Ocena wrażliwości konstrukcji betonowych z uwagi na wczesne wpływy termiczno-skurczowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ocena wrażliwości konstrukcji betonowych z uwagi na wczesne wpływy termiczno-skurczowe"

Transkrypt

1 Ocena wrażliwości konstrukcji betonowych z uwagi na wczesne wpływy termiczno-skurczowe Dr hab. inż. Barbara Klemczak, mgr inż. Agnieszka Knoppik-Wróbel, Politechnika Śląska 1. Wprowadzenie Zasadniczym obciążeniem konstrukcji betonowych w okresie ich wznoszenia są zmiany temperatury i skurczu twardniejącego betonu, określane jako oddziaływania pośrednie. Zmiany temperatury w konstrukcjach betonowych są związane z egzotermicznym charakterem procesu hydratacji cementu. Wskutek wydzielanego w tym procesie ciepła następuje wzrost temperatury betonu. Chłodzenie warstw powierzchniowych konstrukcji oraz stosunkowo niska wartość współczynnika przewodnictwa cieplnego powodują zróżnicowanie temperatur pomiędzy warstwami powierzchniowymi a wnętrzem konstrukcji. Zachodzący w tym samym czasie skurcz betonu jest skutkiem zachodzących reakcji chemicznych (skurcz chemiczny i autogeniczny) oraz utraty wody z betonu przechowywanego w powietrzu nienasyconym parą wodną (skurcz betonu wysychającego). Nierównomierne zmiany objętościowe betonu pochodzenia termiczno-skurczowego są przyczyną powstawania w konstrukcji naprężeń. Naprężenia te, często o znacznych wartościach, mogą prowadzić do nadmiernego wytężenia nie w pełni ukształtowanej struktury betonu i w konsekwencji do powstania zarysowań i spękań konstrukcji. Wielkość powstających w twardniejącym betonie naprężeń termiczno-skurczowych zależy od wielu czynników technologiczno-materiałowych [1, 2, 3, 13]. O charakterze powstających naprężeń decyduje możliwość swobodnego odkształcania się elementu, istotne znaczenie mają też wymiary i geometria elementu poddanego wczesnym zmianom objętościowym. 2. Klasyfikacja konstrukcji pod kątem wrażliwości na wczesne wpływy termiczno-skurczowe Generalnie uważa się, że omawiane wczesne wpływy termiczno-skurczowe mogą być przyczyną uszkodzeń konstrukcji o znacznych wymiarach, określanych jako konstrukcje masywne. W tym miejscu należy zaznaczyć, że określenie konstrukcje masywne nie jest ścisłe. Norma ACI 116R [4] definiuje konstrukcje masywne w sposób bardzo ogólny, jako dowolną objętość betonu o wymiarach tak dużych, że konieczne jest podjęcie działań w celu ograniczenia ryzyka zarysowania mogącego powstać na skutek zmian objętościowych wynikających z generowanego ciepła hydratacji. Bardziej precyzyjna jest definicja konstrukcji masywnej odniesiona do modułu powierzchniowego, określonego jako S m p = V (1) gdzie S oznacza pole powierzchni elementu, a V jest objętością elementu. Konstrukcja klasyfikowana jest jako masywna, czyli wrażliwa na wczesne wpływy termiczne, gdy m p < 2 m -1, spodziewana wartość samoocieplenia betonu może wtedy przekroczyć 20 C [1, 5]. Konstrukcje o module powierzchniowym 2 m -1 m p 15 m -1 określane są jako średniomasywne, podawana wartość samoocieplenia betonu to 3 20 C. Ostatnią grupę stanowią konstrukcje o małej masywności, w których m p > 15 m -1. Uważa się również, że w konstrukcjach masywnych dominujące są wpływy termiczne, w konstrukcjach średniomasywnych istotne są zarówno wpływy termiczne i skurczowe, natomiast w konstrukcjach o małej masywności główne znaczenie mają odkształcenia skurczowe [5, 6]. Moduł powierzchniowy uwzględnia tylko geometrię konstrukcji nie rozpatrując zróżnicowanych warunków chłodzenia powierzchni zewnętrznych konstrukcji. Tak więc w przypadku, gdy na powierzchniach elementu występują zróżnicowane warunki chłodzenia, dokładniejsza jest definicja odniesiona do pozornego modułu powierzchniowego [2], obliczanego jako: S m = p po V (2) gdzie S p jest łącznym (sumarycznym) polem powierzchni chłodzonych przez otaczające powietrze. W tym przypadku, o konstrukcji masywnej mówimy, gdy m p > 1 m

2 54 Rys. 1. Moduł powierzchniowy i pozorny moduł powierzchniowy dla wybranych elementów betonowych W rozdziale porównano wartości temperatur generowanych w procesie twardnienia oraz zmian wilgotności dla płyt fundamentowych oraz ścian żelbetowych o zróżnicowanych wymiarach, jako przykładów elementów masywnych i średniomasywnych. Wymiary analizowanych elementów widoczne są na rysunku 2 (płyty fundamentowe) i rysunku 3 (ściany żelbetowe). Obliczenia wykonano dla założonych warunków materiałowych i technologicznych. Dla płyt fundamentowych przyjęto mieszankę betonową o następującym składzie: cement CEM II/BS 32,5R 350 kg/m 3, woda 175 l/m 3, kruszywo 1814 kg/m 3. Zbrojenie wszystkich płyt stanowi siatka powierzchniowa z prętów o średnicy 12 mm w rozstawie 20 cm x 20 cm (stal RB400). Założono, że powierzchnia górna płyt jest oda) Moduł powierzchniowy dla płyt fundamentowych o różnych wymiarach (podstawa kwadratowa o boku długości a) c) Moduł powierzchniowy dla ścian żelbetowych o różnych wymiarach (a oznacza długość ściany, wysokość ściany 4 m) Odwrotnością modułu powierzchniowego jest grubość zastępcza [7]: V d e= Sp (3) Rysunek 1 przedstawia wartości modułu powierzchniowego oraz pozornego modułu obliczone dla płyt fundamentowych oraz ścian żelbetowych. Przyjęto, że w przypadku płyt fundamentowych boczne powierzchnie utrzymywane są w deskowaniu przez cały okres dojrzewania, a główna wymiana ciepła z otoczeniem następuje przez odkrytą górną powierzchnię. Dla ściany żelbetowej pole powierzchni S p przyjęto równe polu zewnętrznych powierzchni podłużnych. Zgodnie z przedstawioną wyżej klasyfikacją konstrukcji odniesioną do modułu powierzchniowego, płyta fundamentowa o grubości 2 m i 3 m może być nazwana konstrukcją masywną (rys. 1a). Pozorny moduł powierzchniowy dla płyt fundamentowych zależy tylko b) Pozorny moduł powierzchniowy dla płyt fundamentowych o różnych wymiarach (podstawa kwadratowa o boku długości a) d) Pozorny moduł powierzchniowy dla ścian żelbetowych o różnych wymiarach (a oznacza długość ściany, wysokość ściany 4 m) od grubości płyty (rys. 2a). W przypadku ścian żelbetowych wartość modułu powierzchniowego, jak też pozornego modułu powierzchniowego zależy tylko od grubości ściany (rys. 1c, rys. 1d). Ściany o grubości 0,3 m, 0,5 m i 0,7 m i założonej wysokości 4 m są więc określane jako średniomasywne; ścianą masywną byłaby ściana o grubości co najmniej 1,45 m. W dalszej części artykułu przedstawiono wyniki obliczeń temperatur twardnienia, zmian wilgotności oraz generowanych naprężeń termiczno-skurczowych w masywnych płytach fundamentowych oraz w ścianach żelbetowych o zróżnicowanych wymiarach. Wyniki obliczeń odniesiono do omówionych wyżej propozycji oceny wrażliwości konstrukcji na wczesne wpływy termiczno-skurczowe. Analizy numeryczne ilustrujące omawiane zagadnienie wykonano programami TEMWIL, MAFEM_VEVP oraz MAFEM3D [7, 8]. Model obliczeniowy zastosowany w programach zalicza się do grupy modeli fenomenologicznych i umożliwia kompleksową analizę konstrukcji betonowych poddanych wpływom termiczno-skurczowym w początkowym okresie dojrzewania betonu. W modelu założono rozdzielenie pól termiczno-wilgotnościowych i mechanicznych. Przy wyznaczaniu pól termiczno-wilgotnościowych przyjęto pełne sprzężenie pól termicznych i wilgotnościowych (program TEMWIL). Określone w czasie i przestrzeni zmiany temperatury i wilgotności twardniejącego betonu są podstawą do obliczenia odkształceń termiczno-skurczowych. Stan naprężenia określany jest przy założeniu, że odkształcenia te mają charakter dystorsyjny. Do wyznaczenia stanu naprężenia w konstrukcji masywnej opracowano lepkosprężystylepkoplastyczny model materiałowy twardniejącego betonu (program MAFEM_VEVP). Prezentację wyników obliczeń umożliwia program MAFEM3D. 3. Temperatury twardnienia i zmiany wilgotności

