17-2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Techniki laserowe Kod przedmiotu/ modułu* Wydział (nazwa jednostki
Bardziej szczegółowow obszarze linii Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric oscillator)
Rodzaj przestrajania Lasery przestrajalne dyskretne wybór linii widmowej wyższe harmoniczne w obszarze linii szerokie szerokie pasmo Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric
Bardziej szczegółowoTeoria pasmowa ciał stałych Zastosowanie półprzewodników
Teoria pasmowa ciał stałych Zastosowanie półprzewodników Model atomu Bohra Niels Bohr - 1915 elektrony krążą wokół jądra jądro jest zbudowane z: i) dodatnich protonów ii) neutralnych neutronów Liczba atomowa
Bardziej szczegółowoWłaściwości światła laserowego
Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność
Bardziej szczegółowoUNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE Projekt Zintegrowany UMCS Centrum Kształcenia i Obsługi Studiów, Biuro ds. Kształcenia Ustawicznego telefon: +48 81 537 54 61 Podstawowe informacje o przedmiocie
Bardziej szczegółowoELEMENTY SIECI ŚWIATŁOWODOWEJ
ELEMENTY SIECI ŚWIATŁOWODOWEJ MODULATORY bezpośrednia (prąd lasera) niedroga może skutkować chirpem do 1 nm (zmiana długości fali spowodowana zmianami gęstości nośników w obszarze aktywnym) zewnętrzna
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym
Bardziej szczegółowoZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Bardziej szczegółowoWidmo promieniowania elektromagnetycznego Czułość oka człowieka
dealna charakterystyka prądowonapięciowa złącza p-n ev ( V ) = 0 exp 1 kbt Przebicie złącza przy polaryzacji zaporowej Przebicie Zenera tunelowanie elektronów przez wąską warstwę zaporową w złączu silnie
Bardziej szczegółowoInformacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.
Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:
Bardziej szczegółowoMetody optyczne w medycynie
Metody optyczne w medycynie Podstawy oddziaływania światła z materią E i E t E t = E i e κ ( L) i( n 1)( L) c e c zmiana amplitudy (absorpcja) zmiana fazy (dyspersja) Tylko światło pochłonięte może wywołać
Bardziej szczegółowoPonadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:
Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2
Bardziej szczegółowoSkończona studnia potencjału
Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach
Bardziej szczegółowoSieci optoelektroniczne
Sieci optoelektroniczne Wykład 5: Aktywne elementy sieci światłowodowych dr inż. Walery Susłow Elementy budowy sieci światłowodowej Pasywne: włókno złącza światłowodowe rozgałęziacze sprzęgacze filtry
Bardziej szczegółowoFizyka Laserów wykład 6. Czesław Radzewicz
Fizyka Laserów wykład 6 Czesław Radzewicz wzmacniacz laserowy (długie impulsy) - przypomnienie 2 bilans obsadzeń: σ 21 N 2 F s σ 21 N 2 F ħω 12 dn 2 dt = σ 21N 1 F σ 21 N 2 F + σ 21 N 1 F 1 dn 1 dt = F
Bardziej szczegółowoStruktura pasmowa ciał stałych
Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................