3 Rys. 2. Wymiary analizowanych płyt fundamentowych Rys. 3. Wymiary analizowanych ścian żelbetowych kryta przez cały analizowany okres 20 dni, natomiast na powierzchniach bocznych utrzymywane jest deskowanie. W obliczeniach ścian przyjęto, że były one betonowane na wcześniej wykonanym fundamencie z betonu o tym samym składzie co ściana żelbetowa. Dla ścian przyjęto w składzie mieszanki betonowej cement CEM I 32,5R w ilości 450 kg/m 3. Uwzględniono zbrojenie ściany w postaci siatki powierzchniowej z prętów 16 w rozstawie poziomym 20 cm i pionowym 15 cm oraz zbrojenie fundamentu w postaci siatki prętów o oczkach 20 cm x 20 cm (stal RB400). Założono również, podobnie jak dla płyt, że boczne powierzchnie ściany są utrzymywane w deskowaniach przez analizowany okres 20 dni, natomiast górna powierzchnia ściany jest odkryta. Zarówno dla płyt, jak i ścian przyjęto, że temperatura zewnętrzna i temperatura początkowa mieszanki betonowej wynosiła 20 C. Współczynniki termiczno-wilgotnościowe przyjęte w obliczeniach zestawiono w tabeli 1. Rozwój temperatur twardnienia we wnętrzu płyt fundamentowych pokazano na rysunku 4a. Można zauważyć, że wielkość maksymalnych temperatur we wnętrzu zależy od grubości płyt, wymiar podstawy fundamentu wpływa tylko nieznacznie na przebieg studzenia wnętrza. Zgodnie z oczekiwaniami, największa temperatura wystąpiła w płycie o największej grubości (d=3 m) i osiągnęła wartość 54,4 C. Można również zauważyć, że w płytach o największej grubości maksymalna temperatura wnętrza występuje najpóźniej. W płytach o grubości 3 m było to 5,1 dnia dojrzewania betonu, w płytach o grubości 2 m 3,3 dnia i w płytach o grubości 1 m 1,7 dnia. Ze względu na założone identyczne warunki chłodzenia powierzchni zewnętrznych płyt, temperatura na powierzchni górnej płyt jest zbliżona. Tabela 1. Współczynniki termiczno-wilgotnościowe λ, W/mK 1.75 c b, kj/kgk 1.0 Ciepło hydratacji 3 ρ, kg / m 2340, m 3 /J zgodnie z 0,5 równaniem: (, ) [ ate T t = Q e ] Q ) gdzie: dla płyt: Q = 350 kg/kj, a=200 dla ścian: Q = 420 kg/kj, a=170 K 0, α, m 2 /s α, m 2 /s 0, TT α, m 2 K/s α, m 2 /sk 0 or or TW α, W/m 2 p, K 6.00 (powierzchnia odkryta) 3.58 (powierzchnia z deskowaniem) 0.81 (powierzchnia dolna kontakt z gruntem) WW WT β p,, m/s 2, (powierzchnia odkryta) 0, (powierzchnia z deskowaniem) 0, (powierzchnia dolna kontakt z gruntem) 55

4 56 Rys. 4. Zmiany temperatury i wilgotności w płytach fundamentowych o różnych wymiarach a) Zmiany temperatury we wnętrzu płyt c) Zmiany temperatury na powierzchni górnej płyt b) Zmiany wilgotności we wnętrzu płyt d) Zmiany wilgotności na powierzchni górnej płyt Warto również zwrócić uwagę na różnicę temperatur pomiędzy wnętrzem płyt i górną powierzchnią zewnętrzną, która wskutek braku zabezpieczenia jest najintensywniej chłodzona. Największa różnica temperatur dla analizowanych płyt wystąpiła po 2 dniach dojrzewania betonu i wyniosła: dla płyt o grubości 3 m 23,5 C, dla płyty o grubości 2 m 19 C i dla płyt o grubości 1 m 12,6 C. Podana różnica temperatur jest o tyle istotna, że zalecenia dotyczące ograniczania niekorzystnych wpływów termicznych w konstrukcjach koncentrują się przede wszystkim na zmniejszeniu różnic temperatur pomiędzy wnętrzem i powierzchnią elementu. Większość zaleceń w tym zakresie sugeruje, aby różnica ta nie przekraczała C [1, 2, 3, 4]. Otrzymane wyniki obliczeń w zakresie zmian wilgotności betonu twardniejącego w warunkach konstrukcji masywnej wskazują, że zmiany te zachodzą głównie w warstwach przypowierzchniowych płyt (rys. 4b, rys. 4c). Rozwój temperatur twardnienia oraz zmian wilgotności dla ścian o różnych wymiarach pokazano na rysunku 5. Podobnie a) Zmiany temperatury dla punktu wnętrze środek (wg rys. 3) jak w płytach fundamentowych, główny wpływ na wielkość generowanych temperatur ma grubość ściany. Maksymalne temperatury twardnienia są osiągane stosunkowo wcześnie, dla ścian o grubości 70 cm było to 24 godziny od momentu zabetonowania, a dla ściany o grubości 30 cm zaledwie 12 godzin po zabetonowaniu. Inaczej jednak niż w płytach fundamentowych kształtują się różnice temperatur pomiędzy wnętrzem ściany i jej powierzchnią zewnętrzną (rys. 5a, rys. 5c). Są one stosunkowo niewielkie i nie przekraczają 11 C dla ścian o grubości 70 cm oraz 6 C dla ścian o grubości 30 cm. Również zmiany wilgotności zależą głównie od grubości ściany (rys. 5b, rys. 5d). Otrzymane w wyniku obliczeń maksymalne temperatury twardnienia odniesiono również do omówionych w punkcie 2 kryteriów oceny wrażliwości konstrukcji na wczesne wpływy termiczne. Zestawienia graficzne wykonano dla płyt fundamentowych (rys. 6a, rys. 6b) Rys. 5. Zmiany temperatury i wilgotności w ścianach żelbetowych o różnych wymiarach c) Zmiany temperatury dla punktu powierzchnia środek (wg rys. 3) b) Zmiany wilgotności dla punktu wnętrze środek (wg rys. 3) d) Zmiany wilgotności dla punktu powierzchnia środek (wg rys. 3)

5 oraz ścian żelbetowych (rys. 6c, rys. 6d). Widoczne są tutaj pewne rozbieżności przy porównaniu maksymalnych temperatur z modułem powierzchniowym. Przykładowo, dla płyty d_2_a_10 (o grubości 2 m i wymiarach podstawy 10x10 m i module powierzchniowym 1,4 m -1 ) maksymalna temperatura wnętrza wyniosła 51,9 C podczas gdy w płycie d_3_a_5 (o zbliżonym module powierzchniowym wynoszącym 1,47m -1 ) maksymalna temperatura wnętrza osiągnęła wartość 54,3 C (rys. 6a). Podobne rozbieżności wystąpiły przy porównaniu maksymalnych różnic temperatury wnętrze-powierzchnia górna. Dla płyty d_2_a_10 różnica ta wyniosła 18,9 C, podczas gdy dla płyty d_3_a_5 było to 23,2 C. Takich rozbieżności nie ma, gdy wartości temperatur odniesiemy do grubości zastępczej, która jest odwrotnością pozornego modułu powierzchniowego (rys. 6b), co potwierdza sugestię, że w przypadku zróżnicowanych warunków chłodzenia na powierzchniach elementu lepszym kryterium w tym zakresie jest grubość zastępcza lub pozorny moduł powierzchniowy. Opisanych wyżej rozbieżności nie zaobserwowano w przypadku ścian (rys. 6c, rys. 6d). 4. Naprężenia i ryzyko zarysowania konstrukcji W przypadku elementów masywnych, dominującą rolę odgrywają naprężenia własne, powstające wskutek istnienia więzów wewnętrznych konstrukcji, które wynikają z nierównomiernych zmian objętościowych w obrębie elementu. Naprężenia te mogą powstać nawet jeżeli element ma całkowitą swobodę odkształceń. Przykładem elementów, w których dominującą rolę odgrywają naprężenia własne wywołane nierównomiernymi zmianami objętościowymi powstającymi na skutek znacznego zróżnicowania temperatur i wilgotności w obrębie przekroju elementu, Rys. 6. Maksymalne temperatury twardnienia betonu w płytach i ścianach odniesione do modułu powierzchniowego i grubości zastępczej a) Maksymalna temperatura w płytach odniesiona do modułu powierzchniowego c) Maksymalna temperatura w ścianach odniesiona do modułu powierzchniowego a) Powierzchnia górna płyt b) Maksymalna temperatura w płytach odniesiona do grubości zastępczej d) Maksymalna temperatura w ścianach odniesiona do grubości zastępczej są płyty fundamentowe. Charakterystyczny jest rozkład naprężeń termiczno-skurczowych w przekroju elementu oraz ich zmienność w czasie twardnienia. W fazie wzrostu temperatury powstają naprężenia rozciągające w warstwach powierzchniowych (rys. 7a) płyty oraz naprężenia ściskające we wnętrzu płyty (rys. 7b). W fazie studzenia następuje inwersja bryły naprężeń: na powierzchniach płyty obserwowane są ściskania, we wnętrzu pojawiają się naprężenia rozciągające. Spadek naprężeń widoczny na rysunku 7a jest związany z zarysowaniem powierzchni górnej płyt o grubości 3 m i wymiarach podstawy 10 m oraz 20 m. Zarysowania takich elementów powstają zwykle w fazie wzrostu temperatury na powierzchniach zewnętrznych elementu, właśnie na powierzchni górnej, na której generowane są naprężenia rozciągające [13, 14]. Możliwe jest Rys. 7. Rozwój naprężeń termiczno-skurczowych w płytach fundamentowych o różnych wymiarach b) Wnętrze płyt 57

6 58 również powstanie rys we wnętrzu elementów w fazie studzenia, kiedy to następuje inwersja bryły naprężeń i we wcześniej ściskanym wnętrzu elementu pojawiają się rozciągania. Doświadczenia jednak wskazują, że rysy wewnętrzne występują znacznie rzadziej. W konstrukcjach o średniej masywności, ale z ograniczoną swobodą odkształceń, takich jak analizowane ściany żelbetowe, istotne znaczenie mają naprężenia wymuszone wywołane oporem liniowym w miejscu połączenia ściany z wcześniej wykonanym fundamentem. W tego typu konstrukcjach można zaobserwować typowy dwufazowy (ściskanie rozciąganie) charakter rozwoju naprężeń. W fazie pierwszej wzrasta temperatura betonu, a ściana rozszerza się, co prowadzi do powstania naprężeń ściskających (rys. 8). Faza ta zwykle obejmuje okres od 1 do 3 dni. W fazie drugiej temperatura twardnienia spada, a ściana zaczyna stygnąć i kurczyć się. W tej fazie obserwowane są naprężenia rozciągające o znacznych wartościach, powstające wskutek istnienia oporu liniowego w miejscu połączenia ściany z wcześniej wykonanym fundamentem (rys. 8). Wpływ na rozkład naprężeń ma zarówno grubość, jak i długość ściany. Porównując rozkład naprężeń w ścianach o tej samej długości, ale różnych grubościach można zauważyć, że w cieńszych ścianach generowane są mniejsze naprężenia ściskające. W związku z tym inwersja bryły naprężeń następuje szybciej, a naprężenia rozciągające pojawiają się wcześniej. Naprężenia te mogą osiągać znaczne wartości, co z kolei może prowadzić do zarysowania ściany. Należy podkreślić, że wytrzymałość na rozciąganie tak młodego betonu (około 2 dni po ułożeniu mieszanki) jest bardzo niska, co dodatkowo zwiększa ryzyko zarysowania. Analizując ściany o tej samej grubości, ale różnych długościach można zaobserwować, że pomimo niemal identycz- Rys. 8. Rozwój naprężeń termiczno-skurczowych w ścianach żelbetowych o różnych wymiarach nych wartości generowanych pól termiczno-wilgotnościowych większe wartości naprężeń tak ściskających, jak i rozciągających pojawiły się w dłuższych ścianach. Jest to związane z większym oporem liniowym na połączeniu ściany z wcześniej wykonanym fundamentem. Widoczny na rysunku 8 spadek naprężeń dla ścian o długości 20 m jest związany z powstaniem zarysowań. Obserwuje się tutaj głównie rysy pionowe, rozpoczynające się nad stykiem ściany z fundamentem i zanikające w górnej części ściany. W pobliżu brzegów ściany obserwuje się odchylenie rys od pionu ku krawędziom bocznym [10, 11, 13, 14]. 5. Podsumowanie Jak wskazują doświadczenia realizacyjne, wczesne wpływy termiczno-skurczowe są częstą przyczyną tworzenia się rys i spękań konstrukcji betonowych już w trakcie ich wznoszenia. Ocena oraz ograniczanie ryzyka powstania wczesnych rys termiczno-skurczowych są szczególnie istotne wobec wzrastających w ostatnich latach wymagań dotyczących trwałości i jakości konstrukcji. Nie jest to zadanie łatwe wobec złożoności zagadnienia oraz dużej liczby czynników technologiczno-materiałowych decydujących o wielkości i charakterze wczesnych zmian objętościowych. Należy pamiętać, że mamy do czynienia z dosyć nietypową sytuacją, gdy w fazie ich wznoszenia istotną rolę odgrywają obciążenia, których źródłem jest materiał, z którego wykonana jest konstrukcja. Podstawowe pytanie dotyczy kwestii, w jakich konstrukcjach wczesne wpływy termicznoskurczowe mogą być przyczyną powstania znaczących naprężeń i w konsekwencji zarysowań. Pomocne mogą być tutaj klasyfikacje konstrukcji zaproponowane w pracach [1, 5, 7]. Przedstawione w artykule analizy wskazują, że dobrą miarą oceny wrażliwości konstrukcji w przypadku zróżnicowanych warunków chłodzenia powierzchni elementu jest pozorny moduł powierzchniowy lub grubość zastępcza. Powszechnie uważa się, że wczesne wpływy termiczno-skurczowe mogą być przyczyną uszkodzeń konstrukcji masywnych. Tymczasem doświadczenia realizacyjne ostatnich lat dowodzą, że zmiany termiczno-wilgotnościowe wywołane procesami dojrzewania betonu mogą być przyczyną uszkodzeń również elementów średniomasywnych, w których utrudnione jest odprowadzanie ciepła i dodatkowo zostały wykonane z betonów o znacznej zawartości cementu,

7 często również z użyciem cementu wysokokalorycznego [10, 11]. W praktyce budowlanej częstym przypadkiem są termiczno-skurczowe zarysowania ścian żelbetowych nad ich stykiem z wcześniej wykonanymi fundamentami. Problem ten dotyczy między innymi ścian przyczółków mostowych [10] czy też ścian zbiorników na ciecze [11], w których to zarysowania są szczególnie niepożądane wobec wymagań szczelności. BIBLIOGRAFIA [1] Kiernożycki W., Betonowe konstrukcje masywne. Polski Cement, Kraków 2003 [2] Witakowski P., Technologia budowy konstrukcji masywnych z betonu), XIII Konferencja Naukowa Korbielów 2001 Metody Komputerowe w Projektowaniu i Analizie Konstrukcji Hydrotechnicznych [3] Klemczak B., Knoppik-Wróbel A., Early age thermal and shrinkage cracks in concrete structures description of the problem, Architecture-Civil Engineering-Environment, Vol. 4, nr 2/2011, s [4] ACI Committee No 207.2R; Effect of Restraint, Volume Change, and Reinforcement on Cracking of Mass Concrete, ACI Materials Journal, Vol. 87, No. 3, 1990, s [5] Flaga K., Naprężenia własne termiczne typu makro w elementach i konstrukcjach z betonu, Monografia 106, Politechnika Krakowska, 1990 [6] Flaga K., Naprężenia skurczowe i zbrojenie przypowierzchniowe w konstrukcjach betonowych, Monografia, Wydawnictwo Politechniki Krakowskiej, 2011 [7] De Schutter G., Taerwe L., Estimation of Early-Age Thermal Cracking Tendency of Massive Concrete Elements By Means of Equivalent Thickness. ACI Materials Journal, Vol. 93, No. 5, 1996, s [8] Klemczak B., Modelowanie efektów termiczno-wilgotnościowych i mechanicznych w betonowych konstrukcjach masywnych, Monografia 183, Wydawnictwo Politechniki Śląskiej, Gliwice 2008 [9] Klemczak B., Prediction of Coupled Heat and Moisture Transfer in Early-Age Massive Concrete Structures. Numerical Heat Transfer. Part A: Applications, Vol. 60, nr 3/2011, s [10] Flaga K., Furtak K., Problem of thermal and shrinkage cracking in tanks vertical walls and retaining walls near their contact with solid foundation slabs. Architecture-Civil Engineering-Environment, Vol. 2, nr 2/2009, s [11] Zych M., Analiza pracy ścian zbiorników żelbetowych we wczesnym okresie dojrzewania betonu, w aspekcie ich wodoszczelności, Praca doktorska, 2011, Wydział Inżynierii Lądowej Politechniki Krakowskiej [12] Ajdukiewicz A., Kliszczewicz A., Głuszak B., Destrukcja termiczna zbiorników żelbetowych we wczesnym okresie dojrzewania. XXXIX Konferencja Naukowa KILiW PAN i KN PZITB Krynica 1993, tom 5, s [13] Klemczak B., Knoppik-Wróbel A., Early age thermal and shrinkage cracks in concrete structures description of the problem, Architecture-Civil Engineering-Environment, Vol. 4, nr 2/2011, s [14] Klemczak B., Knoppik-Wróbel A., Early age thermal and shrinkage cracks in concrete structures influence of geometry and dimension of a structure, ACEE, Vol. 4, nr 3/2011 Artykuł został przygotowany w ramach projektu N N pt. Numeryczna ocena ryzyka zarysowania i metod jego ograniczania w konstrukcjach masywnych i średniomasywnych, finansowanego przez Narodowe Centrum Nauki. Zagadnienia prezentowane w artykule w szerszym zakresie zostały przedstawione w numerze 3/2011 czasopisma ACEE [14]. 59