Bardziej szczegółowoWykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych
Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie
Bardziej szczegółowoVII KONFERENCJA NAUKOWA TECHNOLOGIA ELEKTRONOWA ELTE 2000 POLANICA ZDRÓJ,
VII KONFERENCJA NAUKOWA TECHNOLOGIA ELEKTRONOWA ELTE 2000 POLANICA ZDRÓJ, 18-22.09.2000 TECHNOLOGIA NANOSTRUKTUR PÓŁPRZEWODNIKOWYCH W ZASTOSOWANIU DO WYTWARZANIA PRZYRZĄDÓW FOTONICZNYCH Maciej Bugajski
Bardziej szczegółowoELEMENTY OPTOELEKTRONICZNE
EEMENTY OPTOEEKTRONICZNE Plan wykładu: 1. Oddziaływanie fotonów z materią. Fotodioda 3. Dioda świecąca 4. asery półprzewodnikowe 1 Oddziaływanie fotonów z materią pasmo przewodnictwa przerwa energetyczna
Bardziej szczegółowoPÓŁPRZEWODNIKOWE ŹRÓDŁA ŚWIATŁA ZARYS PODSTAW
PÓŁPRZEWODNIKOWE ŹRÓDŁA ŚWIATŁA ZARYS PODSTAW DIODY LED I LASERY PÓŁPRZEWODNIKOWE wyświetlacze, systemy oświetleniowe telekomunikacja (WDM) drukowanie, poligrafia obróbka materiałów układy pomiarowe, badania
Bardziej szczegółowoPiotr Targowski i Bernard Ziętek LASER PÓŁPRZEWODNIKOWY
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność : Fizyka medyczna LASER PÓŁPRZEWODNIKOWY Zadanie V Zakład Optoelektroniki Toruń 2001
Bardziej szczegółowoWYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska
1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie
Bardziej szczegółowoLasery półprzewodnikowe historia
Lasery półprzewodnikowe historia GaAs typu p GaAs typu n zasilanie prądem 1962 homozłącze w pokojowej temperaturze progowy prąd - dziesiątki ka/cm 2 bez zastosowania AlGaAs p AlGaAs n Cienka warstwa GaAs
Bardziej szczegółowoZagrożenia powodowane przez promieniowanie laserowe
Zagrożenia powodowane przez promieniowanie laserowe Zagrożenia powodowane przez promieniowanie laserowe Laser, Light Amplification by Stimulated Emission of Radiation, wzmacniacz kwantowy dla światła,
Bardziej szczegółowoWykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional
Fotonika Wykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional Plan: Jednowymiarowe kryształy fotoniczne Fale Blocha, fotoniczna struktura
Bardziej szczegółowoLaser półprzewodnikowy
Ćwiczenie 86 Laser półprzewodnikowy Cel ćwiczenia Badanie własności czerwonego lasera półprzewodnikowego. Obejmuje pomiar: długości fali, polaryzację wiązki, pomiar mocy wiązki, badanie charakterystyki
Bardziej szczegółowoWYZNACZENIE STAŁEJ PLANCKA NA PODSTAWIE CHARAKTERYSTYKI DIODY ELEKTROLUMINESCENCYJNEJ
ĆWICZENIE 48 WYZNACZENIE STAŁEJ PLANCKA NA PODSTAWIE CHARAKTERYSTYKI DIODY ELEKTROLUMINESCENCYJNEJ Cel ćwiczenia: Wyznaczenie stałej Plancka na podstawie pomiaru charakterystyki prądowonapięciowej diody
Bardziej szczegółowoRekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
Bardziej szczegółowoLaser z podwojeniem częstotliwości
Ćwiczenie 87 Laser z podwojeniem częstotliwości Cel ćwiczenia Badanie właściwości zielonego lasera wykorzystującego metodę pompowania optycznego i podwojenie częstotliwości przy użyciu kryształu optycznie
Bardziej szczegółowoFizyka Laserów wykład 10. Czesław Radzewicz
Fizyka Laserów wykład 10 Czesław Radzewicz Struktura energetyczna półprzewodników Regularna budowa kryształu okresowy potencjał Funkcja falowa elektronu. konsekwencje: E ψ r pasmo przewodnictwa = u r e
Bardziej szczegółowoFotodetektor. Odpowiedź detektora światłowodowego. Nachylenie (czułość) ~0.9 ma/mw. nachylenie = czułość (ma/mw) Prąd wyjściowy (ma)
Detektory Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania źródła. Sergiusz Patela
Bardziej szczegółowoWprowadzenie do światłowodowych systemów WDM
Wprowadzenie do światłowodowych systemów WDM WDM Wavelength Division Multiplexing CWDM Coarse Wavelength Division Multiplexing DWDM Dense Wavelength Division Multiplexing Współczesny światłowodowy system
Bardziej szczegółowoWłasności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja
Bardziej szczegółowoWzbudzony stan energetyczny atomu
LASERY Wzbudzony stan energetyczny atomu Z III postulatu Bohra kj E k E h j Emisja spontaniczna Atom absorbuje tylko określone kwanty energii przechodząc ze stanu podstawowego do wzbudzonego. Zaabsorbowana
Bardziej szczegółowoTeoria pasmowa. Anna Pietnoczka
Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach
Bardziej szczegółowoPodstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 14 15 stycznia 2018 A.F.Żarnecki Podstawy
Bardziej szczegółowoTechnika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG
Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności
Bardziej szczegółowoAleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY
Bardziej szczegółowoDiody świecące i lasery półprzewodnikowe
Diody świecące i lasery półprzewodnikowe Dioda LED Porównanie diodowego źródła światła (z lewej) i żarówki halogenowej, pozwalających uzyskać takie samo natężenie oświetlenia Złącze PN Połączenie się dwóch
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
Bardziej szczegółowospis urządzeń użytych dnia moduł O-01
Cel ćwiczenia Celem ćwiczenia jest poznanie wybranych reprezentatywnych elementów optoelektronicznych nadajników światła (fotoemiterów), odbiorników światła (fotodetektorów) i transoptorów oraz zapoznanie
Bardziej szczegółowoBernard Ziętek OPTOELEKTRONIKA
Uniwersytet Mikołaja Kopernika Bernard Ziętek OPTOELEKTRONIKA Wydanie III, uzupełnione i poprawione Toruń 2011 SPIS TREŚCI PRZEDMOWA DO III WYDANIA 1 PRZEDMOWA DO II WYDANIA 3 PRZEDMOWA DO I WYDANIA 4
Bardziej szczegółowoPolitechnika Wrocławska Wydział Podstawowych Problemów Techniki
Politechnika Wrocławska Wydział Podstawowych Problemów Techniki specjalność FOTONIKA 3,5-letnie studia stacjonarne I stopnia (studia inżynierskie) FIZYKA TECHNICZNA Charakterystyka wykształcenia: - dobre
Bardziej szczegółowoWielomodowe, grubordzeniowe
Wielomodowe, grubordzeniowe i z plastykowym pokryciem włókna. Przewężki i mikroelementy Multimode, Large-Core, and Plastic Clad Fibers. Tapered Fibers and Specialty Fiber Microcomponents Wprowadzenie Włókna
Bardziej szczegółowoMateriały w optoelektronice
Materiały w optoelektronice Materiał Typ Podłoże Urządzenie Długość fali (mm) Si SiC Ge GaAs AlGaAs GaInP GaAlInP GaP GaAsP InP InGaAs InGaAsP InAlAs InAlGaAs GaSb/GaAlSb CdHgTe ZnSe ZnS IV IV IV III-V
Bardziej szczegółowoRepeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny
Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów
Bardziej szczegółowoTechniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa
Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna
Bardziej szczegółowo1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY.
1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. Napisz układ równań Maxwella w postaci: a) różniczkowej b) całkowej 2. Podaj trzy podstawowe równania materiałowe wiążące E z D, B z H, E z j 3. Zapisz
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Bardziej szczegółowoBadanie emiterów promieniowania optycznego
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 9 Badanie emiterów promieniowania optycznego Cel ćwiczenia: Zapoznanie studentów z podstawowymi charakterystykami emiterów promieniowania optycznego. Badane elementy:
Bardziej szczegółowoIII.3 Emisja wymuszona. Lasery
III.3 Emisja wymuszona. Lasery 1. Wyprowadzenie wzoru Plancka metodą Einsteina. Emisja wymuszona 2. Koherencja ciągów falowych. Laser jako źródło koherentnego promieniowania e-m 3. Zasada działania lasera.
Bardziej szczegółowoTransmisja i absorpcja fotonów przez ośrodek
Transmisja i absorpcja fotonów przez ośrodek hν 01 1 E hν 01 1 identyczne fotony Absorpcja i emisja spontaniczna Emisja wymuszona E Obsadzenie poziomów energetycznych zbioru atomów w stanie termodynamicznie
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
Bardziej szczegółowo