Charakter i przyczyny powstawania wczesnych rys termiczno-skurczowych w konstrukcjach betonowych

Charakter i przyczyny powstawania wczesnych rys termiczno-skurczowych w konstrukcjach betonowych Charakter i przyczyny powstawania wczesnych rys termiczno-skurczowych w konstrukcjach betonowych Dr hab. inż. Barbara Klemczak, mgr inż. Agnieszka Knoppik-Wróbel, Politechnika Śląska 28 1. Wprowadzenie

Bardziej szczegółowo

ANALIZA NAPRĘŻEŃ W ŚCIANIE ŻELBETOWEJ PODDANEJ WCZESNYM WPŁYWOM TERMICZNO SKURCZOWYM

ANALIZA NAPRĘŻEŃ W ŚCIANIE ŻELBETOWEJ PODDANEJ WCZESNYM WPŁYWOM TERMICZNO SKURCZOWYM Barbara KLEMCZAK 1 Agnieszka KNOPPIK-WRÓBEL Politechnika Śląska ANALIZA NAPRĘŻEŃ W ŚCIANIE ŻELBETOWEJ PODDANEJ WCZESNYM WPŁYWOM TERMICZNO SKURCZOWYM STRESZCZENIE W artykule przedstawiono wyniki analizy

Bardziej szczegółowo

NAPRĘŻENIA WŁASNE I WYMUSZONE W ŚCIANIE ŻELBETOWEJ PODDANEJ WCZESNYM WPŁYWOM TERMICZNO SKURCZOWYM. 1. Wprowadzenie

NAPRĘŻENIA WŁASNE I WYMUSZONE W ŚCIANIE ŻELBETOWEJ PODDANEJ WCZESNYM WPŁYWOM TERMICZNO SKURCZOWYM. 1. Wprowadzenie Agnieszka KNOPPIK-WRÓBEL * Politechnika Śląska NAPRĘŻENIA WŁASNE I WYMUSZONE W ŚCIANIE ŻELBETOWEJ PODDANEJ WCZESNYM WPŁYWOM TERMICZNO SKURCZOWYM 1. Wprowadzenie Zarysowania konstrukcji betonowych powstające

Bardziej szczegółowo

1. Wprowadzenie. Dr hab. inż. Barbara Klemczak, prof. Pol. Śl. Mgr inż. Agnieszka Knoppik-Wróbel Politechnika Śląska. Streszczenie

1. Wprowadzenie. Dr hab. inż. Barbara Klemczak, prof. Pol. Śl. Mgr inż. Agnieszka Knoppik-Wróbel Politechnika Śląska. Streszczenie Dr hab. inż. Barbara Klemczak, prof. Pol. Śl. Mgr inż. Agnieszka Knoppik-Wróbel Politechnika Śląska Wpływ wybranych czynników materiałowo technologicznych na temperatury twardnienia betonu w masywnej płycie

Bardziej szczegółowo

konstrukcji masywnych są

konstrukcji masywnych są KO N S T R U KC J E E L E M E N T Y M AT E R I A ŁY Wykorzystanie metod komputerowych w przewidywaniu ryzyka zarysowania konstrukcji masywnych Dr inż. Barbara Klemczak, Politechnika Śląska 16 Streszczenie

Bardziej szczegółowo

BETONOWE KONSTRUKCJIE MASYWNE

BETONOWE KONSTRUKCJIE MASYWNE BETONOWE KONSTRUKCJIE MASYWNE Przedziały masywności dla poszczególnych grup elementów NIEMASYWNE M>15m -1 e m

Bardziej szczegółowo

SKURCZ BETONU. str. 1

SKURCZ BETONU. str. 1 SKURCZ BETONU str. 1 C7 betonu jest zjawiskiem samoistnym spowodowanym odkształceniami niewynikającymi z obciążeń mechanicznych. Zachodzi w materiałach o strukturze porowatej, w wyniku utarty wody na skutek

Bardziej szczegółowo

POPIÓŁ LOTNY SKŁADNIKIEM BETONU MASYWNEGO NA FUNDAMENTY NOWYCH BLOKÓW ENERGETYCZNYCH

POPIÓŁ LOTNY SKŁADNIKIEM BETONU MASYWNEGO NA FUNDAMENTY NOWYCH BLOKÓW ENERGETYCZNYCH POPIÓŁ LOTNY SKŁADNIKIEM BETONU MASYWNEGO NA FUNDAMENTY NOWYCH BLOKÓW ENERGETYCZNYCH Autorzy: Zbigniew Giergiczny Maciej Batog Artur Golda XXIII MIĘDZYNARODOWA KONFERENCJA POPIOŁY Z ENERGETYKI Zakopane,

Bardziej szczegółowo

Zarysowanie ścian zbiorników żelbetowych : teoria i projektowanie / Mariusz Zych. Kraków, Spis treści

Zarysowanie ścian zbiorników żelbetowych : teoria i projektowanie / Mariusz Zych. Kraków, Spis treści Zarysowanie ścian zbiorników żelbetowych : teoria i projektowanie / Mariusz Zych. Kraków, 2017 Spis treści Ważniejsze oznaczenia 9 Przedmowa 17 1. Przyczyny i mechanizm zarysowania 18 1.1. Wstęp 18 1.2.

Bardziej szczegółowo

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne PROJEKT WYBRANYCH ELEMENTÓW KONSTRUKCJI ŻELBETOWEJ BUDYNKU BIUROWEGO DESIGN FOR SELECTED

Bardziej szczegółowo

6. CHARAKTERYSTYKI SKUTKÓW KLIMATYCZNYCH NA DOJRZEWAJĄCY BETON

6. CHARAKTERYSTYKI SKUTKÓW KLIMATYCZNYCH NA DOJRZEWAJĄCY BETON 6. Charakterystyka skutków klimatycznych na dojrzewający beton 1 6. CHARAKTERYSTYKI SKUTKÓW KLIMATYCZNYCH NA DOJRZEWAJĄCY BETON 6.1 Wpływ czynników klimatycznych na świeżą mieszankę betonową Zgodnie z

Bardziej szczegółowo

PaleZbrojenie 5.0. Instrukcja użytkowania

PaleZbrojenie 5.0. Instrukcja użytkowania Instrukcja użytkowania ZAWARTOŚĆ INSTRUKCJI UŻYTKOWANIA: 1. WPROWADZENIE 3 2. TERMINOLOGIA 3 3. PRZEZNACZENIE PROGRAMU 3 4. WPROWADZENIE DANYCH ZAKŁADKA DANE 4 5. ZASADY WYMIAROWANIA PRZEKROJU PALA 8 5.1.

Bardziej szczegółowo

Nazwa kwalifikacji: Organizacja i kontrolowanie robót budowlanych Oznaczenie kwalifikacji: B.33 Numer zadania: 01

Nazwa kwalifikacji: Organizacja i kontrolowanie robót budowlanych Oznaczenie kwalifikacji: B.33 Numer zadania: 01 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2019 Nazwa kwalifikacji: Organizacja i kontrolowanie robót budowlanych Oznaczenie kwalifikacji: B.33 Numer

Bardziej szczegółowo

MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH ZEWNĘTRZNYCH WYKONANYCH Z UŻYCIEM LEKKICH KONSTRUKCJI SZKIELETOWYCH

MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH ZEWNĘTRZNYCH WYKONANYCH Z UŻYCIEM LEKKICH KONSTRUKCJI SZKIELETOWYCH Budownictwo o Zoptymalizowanym Potencjale Energetycznym 2(18) 2016, s. 55-60 DOI: 10.17512/bozpe.2016.2.08 Maciej MAJOR, Mariusz KOSIŃ Politechnika Częstochowska MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH

Bardziej szczegółowo

Osiadanie kołowego fundamentu zbiornika

Osiadanie kołowego fundamentu zbiornika Przewodnik Inżyniera Nr 22 Aktualizacja: 01/2017 Osiadanie kołowego fundamentu zbiornika Program: MES Plik powiązany: Demo_manual_22.gmk Celem przedmiotowego przewodnika jest przedstawienie analizy osiadania

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 08 Nazwa kwalifikacji: Organizacja i kontrolowanie robót budowlanych Oznaczenie kwalifikacji: B. Numer zadania:

Bardziej szczegółowo

Analiza wpływu przypadków obciążenia śniegiem na nośność dachów płaskich z attykami

Analiza wpływu przypadków obciążenia śniegiem na nośność dachów płaskich z attykami Analiza wpływu przypadków obciążenia śniegiem na nośność dachów płaskich z attykami Dr inż. Jarosław Siwiński, prof. dr hab. inż. Adam Stolarski, Wojskowa Akademia Techniczna 1. Wprowadzenie W procesie

Bardziej szczegółowo

2. Badania doświadczalne w zmiennych warunkach otoczenia

2. Badania doświadczalne w zmiennych warunkach otoczenia BADANIE DEFORMACJI PŁYTY NA GRUNCIE Z BETONU SPRĘŻONEGO W DWÓCH KIERUNKACH Andrzej Seruga 1, Rafał Szydłowski 2 Politechnika Krakowska Streszczenie: Celem badań było rozpoznanie zachowania się betonowej

Bardziej szczegółowo

Wybrane problemy obliczania minimalnego zbrojenia wg PN-EN przykłady

Wybrane problemy obliczania minimalnego zbrojenia wg PN-EN przykłady Wybrane problemy obliczania minimalnego zbrojenia wg PN-EN przykłady Data wprowadzenia: 30.11.2018 r. W artykule przedstawiono dwa przykłady zastosowania zasad wyznaczania minimalnego zbrojenia ze względu

Bardziej szczegółowo

OBLICZENIE ZARYSOWANIA

OBLICZENIE ZARYSOWANIA SPRAWDZENIE SG UŻYTKOWALNOŚCI (ZARYSOWANIA I UGIĘCIA) METODAMI DOKŁADNYMI, OMÓWIENIE PROCEDURY OBLICZANIA SZEROKOŚCI RYS ORAZ STRZAŁKI UGIĘCIA PRZYKŁAD OBLICZENIOWY. ZAJĘCIA 9 PODSTAWY PROJEKTOWANIA KONSTRUKCJI

Bardziej szczegółowo

Szczególne warunki pracy nawierzchni mostowych

Szczególne warunki pracy nawierzchni mostowych Szczególne warunki pracy nawierzchni mostowych mgr inż. Piotr Pokorski prof. dr hab. inż. Piotr Radziszewski Politechnika Warszawska Plan Prezentacji Wstęp Konstrukcja nawierzchni na naziomie i moście

Bardziej szczegółowo

Materiały pomocnicze

Materiały pomocnicze Materiały pomocnicze do wymiarowania żelbetowych stropów gęstożebrowych, wykonanych na styropianowych płytach szalunkowych typu JS dr hab. inż. Maria E. Kamińska dr hab. inż. Artem Czkwianianc dr inż.

Bardziej szczegółowo

WPŁYW POPIOŁÓW LOTNYCH WAPIENNYCH NA TEMPERATURĘ BETONU PODCZAS TWARDNIENIA W ELEMENTACH MASYWNYCH

WPŁYW POPIOŁÓW LOTNYCH WAPIENNYCH NA TEMPERATURĘ BETONU PODCZAS TWARDNIENIA W ELEMENTACH MASYWNYCH DOTACJE NA INNOWACJE INNOWACYJNE SPOIWA CEMENTOWE I BETONY Z WYKORZYSTANIEM POPIOŁU LOTNEGO WAPIENNEGO WPŁYW POPIOŁÓW LOTNYCH WAPIENNYCH NA TEMPERATURĘ BETONU PODCZAS TWARDNIENIA W ELEMENTACH MASYWNYCH

Bardziej szczegółowo

Materiały pomocnicze

Materiały pomocnicze Materiały pomocnicze do wymiarowania żelbetowych stropów gęstożebrowych, wykonanych na styropianowych płytach szalunkowych typu JS dr hab. inż. Maria E. Kamińska dr hab. inż. Artem Czkwianianc dr inż.

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

Obszary sprężyste (bez możliwości uplastycznienia)

Obszary sprężyste (bez możliwości uplastycznienia) Przewodnik Inżyniera Nr 34 Aktualizacja: 01/2017 Obszary sprężyste (bez możliwości uplastycznienia) Program: MES Plik powiązany: Demo_manual_34.gmk Wprowadzenie Obciążenie gruntu może powodować powstawanie

Bardziej szczegółowo

BUDOWNICTWO I KONSTRUKCJE INŻYNIERSKIE. dr inż. Monika Siewczyńska

BUDOWNICTWO I KONSTRUKCJE INŻYNIERSKIE. dr inż. Monika Siewczyńska BUDOWNICTWO I KONSTRUKCJE INŻYNIERSKIE dr inż. Monika Siewczyńska Plan wykładów 1. Podstawy projektowania 2. Schematy konstrukcyjne 3. Elementy konstrukcji 4. Materiały budowlane 5. Rodzaje konstrukcji

Bardziej szczegółowo

Nasyp przyrost osiadania w czasie (konsolidacja)

Nasyp przyrost osiadania w czasie (konsolidacja) Nasyp przyrost osiadania w czasie (konsolidacja) Poradnik Inżyniera Nr 37 Aktualizacja: 10/2017 Program: Plik powiązany: MES Konsolidacja Demo_manual_37.gmk Wprowadzenie Niniejszy przykład ilustruje zastosowanie

Bardziej szczegółowo

Ekonomiczne, ekologiczne i technologiczne aspekty stosowania domieszek do betonu. prof. dr hab. inż. Jacek Gołaszewski

Ekonomiczne, ekologiczne i technologiczne aspekty stosowania domieszek do betonu. prof. dr hab. inż. Jacek Gołaszewski Ekonomiczne, ekologiczne i technologiczne aspekty stosowania domieszek do betonu prof. dr hab. inż. Jacek Gołaszewski Definicja domieszek do betonu Domieszki substancje chemiczne dodawane podczas wykonywania

Bardziej szczegółowo

Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne:

Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne: - str.10 - POZ.2. STROP NAD KLATKĄ SCHODOWĄ Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne: 1/ Grubość płyty h = 15cm 2/ Grubość otulenia zbrojenia a = 2cm 3/

Bardziej szczegółowo

WYKORZYSTANIE METODY ELEMENTÓW SKOŃCZONYCH W MODELOWANIU WYMIANY CIEPŁA W PRZEGRODZIE BUDOWLANEJ WYKONANEJ Z PUSTAKÓW STYROPIANOWYCH

WYKORZYSTANIE METODY ELEMENTÓW SKOŃCZONYCH W MODELOWANIU WYMIANY CIEPŁA W PRZEGRODZIE BUDOWLANEJ WYKONANEJ Z PUSTAKÓW STYROPIANOWYCH Budownictwo o Zoptymalizowanym Potencjale Energetycznym 2(18) 2016, s. 35-40 DOI: 10.17512/bozpe.2016.2.05 Paweł HELBRYCH Politechnika Częstochowska WYKORZYSTANIE METODY ELEMENTÓW SKOŃCZONYCH W MODELOWANIU

Bardziej szczegółowo

Zestaw pytań z konstrukcji i mechaniki

Zestaw pytań z konstrukcji i mechaniki Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku

Bardziej szczegółowo

1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m.

1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m. 1. Dane : DANE OGÓLNE PROJEKTU Poziom odniesienia: 0,00 m. 4 2 0-2 -4 0 2. Fundamenty Liczba fundamentów: 1 2.1. Fundament nr 1 Klasa fundamentu: ława, Typ konstrukcji: ściana, Położenie fundamentu względem

Bardziej szczegółowo

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności Informacje ogólne Założenia dotyczące stanu granicznego nośności przekroju obciążonego momentem zginającym i siłą podłużną, przyjęte w PN-EN 1992-1-1, pozwalają na ujednolicenie procedur obliczeniowych,

Bardziej szczegółowo

DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA

DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA 71 DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA dr hab. inż. Roman Partyka / Politechnika Gdańska mgr inż. Daniel Kowalak / Politechnika Gdańska 1. WSTĘP

Bardziej szczegółowo

1. Płyta: Płyta Pł1.1

1. Płyta: Płyta Pł1.1 Plik: Płyta Pł1.1.rtd Projekt: Płyta Pł1.1 1. Płyta: Płyta Pł1.1 1.1. Zbrojenie: Typ : Przedszk Kierunek zbrojenia głównego : 0 Klasa zbrojenia głównego : A-III (34GS); wytrzymałość charakterystyczna =

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

Dr inż. Wiesław Zamorowski, mgr inż. Grzegorz Gremza, Politechnika Śląska

Dr inż. Wiesław Zamorowski, mgr inż. Grzegorz Gremza, Politechnika Śląska Badania wpływu skurczu betonu na ugięcia i odkształcenia belek zespolonych stalowo-betonowych Dr inż. Wiesław Zamorowski, mgr inż. Grzegorz Gremza, Politechnika Śląska W pracy przedstawiono rezultaty badań

Bardziej szczegółowo

Schöck Isokorb typu K-Eck

Schöck Isokorb typu K-Eck 1. Warstwa (składający się z dwóch części: 1 warstwy i 2 warstwy) Spis treści Strona Ułożenie elementów/wskazówki 62 Tabele nośności 63-64 Ułożenie zbrojenia Schöck Isokorb typu K20-Eck-CV30 65 Ułożenie

Bardziej szczegółowo

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET - 1 - Kalkulator Elementów Żelbetowych 2.1 OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET Użytkownik: Biuro Inżynierskie SPECBUD 2001-2010 SPECBUD Gliwice Autor: mgr inż. Jan Kowalski Tytuł: Poz.4.1. Elementy żelbetowe

Bardziej szczegółowo

SCHÖCK ISOKORB TYP KS I QS

SCHÖCK ISOKORB TYP KS I QS SCHÖCK ISOKORB TYP KS I Materiały budowlane/ochrona przed korozją/ochrona przeciwpożarowa Materiały: Schöck Isokorb typ KS Beton Stal Łożysko oporowe w betonie od strony stropu minimalna wytrzymałość betonu

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM ZESP1 (12.91) Autor programu: Zbigniew Marek Michniowski Program do analizy wytrzymałościowej belek stalowych współpracujących z płytą żelbetową. PRZEZNACZENIE I OPIS PROGRAMU Program służy do

Bardziej szczegółowo

Spis treści. 2. Zasady i algorytmy umieszczone w książce a normy PN-EN i PN-B 5

Spis treści. 2. Zasady i algorytmy umieszczone w książce a normy PN-EN i PN-B 5 Tablice i wzory do projektowania konstrukcji żelbetowych z przykładami obliczeń / Michał Knauff, Agnieszka Golubińska, Piotr Knyziak. wyd. 2-1 dodr. Warszawa, 2016 Spis treści Podstawowe oznaczenia Spis

Bardziej szczegółowo

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp Wnikanie ciepła przy konwekcji swobodnej 1. Wstęp Współczynnik wnikania ciepła podczas konwekcji silnie zależy od prędkości czynnika. Im prędkość czynnika jest większa, tym współczynnik wnikania ciepła

Bardziej szczegółowo

POZ. 1 ZESTAWIENIE OBCIĄŻEŃ Stropy pod lokalami mieszkalnymi przy zastosowaniu płyt WPS

POZ. 1 ZESTAWIENIE OBCIĄŻEŃ Stropy pod lokalami mieszkalnymi przy zastosowaniu płyt WPS OBLICZENIA STATYCZNE DO AKTUALIZACJI PROJEKTÓW BUDOWLANYCH REMONTU ELEWACJI WRAZ Z BALKONAMI I NAPRAWĄ RYS ORAZ REMONTU PIWNIC W BUDYNKU MIESZKALNYM PRZY UL. ŻELAZNEJ 64 r/ KROCHMALNEJ TOM I POZ. 1 ZESTAWIENIE

Bardziej szczegółowo

PROJEKT WYKONAWCZY KONSTRUKCJA

PROJEKT WYKONAWCZY KONSTRUKCJA Wykonanie izolacji pionowej fundamentów budynku przewiązki i odwodnienie placu apelowego w Zespole Szkół Ogólnokształcących Nr 12 przy ul. Telimeny 9, 30-838 Kraków PROJEKT WYKONAWCZY KONSTRUKCJA AUTOR:

Bardziej szczegółowo

Dokumenty referencyjne:

Dokumenty referencyjne: 1 Wyznaczenie liniowych współczynników przenikania ciepła, mostków cieplnych systemu IZODOM. Obliczenia średniego współczynnika przenikania ciepła U oraz współczynnika przewodzenia ciepła λeq dla systemów

Bardziej szczegółowo

Recenzja rozprawy doktorskiej mgr inż. Jarosława Błyszko

Recenzja rozprawy doktorskiej mgr inż. Jarosława Błyszko Prof. dr hab. inż. Mieczysław Kamiński Wrocław, 5 styczeń 2016r. Ul. Norwida 18, 55-100 Trzebnica Recenzja rozprawy doktorskiej mgr inż. Jarosława Błyszko pt.: Porównawcza analiza pełzania twardniejącego

Bardziej szczegółowo

@ Numer zgłoszenia: Uprawniony z patentu: Politechnika Lubelska, Lublin, PL

@ Numer zgłoszenia: Uprawniony z patentu: Politechnika Lubelska, Lublin, PL RZECZPOSPOLITA POLSKA @OPIS PATENTOWY @PL @ 178600 @S1 Urząd Patentowy Rzeczypospolitej Polskiej @ Numer zgłoszenia: 311350 @ Data zgłoszenia: 10.11.1995 @ IntC{ F24D 3/14 F24D 13/02 Bezdylatacyjna konstrukcja

Bardziej szczegółowo

Zestawić siły wewnętrzne kombinacji SGN dla wszystkich kombinacji w tabeli:

Zestawić siły wewnętrzne kombinacji SGN dla wszystkich kombinacji w tabeli: 4. Wymiarowanie ramy w osiach A-B 4.1. Wstępne wymiarowanie rygla i słupa. Wstępne przyjęcie wymiarów. 4.2. Wymiarowanie zbrojenia w ryglu w osiach A-B. - wyznaczenie otuliny zbrojenia - wysokość użyteczna

Bardziej szczegółowo

Sposób na ocieplenie od wewnątrz

Sposób na ocieplenie od wewnątrz Sposób na ocieplenie od wewnątrz Piotr Harassek Xella Polska sp. z o.o. 25.10.2011 Budynki użytkowane stale 1 Wyższa temperatura powierzchni ściany = mniejsza wilgotność powietrza Wnętrze (ciepło) Rozkład

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2017 Nazwa kwalifikacji: Organizacja i kontrolowanie robót budowlanych Oznaczenie kwalifikacji: B.33 Numer

Bardziej szczegółowo

Katalog typowych konstrukcji nawierzchni sztywnych

Katalog typowych konstrukcji nawierzchni sztywnych Wydział Budownictwa Lądowego i Wodnego Zakład Dróg i Lotnisk Katalog typowych konstrukcji nawierzchni sztywnych Prof. Antoni Szydło Tematyka 1.Podstawowe informacje w odniesieniu do poprzedniego katalogu

Bardziej szczegółowo

FUNDAMENTY ZASADY KSZTAŁTOWANIA I ZBROJENIA FUNDAMENTY

FUNDAMENTY ZASADY KSZTAŁTOWANIA I ZBROJENIA FUNDAMENTY FUNDAMENTY ZASADY KSZTAŁTOWANIA I ZBROJENIA FUNDAMENTY Fundamenty są częścią budowli przekazującą obciążenia i odkształcenia konstrukcji budowli na podłoże gruntowe i równocześnie przekazującą odkształcenia

Bardziej szczegółowo

Analiza wymiany ciepła w przekroju rury solarnej Heat Pipe w warunkach ustalonych

Analiza wymiany ciepła w przekroju rury solarnej Heat Pipe w warunkach ustalonych Stanisław Kandefer 1, Piotr Olczak Politechnika Krakowska 2 Analiza wymiany ciepła w przekroju rury solarnej Heat Pipe w warunkach ustalonych Wprowadzenie Wśród paneli słonecznych stosowane są często rurowe

Bardziej szczegółowo

OPIS TECHNICZNY. 1. Dane ogólne Podstawa opracowania.

OPIS TECHNICZNY. 1. Dane ogólne Podstawa opracowania. OPIS TECHNICZNY 1. Dane ogólne. 1.1. Podstawa opracowania. - projekt architektury - wytyczne materiałowe - normy budowlane, a w szczególności: PN-82/B-02000. Obciążenia budowli. Zasady ustalania wartości.

Bardziej szczegółowo

Paweł Madej, kierownik Centrum Badania Betonów Lafarge wyjaśnia, co powoduje "niekontrolowane" pękanie posadzek?

Paweł Madej, kierownik Centrum Badania Betonów Lafarge wyjaśnia, co powoduje niekontrolowane pękanie posadzek? Popękana betonowa posadzka w nowym domu - błędy wykonawcze Rysy pojawiające się na powierzchni betonu są powszechnie znanym, trudnym do uniknięcia zjawiskiem. Oprócz ich negatywnego wpływu na estetykę

Bardziej szczegółowo

ThermaStyle PRO I. CHARAKTERYSTYKA OGÓLNA II. WŁAŚCIWOŚCI FIZYCZNE, DANE TECHNICZNE. a. Przeznaczenie. b. Cechy charakterystyczne. a.

ThermaStyle PRO I. CHARAKTERYSTYKA OGÓLNA II. WŁAŚCIWOŚCI FIZYCZNE, DANE TECHNICZNE. a. Przeznaczenie. b. Cechy charakterystyczne. a. I. CHARAKTERYSTYKA OGÓLNA a. Przeznaczenie to ścienna płyta warstwowa z rdzeniem styropianowym EPS, mocowana do konstrukcji wsporczej alternatywnie zestawem składającym się z łącznika ukrytego typu WŁOZAMOT

Bardziej szczegółowo

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)

Bardziej szczegółowo

Rys.59. Przekrój poziomy ściany

Rys.59. Przekrój poziomy ściany Obliczenia dla ściany wewnętrznej z uwzględnieniem cięŝaru podciągu Obliczenia ściany wewnętrznej wykonano dla ściany, na której oparte są belki stropowe o największej rozpiętości. Zebranie obciąŝeń jednostkowych-

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA Wykorzystanie pakietu MARC/MENTAT do modelowania naprężeń cieplnych Spis treści Pole temperatury Przykład

Bardziej szczegółowo

Diagnostyka nawierzchni z betonu cementowego. Prof. Antoni Szydło, Politechnika Wrocławska

Diagnostyka nawierzchni z betonu cementowego. Prof. Antoni Szydło, Politechnika Wrocławska Diagnostyka nawierzchni z betonu cementowego Prof. Antoni Szydło, Politechnika Wrocławska PROGRAM WYSTĄPIENIA podział nawierzchni betonowych wykonawstwo nawierzchni betonowych nośność i trwałość zmęczeniowa

Bardziej szczegółowo

Analiza stanu przemieszczenia oraz wymiarowanie grupy pali

Analiza stanu przemieszczenia oraz wymiarowanie grupy pali Poradnik Inżyniera Nr 18 Aktualizacja: 09/2016 Analiza stanu przemieszczenia oraz wymiarowanie grupy pali Program: Plik powiązany: Grupa pali Demo_manual_18.gsp Celem niniejszego przewodnika jest przedstawienie

Bardziej szczegółowo

Oddziaływanie membranowe w projektowaniu na warunki pożarowe płyt zespolonych z pełnymi i ażurowymi belkami stalowymi Waloryzacja

Oddziaływanie membranowe w projektowaniu na warunki pożarowe płyt zespolonych z pełnymi i ażurowymi belkami stalowymi Waloryzacja Oddziaływanie membranowe w projektowaniu na warunki pożarowe płyt z pełnymi i ażurowymi belkami stalowymi Waloryzacja Praca naukowa finansowana ze środków finansowych na naukę w roku 2012 przyznanych na

Bardziej szczegółowo

SAS 670/800. Zbrojenie wysokiej wytrzymałości

SAS 670/800. Zbrojenie wysokiej wytrzymałości SAS 670/800 Zbrojenie wysokiej wytrzymałości SAS 670/800 zbrojenie wysokiej wytrzymałości Przewagę zbrojenia wysokiej wytrzymałości SAS 670/800 nad zbrojeniem typowym można scharakteryzować następująco:

Bardziej szczegółowo

Płyty do ogrzewania podłogowego

Płyty do ogrzewania podłogowego Czerwiec 2015 Płyty do ogrzewania podłogowego Ogrzewanie podłogowe to nowoczesny i estetyczny sposób na ogrzanie domu czy mieszkania Płyty styropianowe KNAUF Therm Floor Heating umożliwiają łatwy montaż

Bardziej szczegółowo

OCENA RYZYKA WYSTĄPIENIA WCZESNYCH RYS TERMICZNO-SKURCZOWYCH W BETONOWYCH ŚCIANACH OBUDÓW REAKTORÓW ATOMOWYCH

OCENA RYZYKA WYSTĄPIENIA WCZESNYCH RYS TERMICZNO-SKURCZOWYCH W BETONOWYCH ŚCIANACH OBUDÓW REAKTORÓW ATOMOWYCH XXVI Konferencja awarie budowlane 2013 Naukowo-Techniczna BARBARA KLEMCZAK, barbara.klemczak@polsl.pl AGNIESZKA KNOPPIK-WRÓBEL, agnieszka.knoppik-wrobel@polsl.pl Politechnika Śląska w Gliwicach OCENA RYZYKA

Bardziej szczegółowo

WYZNACZANIE WYTRZYMAŁOŚCI BETONU NA ROZCIĄGANIE W PRÓBIE ZGINANIA

WYZNACZANIE WYTRZYMAŁOŚCI BETONU NA ROZCIĄGANIE W PRÓBIE ZGINANIA WYZNACZANIE WYTRZYMAŁOŚCI BETONU NA ROZCIĄGANIE W PRÓBIE ZGINANIA Jacek Kubissa, Wojciech Kubissa Wydział Budownictwa, Mechaniki i Petrochemii Politechniki Warszawskiej. WPROWADZENIE W 004 roku wprowadzono

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Zasady projektowania systemów stropów zespolonych z niezabezpieczonymi ogniochronnie drugorzędnymi belkami stalowymi. 14 czerwca 2011 r.

Zasady projektowania systemów stropów zespolonych z niezabezpieczonymi ogniochronnie drugorzędnymi belkami stalowymi. 14 czerwca 2011 r. Zasady projektowania systemów stropów zespolonych z niezabezpieczonymi ogniochronnie drugorzędnymi belkami stalowymi 14 czerwca 2011 r. Zachowanie stropów stalowych i zespolonych w warunkach pożarowych

Bardziej szczegółowo

Wymiarowanie sztywnych ław i stóp fundamentowych

Wymiarowanie sztywnych ław i stóp fundamentowych Wymiarowanie sztywnych ław i stóp fundamentowych Podstawowe zasady 1. Odpór podłoża przyjmuje się jako liniowy (dla ławy - trapez, dla stopy graniastosłup o podstawie B x L ścięty płaszczyzną). 2. Projektowanie

Bardziej szczegółowo

ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM

ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM Wymiana ciepła, żebro, ogrzewanie podłogowe, komfort cieplny Henryk G. SABINIAK, Karolina WIŚNIK* ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM W artykule przedstawiono sposób wymiany

Bardziej szczegółowo

Naprężenia i odkształcenia spawalnicze

Naprężenia i odkształcenia spawalnicze Naprężenia i odkształcenia spawalnicze Cieplno-mechaniczne właściwości metali i stopów Parametrami, które określają stan mechaniczny metalu w różnych temperaturach, są: - moduł sprężystości podłużnej E,

Bardziej szczegółowo

Płyty PolTherma SOFT PIR mogą być produkowane w wersji z bokami płaskimi lub zakładkowymi umożliwiającymi układanie na tzw. zakładkę.

Płyty PolTherma SOFT PIR mogą być produkowane w wersji z bokami płaskimi lub zakładkowymi umożliwiającymi układanie na tzw. zakładkę. I. CHARAKTERYSTYKA OGÓLNA a. Przeznaczenie Płyty izolacyjne to nowoczesne wyroby budowlane przeznaczone do izolacji termicznej budynków, tj. ścian zewnętrznych, sufitów, ścianek działowych. Płyty izolacyjne

Bardziej szczegółowo

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI PRACE INSTYTUTU TECHNIKI BUDOWLANEJ - KWARTALNIK 1 (145) 2008 BUILDING RESEARCH INSTITUTE - QUARTERLY No 1 (145) 2008 Zbigniew Owczarek* NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH

Bardziej szczegółowo

SCHÖCK ISOKORB Materiały budowlane do zastosowania w połączeniach betonu z betonem

SCHÖCK ISOKORB Materiały budowlane do zastosowania w połączeniach betonu z betonem SCHÖCK ISOKORB Materiały budowlane do zastosowania w połączeniach betonu z betonem Schöck Isokorb Stal zbrojeniowa BSt 500 S wg DIN 488 Stal konstrukcyjna S 235 JRG1 Stal nierdzewna Materiał 1.4571 klasy

Bardziej szczegółowo

Wprowadzenie do WK1 Stan naprężenia

Wprowadzenie do WK1 Stan naprężenia Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)

Bardziej szczegółowo

Kierunek Budownictwo Wykaz pytań na egzamin dyplomowy Przedmioty podstawowe i kierunkowe Studia I- go stopnia Stacjonarne i niestacjonarne

Kierunek Budownictwo Wykaz pytań na egzamin dyplomowy Przedmioty podstawowe i kierunkowe Studia I- go stopnia Stacjonarne i niestacjonarne Kierunek Budownictwo Wykaz pytań na egzamin dyplomowy Przedmioty podstawowe i kierunkowe Studia I- go stopnia Stacjonarne i niestacjonarne Pytania z przedmiotów podstawowych i kierunkowych (dla wszystkich

Bardziej szczegółowo

PROJEKT NOWEGO MOSTU LECHA W POZNANIU O TZW. PODWÓJNIE ZESPOLONEJ, STALOWO-BETONOWEJ KONSTRUKCJI PRZĘSEŁ

PROJEKT NOWEGO MOSTU LECHA W POZNANIU O TZW. PODWÓJNIE ZESPOLONEJ, STALOWO-BETONOWEJ KONSTRUKCJI PRZĘSEŁ PROJEKT NOWEGO MOSTU LECHA W POZNANIU O TZW. PODWÓJNIE ZESPOLONEJ, STALOWO-BETONOWEJ KONSTRUKCJI PRZĘSEŁ Jakub Kozłowski Arkadiusz Madaj MOST-PROJEKT S.C., Poznań Politechnika Poznańska WPROWADZENIE Cel

Bardziej szczegółowo

ŻELBETOWE ZBIORNIKI NA CIECZE

ŻELBETOWE ZBIORNIKI NA CIECZE ŻELBETOWE ZBIORNIKI NA CIECZE OGÓLNA KLASYFIKACJA ZBIORNIKÓW Przy wyborze kształtu zbiornika należy brać pod uwagę następujące czynniki: - przeznaczenie zbiornika, - pojemność i wymiary, - stosowany materiał

Bardziej szczegółowo

Raport z badań betonu zbrojonego włóknami pochodzącymi z recyklingu opon

Raport z badań betonu zbrojonego włóknami pochodzącymi z recyklingu opon P O L I T E C H N I K A Ś L Ą S K A Wydział Budownictwa Katedra Inżynierii Budowlanej ul. Akademicka 5, -100 Gliwice tel./fax. +8 7 88 e-mail: RB@polsl.pl Gliwice, 6.05.017 r. betonu zbrojonego włóknami

Bardziej szczegółowo

LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH

LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH Projekt z wykorzystaniem programu COMSOL Multiphysics Prowadzący: dr hab. Tomasz Stręk, prof. PP Wykonali: Aleksandra Oźminkowska, Marta Woźniak Wydział: Elektryczny

Bardziej szczegółowo

Informacje ogólne Pełna nazwa laboratorium: LAB5 Jednostka zarządzająca: Kierownik laboratorium: Politechnika Gdańska, Wydział Inżynierii Lądowej i Środowiska, Katedra Budownictwa i Inżynierii Materiałowej

Bardziej szczegółowo

OBLICZENIA STATYCZNO - WYTRZYMAŁOŚCIOWE

OBLICZENIA STATYCZNO - WYTRZYMAŁOŚCIOWE 1112 Z1 1 OBLICZENIA STATYCZNO - WYTRZYMAŁOŚCIOWE SPIS TREŚCI 1. Nowe elementy konstrukcyjne... 2 2. Zestawienie obciążeń... 2 2.1. Obciążenia stałe stan istniejący i projektowany... 2 2.2. Obciążenia

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH.

METODA ELEMENTÓW SKOŃCZONYCH. METODA ELEMENTÓW SKOŃCZONYCH. W programie COMSOL multiphisics 3.4 Wykonali: Łatas Szymon Łakomy Piotr Wydzał, Kierunek, Specjalizacja, Semestr, Rok BMiZ, MiBM, TPM, VII, 2011 / 2012 Prowadzący: Dr hab.inż.

Bardziej szczegółowo

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1 Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1 ALEKSANDER KAROLCZUK a) MATEUSZ KOWALSKI a) a) Wydział Mechaniczny Politechniki Opolskiej, Opole 1 I. Wprowadzenie 1. Technologia zgrzewania

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

ZŁOŻONE KONSTRUKCJE BETONOWE I DŹWIGAR KABLOBETONOWY

ZŁOŻONE KONSTRUKCJE BETONOWE I DŹWIGAR KABLOBETONOWY ZŁOŻONE KONSTRUKCJE BETONOWE I DŹWIGAR KABLOBETONOWY 1. PROJEKTOWANIE PRZEKROJU 1.1. Dane początkowe: Obciążenia: Rozpiętość: Gk1 obciążenie od ciężaru własnego belki (obliczone w dalszej części projektu)

Bardziej szczegółowo

WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE

WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE Artykul zamieszczony w "Inżynierze budownictwa", styczeń 2008 r. Michał A. Glinicki dr hab. inż., Instytut Podstawowych Problemów Techniki PAN Warszawa WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE 1.

Bardziej szczegółowo

POZ BRUK Sp. z o.o. S.K.A Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY

POZ BRUK Sp. z o.o. S.K.A Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY 62-090 Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY SPIS TREŚCI Wprowadzenie... 1 Podstawa do obliczeń... 1 Założenia obliczeniowe... 1 Algorytm obliczeń... 2 1.Nośność żebra stropu na

Bardziej szczegółowo

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH U.02.05.01 POSADZKI BETONOWE

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH U.02.05.01 POSADZKI BETONOWE WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH POSADZKI BETONOWE 1. Wstęp 1.1 Określenia podstawowe Określenia podstawowe są zgodne z obowiązującymi odpowiednimi polskimi normami i definicjami. 2. Materiały

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA STATYCZNA PRÓBA ROZCIĄGANIA Próba statyczna rozciągania jest jedną z podstawowych prób stosowanych do określenia jakości materiałów konstrukcyjnych wg kryterium naprężeniowego w warunkach obciążeń statycznych.

Bardziej szczegółowo

EKSPERTYZA O STANIE TECHNICZNYM

EKSPERTYZA O STANIE TECHNICZNYM EKSPERTYZA O STANIE TECHNICZNYM Dla potrzeb projektu przebudowy budynku żłobka, Zdzieszowice, ul. Piastów 20, dz. nr 69/54 Inwestor : Żłobek Samorządowy, Zdzieszowice, ul. Piastów 20 I. CZĘŚĆ OGÓLNA 1.1.

Bardziej szczegółowo

Wytyczne dla projektantów

Wytyczne dla projektantów KONBET POZNAŃ SP. Z O. O. UL. ŚW. WINCENTEGO 11 61-003 POZNAŃ Wytyczne dla projektantów Sprężone belki nadprożowe SBN 120/120; SBN 72/120; SBN 72/180 Poznań 2013 Niniejsze opracowanie jest własnością firmy

Bardziej szczegółowo

SPIS ZAWARTOŚCI. 1. Opis techniczny konstrukcji str Obliczenia konstrukcyjne(fragmenty) str Rysunki konstrukcyjne str.

SPIS ZAWARTOŚCI. 1. Opis techniczny konstrukcji str Obliczenia konstrukcyjne(fragmenty) str Rysunki konstrukcyjne str. SPIS ZAWARTOŚCI 1. konstrukcji str.1-5 2. Obliczenia konstrukcyjne(fragmenty) str.6-20 3. Rysunki konstrukcyjne str.21-22 OPIS TECHNICZNY 1. PODSTAWA OPRACOWANIA. 1.1. Projekt architektoniczny 1.2. Uzgodnienia

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Konstrukcje betonowe Wykład, cz. II

Konstrukcje betonowe Wykład, cz. II Konstrukcje betonowe Wykład, cz. II Dr inż. Jacek Dyczkowski Studia stacjonarne, KB, II stopień, rok I, semestr I 1 K. Kopuły Rys. K-1 [5] 2 Obciążenia i siły od ciężaru własnego kopuły, pokazanej na rys.

Bardziej szczegółowo

11. PRZEBIEG OBRÓBKI CIEPLNEJ PREFABRYKATÓW BETONOWYCH

11. PRZEBIEG OBRÓBKI CIEPLNEJ PREFABRYKATÓW BETONOWYCH 11. Przebieg obróbki cieplnej prefabrykatów betonowych 1 11. PRZEBIEG OBRÓBKI CIEPLNEJ PREFABRYKATÓW BETONOWYCH 11.1. Schemat obróbki cieplnej betonu i konsekwencje z niego wynikające W rozdziale 6 wskazano

Bardziej szczegółowo

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury metodą elementów w skończonych Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Plan prezentacji Założenia

Bardziej szczegółowo